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Sufficient conditions for which a minimal graph over a non-
convex domain is area-minimizing are presented. The condi-
tions are shown to hold for subsurfaces of Enneper’s surface,
the singly periodic Scherk surface, and the associated surfaces
of the doubly periodic Scherk surface which previously were
unknown to be area-minimizing. In particular these surfaces
are graphs over (angularly accessible) domains which have a
nice complementary set of rays. A computer assisted method
for proving polynomial inequalities with rational coefficients
is also presented. This method is then applied to prove more
general inequalities.

1. Introduction.

In this paper, we establish conditions under which a minimal graph over a
certain type of nonconvex domain is area-minimizing. In particular, we con-
sider those domains that have a “nice complementary set of rays”. Loosely
speaking, a closed domain D with a piecewise smooth boundary has a nice
complementary set of rays if its complement can be written as the union of
non-intersecting open rays emanating from ∂D that are non-tangent to ∂D.
It is shown that the compact closure of a bounded domain D with connected
smooth boundary has a nice complementary set of rays if and only if D is
angularly accessible. Such domains are a subclass of the linearly accessi-
ble domains. Linearly accessible domains are in turn associated with the
close-to-convex functions, which have been studied from a geometric func-
tion theory viewpoint both in the analytic (see [5]) and the harmonic (see
[1]) cases. We will show that certain regions of Enneper’s surface, the singly
periodic Scherk surface, and the associated surfaces of the doubly periodic
Scherk surface are area-minimizing. Furthermore, in order to prove certain
inequalities necessary for our results, a computer assisted strategy is intro-
duced. The strategy is designed to prove inequalities involving polynomials
with rational coefficients. Although the required inequalities are not initially
of this form, they can be modified to obtain inequalities of this form.
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2. Preliminaries.

Let M be an orientable surface that arises from a differentiable mapping X
from a domain Ω ⊂ R2 into R3, so that X(u, v) = (x(u, v), y(u, v), z(u, v)).
Fix a point P on M . Let t denote a vector tangent to M at P and n the unit
normal vector to M at P . Then t and n determine a plane that intersects
M in a curve β. The normal curvature κt at P is defined to have the same
magnitude as the curvature of β at P with the sign of κt chosen to be
consistent with the choice of orientation of M . The principal curvatures, κ1

and κ2, of M at P are the maximum and minimum of the normal curvatures
κt as t ranges over all directions in the tangent space. The mean curvature
of M at P is the average value H = 1

2(κ1 + κ2).

Definition 2.1.
(a) A minimal surface in R3 is a regular surface for which the mean cur-

vature is zero at every point.
(b) A surface of finite area is area-minimizing if it has the least surface

area of any surface having that particular boundary. A surface of
infinite area is area-minimizing if each of its compact subsurfaces is
area-minimizing.

Every area-minimizing surface is a minimal surface, but the converse is
not true. In fact, it is difficult to prove that a specific surface is area-
minimizing. However, there is the following classical result [see [6], 5.4.18
or see [11], 6.1]:

Theorem 2.2. A minimal graph over a convex domain is area-minimizing.

It follows that any subsurface of a minimal graph over a convex do-
main is also area-minimizing. In contrast, minimal surfaces containing area-
minimizing pieces may not be area-minimizing. For example, consider the
minimal surface given by

X(u, v) = (u− u3/3 + uv2, v − v3/3 + vu2, u2 − v2)(1)

known as Enneper’s surface. Let Ur be the disc of radius r in the u, v-
plane centered at the origin. Let πr denote the projection of X(Ur) to the
x, y-plane. Then X(Ur) is a graph over πr for r ≤ 1. Although π1 is not
convex, the convex hull of πr is contained in π1 precisely for r ≤ r0 =√

22/3 − 1 ≈ 0.766 and hence any subsurface of X(Ur0) is area-minimizing.
For r0 < r ≤ 1, the convex hull of πr is no longer contained in π1 and it has
been unknown whether or not X(Ur) is area-minimizing for any of these r
values. However, it is known for r ≤ 1 that X(Ur) has least area among
topological disks with the same boundary [14]. For 1 < r <

√
3, X(Ur) still

has no self intersections, but is no longer a graph and does not minimize
area [12]. Oprea ([13]) shows that this follows from a theorem of Schwarz,
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since the image of the Gauss map then contains an entire hemisphere in its
interior.

The fact that a minimal graph over a nonconvex domain need not mini-
mize area is illustrated in [11].

The types of surfaces to which we will apply our results are those that
have domains that satisfy the following definition:

Definition 2.3. Let D be a closed region in R2 with piecewise smooth
boundary. Suppose that Υ is a set of rays having the following properties:

(1) R∩D = ∂R for every R ∈ Υ.
(2) R∩R′ ⊂ ∂D for every distinct pair of rays R,R′ ∈ Υ.
(3) DC =

⋃
R∈ΥR.

(4) There is a δ > 0 and a set A ⊂ ∂D so that the one-dimensional
Hausdorff measure H1(A) equals 0 and for all p ∈ ∂D − A, the angle
between ∂D and any ray R ∈ Υ emanating from p is defined and is at
least δ.

Then Υ is called a nice complementary set of rays for D in R2. If Υ
satisfies (1)-(3), then Υ is called a complementary set of rays for D in R2.
The points p ∈ ∂D at which ∂D is smooth and which have a uniqueR(p) ∈ Υ
radiating from them are called the standard points of ∂D.

Note that it follows from Conditions (1) and (3) that for every p ∈ ∂D
there is at least one R ∈ Υ such that ∂R = p. Furthermore, the non-
standard points of ∂D are countable. The rays radiating from a non-
standard point on the smooth parts of ∂D form an angle of positive measure.
If the non-standard points were uncountable, then R2 would contain an un-
countable collection of pairwise disjoint open sets, which is not possible.

Lemma 2.4. Suppose that D is a compact domain with piecewise smooth
connected boundary and that Υ is a nice complementary set of rays for D.
Then no ray in Υ is contained in the tangent cone of any point of ∂D.

Proof. Let B be a ball in R2 that contains D in its interior. Note that there
is a 1-1 correspondence between the rays of Υ and the points of ∂B. Let
ψ : ∂B → ∂D be the map projecting ∂B onto ∂D via the rays of Υ. It can
be shown from the properties of a nice complementary set of rays that ψ is
an order preserving surjection in the sense that whenever a, b, c, d ∈ ∂D so
that {a, b} separates c and d, then either {ψ(a), ψ(b)} ∩ {ψ(c), ψ(d)} 6= ∅ or
{ψ(a), ψ(b)} separates ψ(c) and ψ(d). It follows that ψ is continuous and
that each point preimage is a point or a connected arc.

Let J1, J2, . . . , Jn be smooth arcs forming ∂D. Define an = J1 ∩ Jn and
ai = Ji ∩ Ji+1 for i = 1, . . . , n − 1. Then the endpoints of Ji are ai−1 and
ai for i = 2, . . . n and the endpoints of J1 are an and a1. If ψ−1(ai) is a
point, denote that point as bi. If not, let bi be a point in the interior of the
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segment ψ−1(ai). Let Ki denote the arc in ψ−1(Ji) with endpoints bi−1 and
bi for i = 2, . . . n or bn and b1 if i = n.

It suffices to show that no ray in Υ meeting Ki is contained in the tangent
cone of a point of Ji. Suppose to the contrary that R ∈ Υ meets Ki at q
and is contained in the tangent cone to Ji at p = ∂R. Clearly, q can not be
contained in the interior of ψ−1(p). Hence given any set A ⊂ Ji of Hausdorff
measure 0, there is a sequence of points {qi} ⊂ ψ−1(Ki− (A∪ {p})) so that
qi → q.

