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Harmonic mappings onto parallel slit domains

by Michael Dorff (Provo, UT), Maria Nowak (Lublin)
and Magdalena Wołoszkiewicz (Lublin)

Abstract. We consider typically real harmonic univalent functions in the unit disk
D whose range is the complex plane slit along infinite intervals on each of the lines x± ib,
b > 0. They are obtained via the shear construction of conformal mappings of D onto the
plane without two or four half-lines symmetric with respect to the real axis.

1. Introduction. Let SH be the class of functions f that are univalent
sense-preserving harmonic mappings of the unit disk D = {z : |z| < 1} and
satisfy f(0) = 0 and fz(0) > 0. Next let S0

H be the subclass of SH consisting
of f with fz̄(0) = 0. Since harmonic mappings in S0

H are not determined
by their image domains, many authors have studied subclasses of S0

H con-
sisting of functions mapping D onto a specific simply connected domain Ω.
In particular, in [6] Hengartner and Schober considered the case of Ω being
the horizontal strip {w : |Imw| < π/4}. Later Dorff [2] considered the case
of Ω being an asymmetric vertical strip, and Livingston [7] considered the
case of Ω being the plane C slit along the interval (−∞, a], a < 0. Also
Livingston [8], and Szapiel and Grigoryan [5] studied the case when Ω is
C \ (−∞, a] ∪ [b,∞).

Here we consider the case when a simply connected domain Ω is the plane
slit along infinite intervals on each of the lines x ± ib with some b > 0. Let
SRH(D, Ω) ⊂ S0

H be the class of harmonic typically real functions f mapping
the disk D onto Ω. Since the domain Ω is convex in the horizontal direc-
tion, as in the cases mentioned above, the shear construction introduced by
Clunie and Sheil-Small can be applied. In our case the so-called conformal
preshear Q is typically real and maps the disk onto the plane without two or
four half-lines symmetric with respect to the real axis. In the next section we
study the properties of the function Q and, in particular, we find the preim-
ages of horizontal lines ImQ = α. We also define a family F of harmonic
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mappings such that SRH(D, Ω) ⊂ F . We discuss properties of functions from
the family F and present several examples of harmonic functions from F .

2. Conformal preshear. We start with the following

Lemma 2.1. For A,B > 0 and c ∈ [−2, 2], the function Q(z) defined by

Q(z) = A log
1 + z

1− z
+B

z

1 + cz + z2
(2.1)

is a univalent map of D onto a domain convex in the direction of the real
axis.

Proof. We will show that iQ(z) maps D onto a domain convex in the
direction of the imaginary axis. By the result of Royster and Ziegler [9], it
suffices to show that there are numbers µ ∈ [0, 2π), γ ∈ [0, π], such that

Re{eiµ(1− 2 cos γ e−iµz + e−2iµz2)Q′(z)} ≥ 0, z ∈ D.

Choosing µ = 0 and γ ∈ [0, π] so that cos γ = −c/2 ∈ [−1, 1] implies that
the left-hand side of the last inequality is equal to

Re
{

(1 + cz + z2)
(

2A
1

1− z2
+B

1− z2

(1 + cz + z2)2

)}
=
(

2A
|1− z2|2

+
B

|1 + cz + z2|2

)
(1− |z|2)(1 + |z|2 + cRe(z)).

So the result follows from the fact that c ∈ [−2, 2].

We remark that in the case when A = 1
2 sin2 α, B = cos2 α, α ∈ (0, π/2),

and c = −2, Lemma 2.1 was proved in [4] where the authors also studied
classes of harmonic mappings obtained by shearing these functions.

A calculation shows that in the case of c = 2 the image of the unit disk
under Q is

C \
{
x± Aπ

2
i : x ∈

[
−A

2
log

2A
B

+
2A+B

4
,∞
)}

,

while for c = −2 the image is

C \
{
x± Aπ

2
i : x ∈

(
−∞, A

2
log

2A
B
− 2A+B

4

]}
.