Let N(s) denote the outward unit normal to Ji at s. It follows from
the smoothness of Ji that N(s) is continuous. Let R(t) denote the unit
vector in the direction of the unique ray of Υ which meets K at t. Then

R(t) =
t− ψ(t)
‖t− ψ(t)‖

is also continuous. Therefore N(ψ(t)) ·R(t) is continuous

on Ki. Hence N(ψ(qi)) ·R(qi) → 0. This contradicts (4) of the definition
of a nice complementary set of rays. Therefore, no ray in Υ is contained in
the tangent cone of any point of ∂D. �

Recall that a region is linearly accessible if its complement can be written
as the union of non-crossing rays. The rays are non-crossing in the sense
that they may only meet at their endpoints. Furthermore, a region is said
to be angularly accessible of order β, β ∈ [0, 1], if its complement can be
written as the union of non-crossing rays so that each ray is the bisector
of a sector of measure (1− β)π that is contained in the complement of the
region. Thus any angularly accessible region is linearly accessible. A linearly
accessible region that is not angularly accessible of order β < 1, is said to
be strictly linearly accessible.

We will say that a closed domain D is angularly (or linearly) accessible if
its interior is angularly (or linearly) accessible. Given an angularly accessible
domain D of order β, a set of rays satisfying the definition is called an access
set of rays of order β for D.

Clearly the concepts of a domain being strictly angularly accessible versus
having a nice complementary set of rays are related. A priori, however, it is
not obvious that either condition implies the other, since:

1) A measure zero set of rays is excluded from the angle requirement in
Definition 2.3.

2) The angle requirement in Definition 2.3 is local, while the requirement
that a wedge miss an entire region is global.

3) Angular accessibility does not require rays to have their endpoints on
the boundary of the domain; there could be “feathers” where a ray R
extending from D is not a ray of the access set, but some of the rays
of the access set extend out from R.

The following theorem, however, reconciles these differences for piecewise
smooth domains:
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Theorem 2.5. A compact domain D with piecewise smooth connected
boundary has a nice complementary set of rays if and only if D is angu-
larly accessible of order β < 1.

Proof. Suppose that D has a nice complementary set of rays, Υ. Clearly,
D is linearly accessible. Assume that D is strictly linearly accessible. As in
Lemma 2.4, let B be a ball in R2 that contains D and let ψ : S → ∂D be the
map projecting ∂D onto ∂D via the rays of Υ. As discussed in Lemma 2.4,
for each p ∈ ∂D, ψ−1(p) is a point or a connected arc in ∂D.

Suppose there is a sequence {Ri} ⊂ Υ so that the 1
i -sector centered at

Ri, S(Ri,
1
i ), meets D at more than one point. Without loss of generality

assume that Ri → R. Let pi = ∂Ri. Then S(Ri,
1
i ) ∩ ∂D − pi 6= ∅. Choose

qi ∈ S(Ri,
1
i ) ∩ ∂D − pi. Again, without loss of generality, we may assume

that there is a smooth arc J of ∂D containing {pi} and {qi}. Let p = ∂R.
Since J ∩ R = p, then pi → p and qi → p. By the smoothness of J there
are points ri ∈ J between qi and pi so that the direction of the line tangent
to J at ri is 1

i -close to the direction of Ri. Since ri → p it follows from
the smoothness of J that R is tangent to J . This is a contradiction to
Lemma 2.4. Therefore D is angularly accessible of order β for some β < 1.

Conversely, suppose that D is angularly accessible of order β < 1. Let
Υ∗ be an access set of rays of order β for D. A nice complementary set of
rays is obtained by first noting that for each point of p ∈ ∂D there is a ray
Rp ∈ Υ such that p = ∂Rp. Let Sp be the component of the complement of
int(D) ∪ (

⋃
{Rq | q 6= p}) which contains Rp. Let Γp be the set of all rays

emanating from p into Sp. Then the set Υ =
⋃

Γp is a nice complementary
set of rays. �

Lewandowski [10] has shown that an analytic function on the unit disc is
close-to-convex if and only if its image domain is linearly accessible. There is
a similar relationship between certain analytic functions and image domains
that are angularly accessible of order β < 1 [8].

3. Results.

As was previously mentioned, it is well-known that a minimal surface that
is a graph over a convex domain has least area among all surfaces (graphs or
not) having the same boundary. In this section we provide a new area min-
imization result for graphs over nonconvex domains. We begin by outlining
a proof by calibrations for the convex domain case (found in [11]).

Theorem 3.1. Let D be a convex domain in R2. Let f(x, y) be a function
defined on D whose graph M is a regular minimal surface in R3. Then M
has least area among all surfaces having the same boundary as M .

Proof. Let C be the vertical cylinder over D. Define a differential 2-form
φ at points (x, y, f(x, y)) ∈ M by letting it be the unit length dual of the
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tangent plane, given by

φ =
1√

1 + f2
x + f2

y

(−fxdydz − fydzdx+ dxdy).

Extend φ to all of C by letting it be constant in the vertical direction:
φ(x, y, z) = φ(x, y, f(x, y)). A straightforward calculation shows that a form
φ defined in this way is closed if and only if M is a minimal surface.

Now let S be any other surface whose boundary is the same as that of
M . If S lies entirely in C, so that φ is defined on S, then we have

Area(M) =
∫

M
φ =

∫
S
φ ≤ Area(S).

The middle equation is by Stokes’ theorem, and the last inequality follows
since φ returns a value less than or equal to 1 when applied to tangent planes
of S.

If S does not lie entirely in C, we employ the nearest point projection Π
onto C. Since Π does not increase surface area, we have

Area(M) =
∫

M
φ =

∫
Π(S)

φ ≤ Area(Π(S)) ≤ Area(S).

�

Now if D is a nonconvex set, then for any projection Π onto C, the last
inequality above may not hold. However, under certain circumstances we
can omit Area(Π(S)) from the inequality string and still obtain

Area(M) =
∫

M
φ =

∫
Π(S)

φ ≤ Area(S).

This is because, although Π(S) may have more area than S, the integration
of φ may not be counting all the area of Π(S).

Theorem 3.2. Let D ⊂ R2 be a closed region with a nice complementary
set of rays Υ. Let M be a minimal surface in R3 which is a graph of a
function f(x, y) defined on D. For every standard p ∈ ∂D, suppose that

|n(p) ·N(p)| ≤ R(p) ·N(p)

where n(p) is the unit normal to M at p, N(p) is the outward unit normal
to ∂D at p naturally included into R2 × {0}, and R(p) is the unit normal
in the direction of R(p) ∈ Υ emanating from p also naturally included into
R2×{0}. Then M has least area among all surfaces (graphs or not) having
the same boundary as M .

Proof. Basic idea: Construct φ to be the calibration for M that is dual
to the tangent planes of M and extend φ to the cylinder over D so that
φ is constant in the z direction, as before. For comparison surfaces that
go outside the cylinder, project onto the cylinder in the direction defined
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by the rays of Υ. This projection stretches area (the bad news), but then
integration of φ counts less than the projected area (the good news). The
inequality in the hypothesis guarantees that the latter factor outweighs the
former.

More formally, let C be the cylinderD×R. Let Π be the projection arising
naturally from the choice of rays. That is, at points of C, Π is the identity
and at points away from C, Π(x, y, z) = (x0, y0, z) where (x, y) ∈ Rα and
(x0, y0) = ∂Rα.

Now let S be any surface (integral current) with the same boundary as
M . Let S1 = SxC, and S2 = S − S1. Then

M(S) = M(S1) + M(S2)

∂(Π#S) = Π#(∂S) = ∂S = ∂M

M(M) =
∫

M
φ =

∫
Π#S

φ =
∫

Π#S1

φ+
∫

Π#S2

φ

=
∫

S1

φ+
∫

Π#S2

φ ≤ M(S1) +
∫

Π#S2

φ.

It remains to establish that ∫
Π#S2

φ ≤ M(S2).

Since Π#S2 lies on the boundary of C, and since φ is dual to the tangent
planes of M , then φ applied to the tangent plane of Π#S2 at a point (p, z) =
(x0, y0, z) will equal ±n(p) · N(p), where n(p) is a unit normal to M at
(p, f(p)) and (as before) N(p) is the outward unit normal to ∂D. Thus,∫

Π#S2

φ ≤
∫

Π#S2

|n(p) ·N(p)| ≤
∫

Π#S2

R(p) ·N(p).

To compare the last integral with the mass of S2, let S2 denote the support
of the current S2, µ(x) its multiplicity function and J the Jacobian of Π.
Define g = 1/J when J 6= 0 and g = 0 when J = 0. From the definition of a
nice complementary set of rays, R(p) ·N(p) is defined and is bounded away
from 0 for almost all p ∈ ∂D. Therefore Π is Lipshcitz and it follows from
the area-coarea formula that

M(S2) =
∫

S2

µ ≥
∫
S2

g(x)J(x)µ(x)dH2

≥
∫

Π{S2}

∑
x∈Π−1{p}∩S2

g(x)µ(x) dH2.

Note that the second inequality would be an equation if we used the (po-
tentially smaller) Jacobian of the function Π restricted to S2.
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Now if the rays Rα near p ∈ ∂D are parallel, then J = 1/(R(p) ·N(p))
on those rays, as seen in Figure 1. Otherwise the rays diverge (since they
can’t cross), so that J ≤ 1/(R(p) ·N(p)). Thus,∫

Π#S2

R(p) ·N(p) =
∫

Π{S2}
µR(p) ·N(p) dH2

≤
∫

Π{S2}

∑
x∈Π−1{p}∩S2

g(x)µ(x) dH2.

The last inequality may be strict for two reasons: If R(p) ·N(p) < 1/J , or
if Π# causes cancellation of sheets of S2. Finally, there are only a countable
number of points p ∈ ∂D such that the Jacobian on Π−1(p) is zero, so even
though g = 0 < R(p) ·N(p) at these points, this does not affect the integral
inequality. �

D

N

R
c bθ a

x

Figure 1. For parallel rays, J1Π(x) =
c

a
≤ c

b
= sec θ =

1
N ·R

. A similar

picture in R3 shows that J2Π(x) =
1

N ·R
.

In higher dimensions, it is not sufficient for the rays Rα to be non-
intersecting, because that does not guarantee that the distance between
them is always increasing. (They might be skew, with points of closest ap-
proach somewhere away from C.) One must require that the rays be either
parallel or diverging from each other, and then the theorem goes through as
before.

We finish this section with some results that will allow us to more easily
verify that a given set of rays satisfies the conditions of Theorem 3.2 in the
applications of the next section.

Let D be a closed domain. A set of non-crossing rays µ1, µ2 . . . , µk em-
anating from ∂D so that µi ∩D = ∂µi is said to partition the complement
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of D. The closures of the connected components of R2 − (D ∪
⋃k

i=1 µi) are
called the sections of the partition.

Definition 3.3. Let S be a section of the complement of a closed domain
D such that C = ∂D ∩ S is piecewise smooth. Suppose that Υ is a set of
rays having the following properties:

(1) R∩D = ∂R for every R ∈ Υ.
(2) R∩R′ ⊂ C for every R,R′ ∈ Υ.
(3) S =

⋃
R∈Υ

R.

(4) There is a δ > 0 and a set A ⊂ ∂D so that the one-dimensional
Hausdorff measure H1(A) equals 0 and for all p ∈ ∂D − A, the angle
between C and any ray R ∈ Υ is defined and is at least δ.

Then Υ is called a nice complementary set of rays for D in S. If Υ satisfies
(1)-(3), then Υ is called a complementary set of rays for D in S

Given a ray R in R2, let ϑ(R) denote the direction of R with respect to
the x-axis. The first proposition is an observation.

Propositon 3.4. Suppose that D is a closed domain with connected bound-
ary in R2, µ1, µ2 . . . , µk is a set of rays that partition the complement of D so
that ϑ(µ1) ≤ ϑ(µ2) ≤ · · · ≤ ϑ(µk). Let Si denote the section of the partition
bounded between µi and µ(i+1 mod k). Suppose Υi is a (nice) complementary
set of rays for D in Si. Then Υ =

⋃
Υi is a (nice) complementary set of

rays for D in R2. Moreover, if µ1, µ2 . . . , µk partition the complement of D
into congruent sections then a given Υi extends to a (nice) complementary
set of rays for D in all of R2 via the congruence relation.

To determine if a particular set of rays in a section S of the complement
of a closed domain D is a complementary set of rays for D in S, we have
the following definition and proposition:

Definition 3.5. Suppose that D is a closed domain with connected bound-
ary in R2, µ1 and µ2 are rays of a partition of the complement of D that
bounds a section S, and R0 is a unit vector that is in the direction of a ray
contained in S. For each p ∈ ∂D ∩ S, define R(p) to be a ray emanating
from p in the direction of R0. Let Wi be the sector in S cut out by the angle
formed by µi and R(∂µi). Then the R0-set of rays for D in S is the union
of the set {R(p) | p ∈ ∂D ∩ S} together with the set of all rays emanating
from ∂µi contained in Wi for i = 0, 1.

Propositon 3.6. Let D be a closed domain with connected boundary in R2.
Suppose that S is a section of a partition of the complement of D bounded
by µ1 and µ2, C = ∂D ∩ S is a smooth connected arc, R0 is a unit vector
that is in the direction of a ray contained in S and N(p) · R0 > 0 for all
p ∈ C − ∂C. Then Υ, the R0-set of rays for C in S, is a complementary
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set of rays for D in S. Moreover, if N(p) ·R0 > 0 for all p ∈ C, then Υ is
a nice complementary set of rays for D in S.

Proof. The result will follow almost immediately from the next two lemmas.

Lemma 3.7. Suppose that C is parameterized by r : [t1, t2] → C and l(p) is
the line meeting C at p = r(t0) in the direction of R0. Define δp(q) to be the
distance between q and l(p). Then δp(r(t′)) ≥ δp(r(t)) whenever t′ ≥ t ≥ t0
or t′ ≤ t ≤ t0.

Proof. Suppose not. Then there is a t∗ ∈ (t1, t2) so that δp has a local
maximum at r(t∗). Then

0 = δ′p(r(t
∗)) = ∇δp(r(t∗)) · r′(t∗).

Thus ∇δp(r(t∗)) ⊥ r′(t∗). In addition, ∇δp(r(t∗)) ⊥ l(p) since the direc-
tion of greatest increase of δp is perpendicular to l(p). Therefore l(r(t∗)) is
parallel to r′(t∗) which contradicts that N(r(t∗)) ·R0 > 0. �

Lemma 3.8. The map p→ l(p) is a 1-1 correspondence between the points
of C and the parallel lines bounded between l(a1) and l(a2).

Proof. It follows from Lemma 3.7 that no two distinct points of C lie on
the same line bounded between l(a1) and l(a2). Thus C is contained in the
region bounded between l(a1) and l(a2). By the connectedness of C, each of
the parallel lines bounded between l(a1) and l(a2) meets C. Thus the map
that assigns each point p of C to the line l(p) containing p and bounded
between l(a1) and l(a2) is a 1-1 correspondence. �

For each p ∈ C, the ray R(p) is the ray with endpoint p that is contained
in l(p) and emanating from away from D. Hence R(p) ∩D = ∂R(p). Since
D is a domain with connected boundary then Wi can meet D only at ai.
Thus for R emanating from ai and contained in Wi, it is again the case that
R∩D = ∂R. Therefore Condition 1 is satisfied.

Let T be that part of the region bounded by l(a1), l(a2) and C which
misses the interior of D. Then S = W1 ∪W2 ∪ T . It should be clear from
Lemma 3.8 that S =

⋃
R∈Υ

R and that R ∩ R′ ⊂ C for every R,R′ ∈ Υ.