In the case when c ∈ (−2, 2) the function Q maps the unit disk onto the
complex plane minus four horizontal half-lines. In particular, if c = 0, then
the resulting image is the C plane without the four symmetric half-lines{

x± Aπ

2
i : x ∈

(
−∞,−A

2
log
(√

2A+B +
√
B

√
2A+B −

√
B

)
−
√
B(2A+B)

2

]}
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and{
x± Aπ

2
i : x ∈

[
A

2
log
(√

2A+B +
√
B

√
2A+B −

√
B

)
+

√
B(2A+B)

2
,∞
)}

.

Assume now that Q is given by (2.1) with c = −2 cos γ, γ ∈ (0, π). Then,
setting η = eiγ , we have

(2.2) Q(z) = A log
1 + z

1− z
+B

z

(1− ηz)(1− ηz)
.

Our aim is now to study the preimages of the horizontal lines ImQ = α > 0.
Using the transformation ζ = ζ(z) = 1+z

1−z we can write

Q(z) = A log ζ +B
ζ2 − 1

4 sin2 γ
2

(
ζ + i cot γ2

)(
ζ − i cot γ2

) .
We put ζ = reiθ and consider the level curve

ImQ = Aθ +
B

4 sin4 γ
2

sin 2θ(
r − cot2(γ/2)

r

)2 + 4 cot2 γ
2 cos2 θ

= Aθ +
B

4 sin4 γ
2

sin 2θ(
r + cot2(γ/2)

r

)2 − 4 cot2 γ
2 sin2 θ

= α,

where

0 < θ < min{α/A, π/2}.

So, the equations of these level curves in polar coordinates can be written in
the form (

r −
cot2 γ

2

r

)2

=
B sin 2θ

4(α−Aθ) sin4 γ
2

− 4 cot2 γ

2
cos2 θ,

or (
r +

cot2 γ
2

r

)2

=
B sin 2θ

4(α−Aθ) sin4 γ
2

+ 4 cot2 γ

2
sin2 θ.

Consequently,

r −
cot2 γ

2

r
= ±2 cot

γ

2
cos θ

√
B tan θ

2(α−Aθ) sin2 γ
− 1(2.3)

= ± cot
γ

2

√
B sin 2θ

(α−Aθ) sin2 γ
− 4 cos2 θ,
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and

r +
cot2 γ

2

r
= 2 cot

γ

2
sin θ

√
B cot θ

2(α−Aθ) sin2 γ
+ 1(2.4)

= cot
γ

2

√
B sin 2θ

(α−Aθ) sin2 γ
+ 4 sin2 θ.

We assume first that α > πA/2 and show that preimage of ImQ = α in
the z-plane is a Jordan curve passing through the point η and except for this
point lying in the upper half of D. It follows from (2.3) that θ ∈ (θ0, π/2),
where θ0 satisfies the equation

B tan θ
2(α−Aθ) sin2 γ

= 1.

It follows from (2.3) and (2.4) that

(2.5) r =
1
2

cot
γ

2

(√
B sin 2θ

(α−Aθ) sin2 γ
+ 4 sin2 θ

±

√
B sin 2θ

(α−Aθ) sin2 γ
− 4 cos2 θ

)
,

where θ ∈ (θ0, π/2). On the other hand,

(2.6) ReQ = A log r

+
B

4 sin2 γ
2

(
r − cot(γ/2)

r

)(
r + cot(γ/2)

r

)
+ cos 2θ

(
cot2 γ

2 − 1
)(

r − cot2(γ/2)
r

)2 + 4 cot2 γ
2 cos2 θ

.

It follows from the above that the first term in (2.6) is bounded and a
calculation gives that the second term is equal to

(2.7)
1

2 sin2 γ

(
B cos γ

±
√
B + 2(α−Aθ) sin2 γ tan θ

√
B − 2(α−Aθ) sin2 γ cot θ

)
.