Therefore, Conditions 2 and 3 are satisfied.
If N(p) ·R0 > 0 for all p ∈ C then Condition 4 follows from the compact-

ness of C. �

In the applications of the next section we will identify partitions that
divide a given domain D into congruent pieces. Then for a specified section
S of such a partition, an R0-set of rays for ∂D ∩ S in S which satisfies the
conditions of Proposition 3.6 is determined. Applying Proposition 3.4, this
set of rays is extended to a nice complementary set of rays for D in R2.
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4. Applications.

Theorem 3.2 allows us to prove that certain minimal graphs over nonconvex
domains are area-minimizing. For our first application we will show that
a particular portion of Enneper’s surface minimizes area. Recently, White
proved that half of Enneper’s surface is area-minimizing [15], and previ-
ously, we mentioned that Enneper’s surface is area-minimizing over πr0 for
r0 =

√
22/3 − 1 ≈ 0.766. Using Theorem 3.2, we are able to establish that

Enneper’s surface is area-minimizing over πr0 for r0 = 1
3

√
3 + 2

√
3 ≈ 0.847

(see Figures 2 and 3).

Theorem 4.1. Enneper’s surface minimizes area among all surfaces span-
ning the curve C = {X(u, v) | u2 + v2 = r20} where X(u, v) is given by
Equation (1) and r0 = 1

3

√
3 + 2

√
3.

Proof. Using polar coordinates so that (u, v) = (r cos θ, r sin θ), the first two
coordinates for Enneper’s surface are given by

x = r cos θ + r3 cos θ − 4
3
r3 cos3 θ

y = r sin θ + r3 sin θ − 4
3
r3 sin3 θ.

Let n denote the surface normal to Enneper’s surface and N the outward
unit normal to ∂πr for a fixed r. Then

N =

(
cos θ(1− 3r2 + 4r2 cos2 θ), sin θ(1− 3r2 + 4r2 sin2 θ), 0

)
√

(r2 + 1)2 − 16r2 cos2 θ sin2 θ
, and

n =
1

1 + r2

(
2r cos θ,−2r sin θ, r2 − 1

)
.

Let θi = (2i−1)
4 π for i = 0, 1, 2, 3. It is a straightforward calculation to show

that X(r cos θ, r sin θ) meets the ray emanating from the origin in the θi di-
rection precisely when θ = θi and that the distance from X(r cos θi, r sin θi)
to the origin increases in r. For a fixed r, let µi be the ray in the di-
rection of θi emanating from X(r cos θi, r sin θi) for i = 0, 1, 2, 3. Then
{µi} partitions the complement of πr into congruent pieces. Let S1 be
the section of R2 bounded between µ0 and µ1. Note that C1 = S ∩ ∂πr =
{X(r cos θ, r sin θ) | − π/4 ≤ θ ≤ π/4} is a smooth curve.

Let R0 = (1, 0, 0) and let Υ1 be the R0-set of rays for πr in S1. Observe
that for p ∈ ∂C1,

N(p) ·R0 =
cos θ(1− 3r2 + 4r2 cos2 θ)√
(r2 + 1)2 − 16r2 cos2 θ sin2 θ

≥ 1− r2√
2(1 + r2)

.
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Hence, by Proposition 3.6, Υ1 is a nice complementary set of rays for πr in
S1 when r < 1. By Proposition 3.4, Υ1 extends to Υ, a nice complementary
set of rays for πr in R2.

In order to apply Theorem 3.2 to Υ, we want to find the largest value of
r > 0 for which

|n ·N| ≤ N ·R(2)

almost everywhere on ∂πr. Note that

n ·N =
2r(2 cos2 θ − 1)√

(r2 + 1)2 − 16r2 cos2 θ sin2 θ
≥ 0.

Thus, we want to find the largest region πr so that N · (R0 − n) ≥ 0 holds.
In particular, we want r to satisfy

cos θ(1− 3r2 + 4r2 cos2 θ)− 2r(cos2 θ − sin2 θ) ≥ 0(3)

for θ ∈ [−π/4, π/4]. The value of θ ∈ [−π/4, π/4] that minimizes the left-
hand side of (3) satisfies

cos θ =
2 +

√
1 + 9r2

6r
.

Substituting this value into (3), and solving for r we get that

r0 =
1
3

√
3 + 2

√
3 ≈ 0.84748.

�
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Figure 2. Enneper’s surface with Figure 3. Projection of Enneper’s
r = 1. surface with r1 = 0.767, r2 = 0.847,

and r3 = 1.
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Next, we apply Theorem 3.2 to determine portions of the Scherk singly
periodic surface that are the minimal graphs over nonconvex domains which
are area-minimizing. The Scherk singly periodic surface arises in minimal
surface theory as the conjugate surface of the Scherk doubly periodic surface.
Recall the following definitions:

Definition 4.2. If a minimal surface X(u, v) = (x, y, z) is defined on a
simply connected domain Ω ∈ C, then we define the conjugate surface or
adjoint surface, X∗(u, v) = (x∗, y∗, z∗) to X(u, v) on Ω as the solution of the
Cauchy-Riemann equations

Xu = X∗
v , Xv = −X∗

u

in Ω.

Example 4.3. The doubly periodic Scherk surface (see Figure 4) is given
by

X(u, v) =
(

1
2

arg
(
z − i

z + i

)
,
1
2

arg
(

1 + z

1− z

)
,
1
2

log
∣∣∣∣1 + z2

1− z2

∣∣∣∣)
where z = u+ iv. Its conjugate surface is the singly periodic Scherk surface
(see Figure 5) given by

X∗(u, v) =
(

1
2

log
∣∣∣∣z + i

z − i

∣∣∣∣, 12 log
∣∣∣∣1− z

1 + z

∣∣∣∣, 12 arg
(

1 + z2

1− z2

))
.(4)
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Figure 4. The doubly periodic Figure 5. The singly periodic
Scherk surface with r = 0.999. Scherk surface with r = 0.999.

Now let π0
r denote the projection of that portion of the doubly periodic

Scherk surface defined on Ur to the x, y-plane. Likewise, let π∗r denote the
projection of that portion of the singly periodic Scherk surface defined on Ur

to the x, y-plane. Since the doubly periodic Scherk surface is a graph over π0
1

which is convex (see Figure 6), it is area-minimizing by Theorem 2.2. By a
result by Krust [see [7] or [2]], the singly periodic Scherk surface is a minimal
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graph over π∗1. The region π∗1 is nonconvex (see Figure 7) and it has been
unknown whether or not it is area-minimizing over π∗r for r > 1/

√
2 ≈ 0.707;

i.e., for values r such that the convex hull of π∗r is contained in π∗1. However,
π∗r has a nice complementary set of rays for r < 1. Thus we can apply
Theorem 3.2 to derive the following result:

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

Figure 6. Projection of one Figure 7. Projection of the singly
component of the doubly periodic periodic Scherk surface

Scherk surface with r1 =
1√
2
, with r1 =

1√
2
, r2 = 0.770778

r2 = 0.770778 and r3 = 0.999. and r3 = 0.999.

Theorem 4.4. The singly periodic Scherk surface minimizes area among
all surfaces spanning the curve C = {X(u, v) | u2 + v2 = r20} where X(u, v)
is given by Equation (4) and

r0 =
1

2

s
−10− 2

√
17 + 8

q
4 +

√
17− 2

r
102 + 26

√
17− 40

q
4 +

√
17− 8

√
17

q
4 +

√
17

≈ 0.770778.

Proof. Parametrizing the u, v-plane in polar coordinates so that (u, v) =
(r cos θ, r sin θ), we have

x =
1
4

log
(
r2 + 1 + 2r sin θ
r2 + 1− 2r sin θ

)
,

y =
1
4

log
(
r2 + 1− 2r cos θ
r2 + 1 + 2r cos θ

)
.

Let n denote the surface normal to the singly periodic Scherk surface and
N the outward unit normal to ∂π∗r for a fixed r. Then

N =

(
sin θ[(1− r2)2 + (2r cos θ)2],− cos θ[(1− r2)2 + (2r sin θ)2], 0

)
√

(1− r2)4 + 16r2 cos2 θ sin2 θ(1− r2 + r4)
,
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and

n =
−1

1 + r2

(
2r cos θ,−2r sin θ, r2 − 1

)
.