This shows that ReQ tends to ±∞ if θ tends to π/2, which means that the
preimage of the level curve ImQ = α in the ζ-plane is a Jordan curve passing
through the point i cot(γ/2) lying in the first quadrant except for this point
and our claim is proved.

Assume now that 0 < α < Aπ/2. Then the preimage of the level curve
ImQ = α in the ζ-plane in polar coordinates is also given by (2.5), where
θ ∈ (θ0, α/A). This implies that if θ tends to α/A, then r tends to either 0
or ∞. Moreover, by (2.7) the second term in the sum on the right-hand side
of equation (2.6) is bounded for θ ∈ (θ0, α/A). This means that the preimage
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of the level curve ImQ = α in the ζ-plane is a regular line going from zero
to infinity which corresponds to a curve connecting 1 and −1 in the upper
half of D in the z-plane.

Finally we note that the preimage of an interval lying on the line Imw
= Aπ/2 is a curve joining two boundary points of D where the derivative of
Q vanishes.

We have already mentioned that in the case when c = 2,−2, the func-
tion Q maps the unit disk onto the plane slit along two parallel horizontal
half-lines. In the manner used above but with less tedious calculations one
can show that in these cases preimages of the horizontal lines ImQ = α are
curves connecting 1 and −1 for 0 < α < Aπ/2 and Jordan curves passing
through −1 (resp. 1) for α > Aπ/2.

3. The class SRH(D, Ω). Let Ω and SRH(D, Ω) be as in the Introduction
and assume that f ∈ SRH(D, Ω). Next, let F and G be functions analytic in
D satisfying

F (0) = G(0) = 0, Re f(z) = ReF (z), Im f(z) = Im iG(z).

If

h = (F + iG)/2 and g = (F − iG)/2

then

f = h+ g and |g′(z)| < |h′(z)|.

Moreover, the function h − g = iG is univalent, convex in the horizontal
direction, and G(D) is C slit along one or two infinite rays on the vertical
lines x = ±b. We also note that f is typically real if and only if iG = h− g
is typically real. So the image of D under iG is symmetric with respect to
the real axis.

It follows from the above that

iG(z) = Q(z) = A log
1 + z

1− z
+B

z

1 + cz + z2
,

where A,B > 0, c ∈ [−2, 2]. We also note that A = 2b/π.
Consequently,

F (z) = h(z) + g(z) =
z�

0

h′(ζ) + g′(ζ)
h′(ζ)− g′(ζ)

(h′(ζ)− g′(ζ)) dζ =
z�

0

iG′(ζ)P (ζ) dζ,

where P is in the class P of functions analytic in D with P (0) = 1 and
ReP (z) > 0 for z ∈ D.
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Thus

f(z) = Re
{z�

0

(
2A

1− ζ2
+B

1− ζ2

(1 + cζ + ζ2)2

)
P (ζ) dζ

}
+ i Im

{
A log

1 + z

1− z
+B

z

1 + cz + z2

}
.

Using the function

QA,B,c(z) = A log
1 + z

1− z
+B

z

1 + cz + z2

the last formula can be written in the form

(3.1) f(z) = Re
z�

0

Q′A,B,c(ζ)P (ζ) dζ + i ImQA,B,c(z).

Now we define the family

F =
{
f : f(z) = Re

z�

0

Q′A,B,c(ζ)P (ζ) dζ + i ImQA,B,c(z),

A,B > 0, c ∈ [−2, 2], P ∈ P
}
.

So, we have

Theorem 3.1. SRH(D, Ω) ⊂ F .
The next theorem gives one of the properties of the family F that can

be proved using the method applied by Hengartner and Schober [6] and
Grigorian and Szapiel [5] and others. We include its proof for the reader’s
convenience.

Theorem 3.2. For each f ∈ F , every horizontal line has a non-empty
connected intersection with the image f(D).