Let θi = iπ
2 for i = 0, 1, 2, 3. It is a straightforward calculation to

show that X(r cos θ, r sin θ) meets the ray emanating from the origin in
the θi direction precisely when θ = θi + π

2 and that the distance from
X(r cos θi, r sin θi) to the origin increases in r. For a fixed r, let µi be
the ray in the direction of θi emanating from X(r cos(θi + π

2 ), r sin(θi + π
2 ))

for i = 0, 1, 2, 3. Then {µi} partitions the complement of πr into congruent
pieces. Let S1 be the section of R2 bounded between µ0 and µ1. Note that
C1 = S ∩ ∂πr = {X(r cos θ, r sin θ) | π

2 ≤ θ ≤ π} is a smooth curve.
Let R0 = (1/

√
2, 1/

√
2, 0) and let Υ1 be the R0 set of rays for ∂πr ∩ S1

in S1. Observe that for p ∈ ∂πr ∩ S1,

N(p) ·R0 =
sin θ[(1− r2)2 + (2r cos θ)2]− cos θ[(1− r2)2 + (2r sin θ)2]

√
2
√

(1− r2)4 + 16r2 cos2 θ sin2 θ(1− r2 + r4)

≥ 1√
2
.

Hence by Proposition 3.6, Υ1 is a nice complementary set of rays for π∗r ∩S1

in S1. By Proposition 3.4,Υ1 extends to Υ, a nice complementary set of rays
for πr in R2.

We want to find the largest value of r so that |n ·N| ≤ N ·R. Note that
for θ ∈ [π/2, π]

n ·N =
−4r cos θ sin θ(1 + r4)

(1 + r2)
√

(1− r2)4 + 16r2 cos2 θ sin2 θ(1− r2 + r4)
≥ 0.

Thus we want to find the largest region πr so that N · (R − n) ≥ 0. In
particular, we want to satisfy

(5) (1 + r2)(sin θ − cos θ)[(1− r2)2 − 4r2 cos θ sin θ]

+ 4
√

2r cos θ sin θ(1 + r4) ≥ 0

for θ ∈ [π/2, π]. Differentiating and using the identity cos θ sin θ = 1
2 [1 −

(cos θ− sin θ)2] we find that the value of θ that minimizes the left-hand side
of this inequality satisfies the equation

cos θ − sin θ =
−2
√

2(1 + r4)±
√

2r8 + 12r6 + 52r4 + 12r2 + 2
6r(1 + r2)

.
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Substituting this value into (5) yields
√

2
54r(1 + r2)2

[(1 + r4)(r8 + 36r6 + 38r4 + 36r2 + 1)

± (r8 + 6r6 + 26r4 + 6r2 + 1)
3
2 ] ≥ 0.

Hence, we need the expression inside of the square brackets to be greater
than 0. This leads to finding the smallest positive root of

54r2(r2 + 1)2[r16 + 20r14 − 8r12 + 28r10 − 146r8 + 28r6 − 8r4 + 20r2 + 1].

Factoring r8 out of the expression in the square brackets and substituting
in

t = r2 +
1
r2
,

gives the new expression in the square brackets as

t4 + 20t3 − 12t2 − 32t− 128,

whose roots are −5−
√

17± 4
√

4 +
√

17 and −5 +
√

17± 4
√

4−
√

17. The
smallest positive root of

r16 + 20r14 − 8r12 + 28r10 − 146r8 + 28r6 − 8r4 + 20r2 + 1

is therefore

r0 =
1

2

s
−10− 2

√
17 + 8

q
4 +

√
17− 2

r
102 + 26

√
17− 40

q
4 +

√
17− 8

√
17

q
4 +

√
17.

�

In general, a conjugate surface is a minimal surface. Thus, we can con-
struct a one-parameter family of minimal surfaces.

Definition 4.5. For α ∈ R, the surfaces Z(u, v, α) are called associated
minimal surfaces to the surface X(u, v), where

Z(u, v, α) := X(u, v) cosα+X∗(u, v) sinα.(6)

Associated surfaces share several nice properties. In the references above,
Krust showed that if an embedded minimal surface can be written as a
graph over a convex domain, then all associated minimal surfaces are graphs.
Recently, Dorff [3] proved that these associated surfaces are graphs over
close-to-convex domains.

Example 4.6. The associated surface of the doubly periodic Scherk surface
for α = π/4 along with its projection onto a close-to-convex domain are
shown in Figures 8 and 9.
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Figure 8. Associated Scherk Figure 9. Projection of associated
surface for α = π/4 with r = 0.999. Scherk surface for α = π/4 with

r1 = 0.7, r2 = 0.77, and r3 = 0.999.

Using Theorem 3.2 and a computer assisted approach for proving inequal-
ities, we now determine a whole class of subsurfaces of the Scherk associated
surfaces that are graphs over nonconvex domains and are area-minimizing.

Theorem 4.7. For 0 ≤ α ≤ π

2
, the associated Scherk surface minimizes

area among all surfaces spanning the curve Cα = {Z(u, v, α) | u2 +v2 = r20}
where Z(u, v, α) is given by Equation (6) and r0 = 0.77043

Proof. Let the u, v-plane be parameterized in polar coordinates so that
(u, v) = (r cos θ, r sin θ). Note that the normal Nα to Cα in the plane z = 0
is given by

Nα =
Ñα

‖Ñα‖
where

Ñα = cosαN0 + sinαNπ
2
.

It follows that

Ñα = cosα
(

r(1− r2) cos θ
[(1− r2)2 + (2r sin θ)2]

,
r(1− r2) sin θ

[(1− r2)2 + (2r cos θ)2]
, 0
)

+ sinα
(

r(r2 + 1) sin θ
[(1− r2)2 + (2r sin θ)2]

,
−r(r2 + 1) cos θ

[(1− r2)2 + (2r cos θ)2]
, 0
)
, and

n =
−1

1 + r2
(2r cos θ,−2r sin θ, r2 − 1).

To construct a nice complementary set of rays for πα
r that satisfies the condi-

tions of Theorem 3.2, we first identify a simple partition of the complement
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of πα
r from which we construct a complementary set of rays for πα

r . A finite
subset of these rays then gives a different partition of the complement of πα

r .
Finally, we utilize the new partition to define a nice complementary set of
rays for πα

r .
To obtain our first partition, note that the maximum x-coordinate for

points of πα
r occurs when the y component of Nα is 0. This occurs when

tan θ =
1 + r2

1− r2
tanα.

Let

θ∗i = tan−1

[
1 + r2

1− r2
tanα

]
+
πi

2
for i = 0, 1, 2, 3.

Let φi = πi
2 for i = 0, 1, 2, 3. Let Ẑ denote the orthogonal projection of the

map Z to the xy-plane. Let µ∗i be the ray in the φi direction emanating
from Ẑ(r cos θ∗i , r sin θ∗i , α). Then clearly {µ∗i } partitions the complement of
πα

r into congruent sections. Let S∗0 be the section bounded between µ∗0 and
µ∗1. Note that

C∗
0 = S0 ∩ ∂πα

r = {Ẑ(r cos θ, r sin θ, α) | θ∗0 < θ < θ∗1}

is a smooth curve. Let R∗ = (1, 0, 0). Then

Nα ·R∗ =
r(1− r2) cosα cos θ + r(r2 + 1) sinα sin θ

‖Ñα‖[(1− r2)2 + (2r sin θ)2]
.

For θ∗0 ≤ θ ≤ π

2
, it is clear that Nα ·R∗ > 0. For θ∗1 ≤ θ <

π

2
we have

− cos θ <
1 + r2

1− r2
tanα sin θ.

It follows that Nα ·R∗ > 0 for
π

2
≤ θ ≤ θ∗1. (In fact Nα ·R∗ = 0 at θ = θ∗1.)

Hence the R∗-set of rays for πα
r in S∗0 extends to a complementary set of

rays Υ∗ for πα
r . Note that any finite set of rays in Υ∗ forms a partition of

the complement of πα
r .

Now let

ω(α) = cos−1

[
− 19

64
+

7
3

cos
α

2
− 4

3
cos2

a

2
− 17

10
sin

a

2
+ sin2 a

2

]
.

It can be shown by the computer assisted method of the next section that
for α ∈

[
0,
π

2

]
,

θ∗0 ≤ ω(α) ≤ θ∗1.(7)

Let ωi = ω(α) + πi
2 for i = 0, 1, 2, 3. Let µi be the ray emanating from

Ẑ(r cosωi, r sinωi, α) in the φi direction. Then {µi} ⊂ Υ∗ and hence {µi}
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partitions the complement of πα
r . Let S0 be the section of the complement

bounded between µ0 and µ1. Note that

C0 = S0 ∩ ∂πα
r = {Ẑ(r cos θ, r sin θ, α) | ω0 < θ < ω1}

is a smooth curve. Let Rα =
(

sin α
2 , cos α

2 , 0
)

. Again, by using the

computer assisted approach of the next section, it can be shown that for
α ∈

[
0,
π

2

]
, θ ∈ [ω0, ω1] and r0 = 0.77043 that

Nα ·Rα − |n ·Nα| > 0.(8)

Hence the Rα-set of rays for πα
r in S0 extends to a nice complementary

set of rays for πα
r0

. Moreover, the hypothesis of Theorem 3.2 is satisfied

for r0 = 0.77043 and all α ∈
[
0,
π

2

]
. Therefore, for 0 ≤ α ≤ π

2
, the

associated Scherk surface minimizes area among all surfaces spanning the
curve Cα = {Z(u, v, α) | u2 + v2 = r20} where r0 = 0.77043. �

5. A computer assisted approach to proving inequalities.

We begin with a simple observation about polynomials: If a polynomial is
dominated by its constant coefficient, then for small x the value is always
positive or always negative. More specifically:

Lemma 5.1. Let P (x) = a0 + a1x+ · · ·+ anx
n. Suppose that

|a0| > |a1|+ |a2|+ · · ·+ |an|.

Then P (x) has the same sign as a0 for all x ∈ [−1, 1].

Proof. Let x ∈ [−1, 1]. Then

a0P (x)− a2
0 = a0(a1x+ · · ·+ anx

n)

≥ −|a0||a1x+ · · ·+ anx
n|

≥ −|a0|(|a1||x|+ · · ·+ |an||xn|)
≥ −|a0|(|a1|+ · · ·+ |an|).

Thus
a0

|a0|
P (x) ≥ |a0| − (|a1|+ · · ·+ |an|) > 0.

�

This gives a method for proving a polynomial inequality for x ∈ [−1, 1].
We now extend Lemma 5.1 in order to prove polynomial inequalities for
more general intervals x ∈ [x0 − t, x0 + t].
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Lemma 5.2. Let P (x) = a0 + a1x + · · · + anx
n, and for some fixed t > 0

and x0 ∈ R let Q(x) = P (xt + x0). Suppose that when expanded out,
Q(x) = b0 + b1x + · · · + bnx

n and that |b0| dominates the sum of absolute
values of the other coefficients bi as in Lemma 5.1. Then P (x) has the same
sign as b0 for all x ∈ [x0 − t, x0 + t].

Proof. By Lemma 5.1, b0
|b0|Q(x) > 0 for all x ∈ [−1, 1]. Set s = xt + x0, so

that when x ∈ [−1, 1], s ∈ [x0 − t, x0 + t]. Since Q(x) = P (xt+ x0), we get
that b0

|b0|Q(x) = b0
|b0|P (s) > 0 for all s ∈ [x0 − t, x0 + t], as desired. �

Lemma 5.2 gives a method by which a computer can prove a polynomial
inequality on a compact interval I. Divide I into small pieces. Notice that
the smaller t is, the more likely b0 is to dominate the other coefficients of
Q(x) = P (xt+x0), since the other coefficients all get multiplied by a positive
power of t. If P is strictly positive on all of I, then this method will work
for a sufficiently fine subdivision.

Next we deal with polynomials of more than one variable.

Lemma 5.3. Let x = (x1, . . . , xk), and let P (x) be a polynomial of degree
n with constant coefficient a0. If a0 dominates all the other coefficients of
P as in Lemma 5.1, then for all x ∈ [0, 1]× · · · × [0, 1], P (x) has the same
sign as a0.

Proof. Essentially the same as Lemma 5.1. �

Lemma 5.4. Let x = (x1, . . . , xk) and let P (x) be a polynomial of degree n.
Fix a collection of “stretch values” t1, . . . , tk and “center values” p1, . . . , pk.
Let Q(x1, . . . , xk) = P (x1t1 + p1, . . . , xktk + pk). Suppose that when Q is
expanded out, its constant coefficient b0 dominates all its other coefficients
as in Lemma 5.1. Then P (x) has the same sign as b0 for all x ∈ [p1 −
t1, p1 + t1]× · · · × [pk − tk, pk + tk].

Proof. The proof follows that of Lemma 5.2. �

Now we describe general strategy for proving that a polynomial P (x)
is positive on all of a box [a1, b1] × · · · × [ak, bk]. First, for each i we set
pi = 1

2(ai + bi) and ti = 1
2(bi − ai). We test P by Lemma 5.3. If it fails,

we divide the box in half in each of the k directions, obtaining 2k smaller
boxes. We test each of these in turn. The ones that pass, we check off our
list, and the ones that still fail, we subdivide in half again. We continue this
process until all boxes are small enough to pass, which will eventually be
true as long as P actually is strictly positive on all of the original box.

If the coefficients of P and the bounding values {ai} and {bi} of the
original box are all rational, then a computer program such as Mathematica
can do all of the calculations in exact rational arithmetic, thus eliminating
all roundoff error.
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6. Mathematica programs.

First we set up the two test functions, Test1Var and Test2Var, as well as the
values and functions that will be plugged into them. Test1Var takes a poly-
nomial in one variable with rational coefficients and rational minimum and
maximum values prescribed for the domain, and proves (if it succeeds) that
the polynomial is positive on the prescribed domain. Similarly, Test2Var
does the same for a polynomial in two variables. The main difference in
Test2Var is that the domain is usually more complicated to describe.

Line-by-line comments are given below for documenting Test1Var. A few
further comments are later added for the features unique to Test2Var.

Note that the lines are numbered along the left side for explanation below.
These line numbers are not part of the Mathematica program.

6.1. The single variable inequality test.

(1) Test1Var[f , umin , umax ] := (
(2) blox = List[List[(umin + umax)/2, (umax - umin)/2]];
(3) While[Length[blox] > 0,
(4) For[i = 1, i < Length[blox] + 1, i++,
(5) uc = blox[[i, 1]]; du = blox[[i, 2]];
(6) If[f[uc] < 0, flag = ”fail”,
(7) If[2*f[uc] - Apply[Plus, Abs[Flatten[CoefficientList
(8) [f[u*du + uc], {u}]]]] > 0 ,
(9) flag = “drop”,
(10) flag = “subdivide”]]];
(11) If[flag == “fail”, Print[”f is negative at ”, uc, ”.”]; i = 2;
(12) blox = List[]];
(13) If[flag == “drop”,
(14) blox = Join[Take[blox, i - 1], Drop[blox, i]]; i = i - 1];
(15) If[flag == “subdivide”,
(16) hdu = du/2;
(17) blox = Join[Take[blox, i - 1],
(18) List[List[uc - hdu,hdu],
(19) List[uc + hdu, hdu]],
(20) Drop[blox, i]]; i = i + 1]];
(21) Print[“Number of blocks remaining: ”, Length[blox]];
(22) If[Length[blox] > 0, Print[“Width: ”, N[2*hdu]]]
(23) ] )

Comments:
Line 1: This program takes as input a polynomial P[u], and a closed

interval domain (defined by minimum and maximum values of u) within
which to test whether P is positive.
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Line 2: An individual block (i.e., subinterval) is represented as a list of
two numbers, giving its center u value and its radius (half its u-width). Line
1 sets up the initial list of “all” blocks, which consists of just one, the original
domain.