Proof. Let f ∈ F , f = h + g = Re(h + g) + i Im(h − g). Let Ω =
Q(D). We consider the images of horizontal lines contained in Ω under the
function f ◦ Q−1. We observe that in the case when α 6= ±b the entire line
{w = t+ iα : t ∈ R} is contained in Ω while {w = t± ib : t ∈ R} ∩Q(D) are
finite or infinite intervals. Note first that

Im[f(Q−1(t+ iα))] = Im[Q(Q−1(t+ iα))] = α,

so the function f ◦Q−1 maps horizontal lines into themselves. Moreover,
∂

∂t
[f(Q−1(t+ iα))] =

∂

∂t
[Re(f(Q−1(t+ iα)))]

= Re
(
Q′(Q−1(t+ iα))P (Q−1(t+ iα))(Q−1(t+ iα))′

)
= Re(P (Q−1(t+ iα))) > 0.
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Thus the functions t 7→ Re(f ◦ Q−1(t + iα)) are strictly increasing for
each α ∈ R. Therefore every horizontal line has a non-empty intersection
with f(D).

In the next theorem we give some sufficient conditions for the contain-
ment of the entire horizontal lines Im z = α (α 6= ±b) in f(D).

Theorem 3.3. Assume that Q is given by (2.2) with η = eiγ and f is
defined by (3.1). Let γ ∈ [0, π]. If the function P in (3.1) is analytic at η
and ReP (η) > 0, then the half-plane {w : Imw > b} is contained in f(D).
If the function P is analytic at η̄ and ReP (η̄) > 0, then the half-plane
{w : Imw < −b} is contained in f(D). Finally, if the function P is analytic
at 1 and −1, ReP (1) > 0 and ReP (−1) > 0, then the horizontal strip
{w : |Imw| < b} is contained in f(D).

Proof. Assume P is analytic at η and ReP (η) > 0. Consider the function

(3.2) F (z) =
z�

0

Q′(ζ)P (ζ) dζ,

where Q is given by (2.2). Then in a neighborhood of η, when η 6= ±1,

F ′(z) = P (η)Q′(z) +
(
P ′(η)(z − η) +

P ′′(η)
2

(z − η)2 + · · ·
)

×
(

−Bη
(η − η̄)(z − η)2

+
a−1

z − η
+ a0 + · · ·

)
,

and when η2 = 1,

F ′(z) = P (η)Q′(z) +
(
P ′(η)(z − η) +

P ′′(η)
2

(z − η)2 + · · ·
)

×
(
−2Bη

(z − η)3
− B

(z − η)2
+

a−1

z − η
+ a0 + · · ·

)
.

Thus the function wη defined by

wη(z) =


F (z)− P (η)Q(z) +

BηP ′(η)
η − η

log(1− ηz) if η2 6= 1,

F (z)− P (η)Q(z)

−B(P ′(η) + ηP ′′(η)) log
1

1− ηz
+

2BP ′(η)
1− ηz

if η2 = 1,

is analytic at η. Consequently, in the case η2 6= 1,

F (z) = F (z)− wη(z) + wη(z)

= Q(z)
(
P (η)− BηP ′(η)(1− ηz)(1− ηz) log(1− ηz)

(η − η)(A(1− ηz)(1− ηz) log 1+z
1−z +Bz)

)
+ wη(z),
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and in the case η2 = 1,

F (z) = Q(z)
(
P (η) +

B
(
(P ′(η) + ηP ′′(η)) log 1

1−ηz −
2P ′(η)
1−ηz

)
(1− ηz)2

A(1− ηz)2 log 1+z
1−z +Bz

)
+ wη(z).

Therefore,

F (z) = Q(z)(P (η) + o(1)) + wη(z) as z → η.