Line 3: This While statement runs the main For loop over and over until
the list of blocks remaining to be checked out is empty.

Line 4: This executes the For loop, which starts with the first block in
the list and continues to the last one.

Line 5: Brings out the ith block to be tested.
Lines 6: If the function is negative at the center of the block, then set

the flag to report this. Otherwise, go on to Line 7.
Lines 7-9: The command CoefficientList makes a list of the coefficients

of the shifted and stretched polynomial P [u · du + uc]. The list has sub-
list structuring in it, so we Flatten it into a single list, and then take the
Absolute value of all the coefficients. The command “Apply[Plus,...” adds
these absolute values. The constant coefficient is P [uc], which is nonnegative
(because of the test in Line 8), and which is also included in the coefficient
list, so that “2P[uc]-Apply[Plus,... ” works out to be the constant coefficient
minus the sum of absolute values of the remaining coefficients. If this is
positive, then the inequality test in Lemma 4 has worked for the current
block, so the flag is set to drop the block from the list. Otherwise, go to
Line 10.

Line 10: The current block must be subdivided. This line ends the testing
of the current block.

Lines 11-12: In this case report test failure and set the values of i and
blox so that both the For and the While loops will terminate.

Lines 13-14: In this case remove the current block from the list to be
tested, adjust the index i, and return to the For statement to test the next
block.

Lines 15-20: In this case subdivide the current block into two blocks of
half the size, insert them into the testing list, and adjust the index i so that
the reduced blocks aren’t tested until the next full pass through the list.
Return to the For statement to test the next block in the list.

Lines 21-22: At the end of one full pass of the For statement through
all the blocks, report how many blocks remain to be tested and what is the
current width of blocks (if there are any). Return to the While statement,
which will run the next pass if Lemma 5.3 (i.e., Lines 9-16) has not yet
succeeded in eliminating all blocks from the list.

Line 23: This ends the While statement and the definition of Test1Var.

6.2. The two variable inequality test.

(1) g[a ] := Take[a, 2]
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(2) Test2Vars[f , umin , umax , vmin , vmax ] := (
(3) blox = List[
(4) List[(umin + umax)/2, (vmin + vmax)/2,
(5) (umax - umin)/2, (vmax - vmin)/2]];
(6) While[Length[blox] > 0,
(7) For[i = 1, i < Length[blox] + 1, i++,
(8) uc = blox[[i, 1]]; vc = blox[[i, 2]]; du = blox[[i, 3]];
(9) dv = blox[[i, 4]];
(10) If[blockoutside2var[uc - du, uc + du,
(11) vc - dv, vc + dv, iter],
(12) flag = “drop”,
(13) If[f[uc, vc] < 0 && inside2var[uc, vc],
(14) flag = “fail”,
(15) If[f[uc, vc] < 0,
(16) flag = “subdivide”,
(17) If[2*f[uc, vc] - Apply[Plus, Abs[Flatten[CoefficientList
(18) [f[u*du + uc, v*dv + vc], {u, v} ]]]] > 0,
(19) flag = “drop”,
(20) flag = “subdivide”]]]];
(21) If[flag == “fail”, Print[“f is negative at (”, uc, “,”, vc, “).”];
(22) i = 2; blox = List[]];
(23) If[flag == “drop”,
(24) blox = Join[Take[blox, i - 1], Drop[blox, i]]; i = i - 1];
(25) If[flag == “subdivide”,
(26) hdu = du/2; hdv = dv/2;
(27) blox = Join[Take[blox, i - 1],
(28) List[List[uc - hdu, vc - hdv, hdu, hdv],
(29) List[uc - hdu, vc + hdv, hdu, hdv],
(30) List[uc + hdu, vc - hdv, hdu, hdv],
(31) List[uc + hdu, vc + hdv, hdu, hdv]],
(32) Drop[blox, i]]; i = i + 3]];
(33) If[Length[blox] > 0,
(34) ListPlot[Map[g, blox], PlotRange ->
(35) {{umin, umax}, {vmin, vmax}} ]];
(36) Print[“Number of blocks remaining: ”, Length[blox]];
(37) If[Length[blox] > 0,
(38) Print[“Width: ”, N[2*hdu], “ Height: ”, N[2*hdv]]]
(39) ] )

Comments specific to Test2Var:

1. The function g is for the optional plotting of the centers of the remain-
ing blocks (see Line 35).
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2. We don’t want to check positivity of P on a whole rectangle, but on a
specified domain R inside an initial bounding rectangle. The function block-
outside2var checks whether the current block (sub-rectangle) is completely
outside R. If so, the flag is set to drop the block.

3. We only set the flag to “fail” if the block center is actually inside R.
4. If P is negative and the current block is neither completely outside nor

completely inside R, we subdivide.
5. The ListPlot command on Line 34 is optional; it plots all the centers

of the blocks not yet dropped, giving a pictorial report of the algorithm’s
progress.

Side note: This algorithm will not terminate if the function f is exactly
equal to zero (but never negative) on part of the domain. In such a case we
might analyze derivatives, plugged into the algorithm, in the hope of proving
that f ≥ 0 on the domain.

7. Inequality tests.

The purpose of this section is to verify the inequalities (7) and (8) given in
the proof of Theorem 4.7. Expressions which convert the associated func-
tions to rational polynomials are defined first. Next, the one variable in-
equality (7) is proven. Then the shape of the domain of the two variable
inequality (8) is described so that it can be determined whether or not a
given block meets the domain. Finally, the inequality (8) is verified.

7.1. Defined expressions. We first set up the functions to be tested in the
proof of Theorem 4.7. In order to get a polynomial from the trigonometric
functions, we start by making the substitutions

cos θ =
2u

1 + u2
, sin θ =

1− u2

1 + u2

and

cos
(
α

2

)
=

2v
1 + v2

, sin
(
α

2

)
=

1− v2

1 + v2
.

Since these are rational functions, rather than polynomials, the functions
NN , nn and RR defined below are multiplied by powers of 1 + u2 and of
1 + v2, in a way that does not affect the final inequalities to be proved.

As u ranges from −∞ up to ∞, θ ranges from 3π
2 down to −π

2 . We will
use u ∈ [−3

2 ,
3
2 ], which corresponds approximately to θ ∈ [−π

8 ,
9π
8 ]. To get

α ∈ [0, π
2 ] we need 0 ≤ α

2 ≤ π
4 , which translates to 1 ≥ v ≥

√
2 − 1. The

value
√

2− 1 will be approximated by the slightly smaller value 70/169.
In order to apply the programs to the inequalities in the proof of Theo-

rem 4.7, we define
CosTheta[u ] := 2u/(1 + u∧2)
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SinTheta[u ] := (1 - u∧2)/(1 + u∧2)
CosHalfAlpha[v ] := 2v/ (1+v∧2)
SinHalfAlpha[v ] := (1 - v∧2)/(1 + v∧2)
CosAlpha[v ] := 2*CosHalfAlpha[v]∧2 - 1
SinAlpha[v ] := 2*SinHalfAlpha[v]*CosHalfAlpha[v]
NN[r , u , v ] := List[ Simplify[ Expand[

((CosAlpha[v]*(1 - r∧2)*CosTheta[u]
+ SinAlpha[v]*(1 + r∧2)*SinTheta[u])
*((1 - r∧2)∧2 + (2r*CosTheta[u])∧2))*(1 + u∧2)∧3*(1 + v∧2)∧2]],
Simplify[ Expand[
((CosAlpha[v]*(1 - r∧2)*SinTheta[u]
- SinAlpha[v]*(1 + r∧2)* CosTheta[u])
*((1 - r∧2)∧2 + (2r*SinTheta[u])∧2))*(1 + u∧2)∧3*(1 + v∧2)∧2]], 0]

nn[r , u , v ] := List[-2r*CosTheta[u]*(1 + v∧2)*(1 + u∧2),
2r*SinTheta[u]*(1 + v∧2)*(1 + u∧2), 0]