It follows from the work in Section 2 that the preimages Γα of the lines

Im f(z) = ImQ(z) = α > b or Im f(z) = ImQ(z) = α < −b

are curves in D that approach η or η̄, respectively. Since

Re f(z) = ReF (z),

we see that Re f(z) converges to ±∞ as z approaches η or η̄ along Γα.
Assume now that η = eiγ with γ ∈ (0, π). If the function P is analytic at

1 and −1, ReP (1) > 0, and ReP (−1) > 0, then w1(z) = F (z) − P (1)Q(z)
is analytic at 1 and w−1(z) = F (z) − P (−1)Q(z) is analytic at −1. This
means that Re f(z) = ReF (z) behaves as ReQ(z) near 1 and −1. Moreover,
we know from Section 2 that preimages of the lines

Im f(z) = ImQ(z) = α, where |α| < b,

are curves in D connecting 1 and −1. So, our claim follows. The same con-
clusion can be drawn for the cases when η = 1 and η = −1.

Corollary 3.4. If f ∈ F has dilatation ω(z) = g′(z)/h′(z) such that
|ω(z)| ≤ C < 1 for z ∈ D, then the complement of f(D) consists of infinite
intervals lying on two parallel lines z = ±ib.

For fixed A,B > 0, c ∈ [−2, 2] let F(A,B, c) denote the subset of F with
Q = QA,B,c. As we noted before, the class F(A,B, c) contains the harmonic
univalent maps of the disk D onto the plane slit along the horizontal lines
z = ±ib, where b = πA/2. Now for fixed b > 0 (or equivalently A > 0) let

F(b) =
⋃

B>0,−2≤c≤2

F(A,B, c)

and let SRH(b) denote the class of typically real univalent harmonic mappings
of the disk D onto the plane slit along the horizontal lines z = ±ib. We have
the following.

Corollary 3.5. For b > 0,

SRH(b) = F(b).



Harmonic mappings onto parallel slit domains 157

Proof. Let f ∈ F(b) be given by (3.1) with some P ∈ P. For an integer
n > 2 define Pn(z) = P ((1− 1/n)z) and set

fn(z) = Re
z�

0

Q′(ζ)Pn(ζ) dζ + i ImQ(z).

By Theorem 3.3, fn ∈ SRH(b) and the sequence {fn} converges locally uni-
formly on D to f .

The next theorem describes situations when functions f from the fam-
ily F have the property that the intersections of horizontal lines with f(D)
are finite intervals.

Theorem 3.6. Assume that Q is given by (2.2) with η = eiγ, γ ∈ (0, π),
and f is defined by (3.1). If the function P in (3.1) is analytic at η (η̄) and
P (η) = 0 (P (η̄) = 0), then the intersection of every horizontal line Imw = α,
α > b (α < −b), with f(D) is a finite interval. Moreover, if the function P
is analytic at 1 and −1, and P (1) = P (−1) = 0, then the intersection of a
horizontal line Imw = α (|α| < b) with f(D) is a finite interval.

Proof. Assume that P is analytic at η, P (η) = 0 and F is given by (3.2).
Then in a neighborhood of η,

F ′(z) = − BηP ′(η)
(η − η̄)(z − η)

+ wη(z),

where wη is analytic at η. Consequently,

F (z) =
BηP ′(η)
η − η̄

log
1

1− η̄z
+Wη(z),

with Wη analytic at η. It has been noted in [5, pp. 66–67] that ηP ′(η) < 0.
Hence in a neighborhood of η,

Re f(z) = ReF (z) = Im
(
BηP ′(η)
2 sin γ

log
1

1− η̄z

)
+ ReWη(z).

Now our claim follows from the properties of the set {z ∈ D : Im f(z) = α}
for α > b. The other statement can be proved by observing that if P is ana-
lytic at 1 and −1, and P (1) = P (−1) = 0, then F is analytic at 1 and −1.

We note that the assertion of Theorem 3.6 does not hold in the case
η = ±1. In particular, if η = 1, P is analytic at 1 and P (1) = 0, then the
intersection of every horizontal line Imw = α (α > b) with f(D) is either
this line or a half-line {w : w = x+ iα, x > xα} with some real xα. Indeed,
if

Q(z) = A log
1 + z

1− z
+B

z

(1− z)2
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and F is defined by (3.2), then

F (z) =
2BP ′(1)
(z − 1)

+B(P ′(1) + P ′′(1)) log
1

z − 1
+ w(z),

where w is analytic at 1. Hence

ReF (z) = 2BP ′(1) Re
1

z − 1
+B(P ′(1) + ReP ′′(1)) log

1
|z − 1|

+O(1)

as D 3 z → 1. Using the transformation ζ = ζ(z) = 1+z
1−z we can write

ReF (ζ) = −BP ′(1) Re ζ+B(P ′(1) + ReP ′′(1)) log |ζ+ 1|+O(1) as ζ →∞.
A calculation shows that the preimage of the level curve Im f=ImQ=α>b
in the ζ-plane can be written in the form

(3.3) r = 2

√
α−Aθ
B sin 2θ

,

where ζ = reiθ, θ ∈ (0, π/2). It has been proved in [5] that P ′(1) + ReP ′′(1)
≤ 0. We now show that if we assume additionally that P ′(1)+ReP ′′(1) = 0,
then f(D) contains the half-lines described above. Indeed, on the curve given
by (3.3) we have

ReF (ζ) = −BP ′(1) · 2
√
α−Aθ
B sin 2θ

cos θ +O(1)

and our claim follows from the fact that

lim
θ→0+

2

√
α−Aθ
B sin 2θ

cos θ = +∞ and lim
θ→π/2−

2

√
α−Aθ
B sin 2θ

cos θ = 0.

Similar analysis can be used to show that if P ′(1)+ReP ′′(1) < 0, then f(D)
contains the whole horizontal lines Imw = α > b.

4. Examples. In this section we give examples of harmonic functions
from the family F . Our first example is a harmonic map of the unit disk onto
the complex plane slit along four horizontal half-lines that are symmetric
with respect to the real axis.

Example 4.1. Let Q1 = Q1/4,1/2,0 and take P (z) = 1+z4

1−z4 . Then we
obtain
f1(z) = ReF1(z) + i ImQ1(z)

= Re
(
− 5i

16
log
(

1 + iz

1− iz

)
+

1
4

z

1− z2
− 1

8
z

1 + z2
+

1
4

z

(1 + z2)2

)
+ i Im

(
1
4

log
(

1 + z

1− z

)
+

1
2

z

1 + z2

)
.

We will show that the function f1 maps the unit disk onto the plane minus
four parallel slits given by {x ± iπ/8 : |x| ≥ 5π/32}. We will use a similar
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argument to that applied by Clunie and Sheil-Small [1] for the so-called
harmonic Koebe function. Using the transformation ζ = ζ(z) = 1+z

1−z = ξ+iη,
ξ > 0, we get

f1(z) = Re
(
− 5i

16
log
(
ζ − i
1− iζ

)
+

1
16

(
ζ − 1

ζ

)
+

1
8

(ζ2 − 1)ζ
(ζ2 + 1)2

)
+ i Im

(
1
4

log ζ +
1
4
ζ2 − 1
ζ2 + 1

)
.

We observe that the transformation z 7→ ζ(z) maps the part of the disk in
the first quadrant onto the exterior of the unit disk contained in the first
quadrant, and we note that the interval [0, i) is mapped onto the quarter of
the unit circle. If we put ζ = reiθ, r ≥ 1, θ ∈ [0, π/2), then we have

Re f1(z) =
1
4

(
5
4

arctan
r − 1/r
2 cos θ

+
1
4

(
r − 1

r

)
cos θ

+
1
2

(
r − 1

r

)
cos θ

(r − 1/r)2 + 4(sin2 θ + 1)
((r − 1/r)2 + 4 cos2 θ)2

)
,

Im f1(z) =
1
4

(
θ +

2 sin 2θ
(r − 1/r)2 + 4 cos2 θ

)
.

Now we consider the level curves

(4.1) θ +
2 sin 2θ

(r − 1/r)2 + 4 cos2 θ
= c, c > 0.

Since r > 1 and θ ∈ (0, π/2), we get

(4.2) r − 1
r

= 2 cos θ

√
tan θ
c− θ

− 1.

Let θc ∈ (0, π/2) be the number satisfying the equation tan θc = c − θc. If
0 < c < π/2, we assume that θc < θ < c, while if c ≥ π/2, we assume that
θc < θ < π/2. Fix c > 0. Then the image of the level curve given in (4.1)
under f1 is

f1(z) =
1
8

(
5
2

arctan
(

tan θ
c− θ

− 1
)1/2

+ cos2 θ

(
tan θ
c− θ

− 1
)1/2

+
1
2

(
c− θ
tan θ

)2( tan θ
c− θ

− 1
)3/2

+
1
2

(c− θ)2

(
1 +

1
sin2 θ

)(
tan θ
c− θ

− 1
)1/2)

+ i
c

4

= u(c, θ) + i
c

4
.
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If 0 < c < π/2, then θ ∈ (θc, c) and we find that

lim
θ→θ+c

u(c, θ) = 0 and lim
θ→c−

u(c, θ) =∞.

Similarly, if c > π/2, then θ ∈ (θc, π/2) and we have

lim
θ→θ+c

u(c, θ) = 0 and lim
θ→π/2−

u(c, θ) =∞.

Finally, if c = π/2, then θ ∈ (θc, π/2) and we have

lim
θ→θ+c

u(c, θ) = 0 and lim
θ→π/2−

u(c, θ) =
5π
32
.

This means that the image under f1 of the part of the disk in the first
quadrant is the first quadrant minus the half-line {x + iπ/8 : x ≥ 5π/32}.
Our claim follows from the symmetry.

In the next example we present a map onto the plane slit along two
horizontal half-lines symmetric with respect to the real axis.

Example 4.2. Let f2 be the harmonic shear of Q2 = Q1/8,6/8,−2 with
P (z) = (1 + z2)/(1− z2). One can show that

f2(z) = ReF2(z) + i ImQ2(z)

= Re
(

1
2
z(2− z + z3)

(1− z)3(1 + z)

)
+ i Im

(
1
8

log
(

1 + z

1− z

)
+

6
8

z

(1− z)2

)
.

It was shown in [3] that f2 maps the disk onto the plane minus two half-lines
given by x± iπ/16, x ≤ −1/4.

The following two examples illustrate Theorem 3.6.

Example 4.3. Taking Q3 = Q1/4,1/2,0 and P (z) = (1− z2)/(1 + z2) we
obtain

f3(z) = Re
(
−3i

8
log
(

1 + iz

1− iz

)
− 1

4
z

1 + z2
+

1
2

z

(1 + z2)2

)
+ i Im

(
1
4

log
(

1 + z

1− z

)
+

1
2

z

1 + z2

)
.

Example 4.4. Let f4 be the shear of Q4 = Q1/4,1/2,0 with P (z) =
(1− z4)/(1 + z4). Then

f4(z) = Re
(
− i

2
log
(

1 + iz

1− iz

))
+ i Im

(
1
4

log
(

1 + z

1− z

)
+

1
2

z

1 + z2

)
.

Images of concentric circles inside D under f3 and f4 are shown in the figures
below.

Our final example is a harmonic map onto the right-half plane. This map
is connected with the note after Theorem 3.6.
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K2 K1 0 1 2

K2

K1

1

2

Fig. 1. Images of concentric circles inside D under f3.

K3 K2 K1 0 1 2 3

K3

K2

K1

1

2

3

Fig. 2. Images of concentric circles inside D under f4.

Example 4.5. Let Q5 = Q1/4,1/2,−2 and take P (z) = (1− z2)/(1 + z2).
Then

f5(z) = Re
(

z

1− z

)
+ i Im

(
1
4

log
1 + z

1− z
+

1
2

z

(1− z)2

)
is the harmonic map of the disk onto the half-plane Rew > −1/2.
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