RR[r , u , v ] := List[(1 + r∧2)SinHalfAlpha[v]*(1 + v∧2)*(1 + u∧2),
(1 + r∧2)CosHalfAlpha[ v]*(1 + v∧2)*(1 + u∧2), 0]

fplus[r , u , v ] := Evaluate[Simplify[NN[r, u, v]·(RR[r, u, v] + nn[r, u, v])]]
fminus[r , u , v ] := Evaluate[Simplify[NN[r, u, v]·(RR[r, u, v] - nn[r, u, v])]]
G[v ] := -19/64 + 7/3*CosHalfAlpha[v] - 4/3*CosHalfAlpha[v]∧2

- 17/10*SinHalfAlpha[v] + SinHalfAlpha[v]∧2
outsideright2var[u ,v ]:=If[G[v] < CosTheta[u], True, False]
outsideleft2var[u ,v ]:=If[G[v] > SinTheta[u]

&& Not[outsideright2var[u,v]], True, False]
outside2var[u ,v ]:=outsideright2var[u,v] | | outsideleft2var[u,v]
insider2var[u ,v ]:=Not[outside2var[u,v]]
r0 = 7704/10000
f1[u , v ] := fminus[r0, u, v]
f2[u , v ] := fplus[r0, u, v]

Note that the “Evaluate” command in the definition of fplus and fminus
causes the “Simplify” command to occur immediately instead of every time
the functions are called.

7.2. Verifying the one variable inequality: Establishing the range
for the 2-variable inequality. The following lemma verifies the one vari-
able inequality (7) in the proof of Theorem 4.7:
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Lemma 7.1.

(1) tan−1

[
1 + r2

1− r2
tanα

]
≤ ω(α)

and

(2) ω(α) ≤ tan−1

[
1 + r2

1− r2
tanα

]
+
π

2

for α ∈ [0, π
2 ], with the inverse tangent defined to equal π/2 when α = π/2.

Proof. The first inequality is a little delicate to prove near α = π
2 . That

is because in order to convert everything to rational functions, we take a
cosine and then square both sides. Even though the original inequality is
true on the whole interval, there are points near π

2 for which the squared
inequality is false.

To remedy this, we first note that tan−1
[

1+r2

1−r2 tanα
]
∈ [0, π

2 ] for all α ∈
[0, π

2 ].
We will divide [0, π

2 ] into two intervals [0, a0] and [a0,
π
2 ], such that the

squared inequality is true for α ∈ [0, a0], and such that ω(α) > π
2 for α ∈

[a0,
π
2 ]. Each of these last inequalities implies the original (1).

Let a0 = cos−1( 41
841). With the rationalizing substitution cos α

2 = 2v
1+v2 ,

α = a0 corresponds to v = 3/7. We need to check that − cos(ω(α)) > 0
for α ∈ [a0,

π
2 ], that is, for v ∈ [

√
2 − 1, 3/7]. To get rational endpoints,

we will actually prove the inequality for v ∈ [2/5, 3/7]. This is done by the
command

Test1Var[Poly2G, 2/5, 3/7],

where

Poly2G[v] =−G[v] ∗ (1 + v2)2

=− 1
960

(−957 + 4480v − 7610v2 + 4480v3 + 2307v4).

The test comes back successful.
We now need to prove the “squared inequality” for α ∈ [0, a0]:

tan−1

[
1 + r2

1− r2
tanα

]
≤ ω(α)

cos
(

tan−1

[
1 + r2

1− r2
tanα

])
≥ cos(ω(α)) = G[v]

cos2
(

tan−1

[
1 + r2

1− r2
tanα

])
≥ G[v]2
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1[
1+r2

1−r2 tanα
]2

+ 1
≥ G[v]2

1 ≥

([
1 + r2

1− r2
tanα

]2

+ 1

)
G[v]2

1−

([
1 + r2

1− r2
tanα

]2

+ 1

)
G[v]2 ≥ 0

1−

([
1 + r2

1− r2
4v(v2 − 1)
v4 − 6v2 + 1

]2

+ 1

)
G[v]2 ≥ 0.

Setting r = 7704/10000 and multiplying both sides by (v2+1)4(v4−6v2+1)2

turns the left side into a polynomial which we name MainPoly1[v] and invoke
the command

Test1Var[MainPoly1,3/7,1]

which comes back successful.
To prove inequality (2) above, we first show that G[v] is positive for

v ∈ [1/2, 1], so that cos−1(ω(α)) < π
2 , which implies (2) for the corresponding

values of α. This is done by defining

Poly1G[v] = G[v]∗(1+v2)2 =
1

960
(−957+4480v−7610v2+4480v3+2307v4).

We invoke the command

Test1Var[Poly1G,1/2,1]

which comes back successful.
We then show that for v ∈ [2/5, 1/2],

G[v] ≥ cos
(

tan−1

[
1 + r2

1− r2
4v(v2 − 1)
v4 − 6v2 + 1

]
+
π

2

)
.

Here the right side is negative, so the above inequality would follow from

G[v]2 ≤ cos2
(

tan−1

[
1 + r2

1− r2
4v(v2 − 1)
v4 − 6v2 + 1

]
+
π

2

)
=sin2

(
tan−1

[
(1 + r2)(4v)(v2 − 1)

(1− r2)(v4 − 6v2 + 1)

])

=

[
(1+r2)(4v)(v2−1)
(1−r2)(v4−6v2+1)

]2
[

(1+r2)(4v)(v2−1)
(1−r2)(v4−6v2+1)

]2
+ 1

.
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Hence([
(1 + r2)(4v)(v2 − 1)

(1− r2)(v4 − 6v2 + 1)

]2

+ 1

)
G[v]2 ≤

[
(1 + r2)(4v)(v2 − 1)

(1− r2)(v4 − 6v2 + 1)

]2

,

([
(1 + r2)(4v)(v2 − 1)

]2 +
[
(1− r2)(v4 − 6v2 + 1)

]2)
G[v]2

≤
[
(1 + r2)(4v)(v2 − 1)

]2
,

and[
(1 + r2)(4v)(v2 − 1)

]2 − ([(1 + r2)(4v)(v2 − 1)
]2

+
[
(1− r2)(v4 − 6v2 + 1)

]2)
G[v]2 ≥ 0.

Multiplying by (1 + v2)4 to make the above a polynomial, we test it for
v ∈ [2/5, 1/2]. Test1Var immediately confirms to be positive. �

7.3. Establishing the shape of the domain. Now to justify the test
called “blockoutside2var” in the program “Test2Var,” we need to show that
if the two right-hand corners of a rectangle are to the left of R, or if the
two left-hand corners of the rectangle are to the right of R, then the whole
rectangle is outside R. The top and bottom of R are the straight lines v = 70

169
and v = 1, and the top and bottom of a subrectangle will always be in
[ 70
169 , 1]. We will show that the left and right sides of R are formed by

functions u1(v) < u2(v) which are both increasing functions, from which the
desired result will follow. We start with the following lemma:

Lemma 7.2. The function G[v] is increasing on [70/169, 1].

Proof. We take the first derivative G′(v) and multiply it by (1 + v2)3, ob-
taining the polynomial

14
3
− 178

15
v +

382
15

v3 − 14
3
v4.

To show this is positive on [70/169, 1], we call it GP [v] and invoke the
command

Test1Var[GP,70/169,1]

which is successful. �

Lemma 7.3. Within the rectangle (u, v) ∈ [−3
2

3
2 ]× [ 70

169 , 1], the expressions

(1)
1− u2

1 + u2
= G(v) ≥ 2u

1 + u2

and

(2)
2u

1 + u2
= G(v)
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implicitly define single-valued, increasing functions u = u1(v) and u = u2(v),
respectively, with u1(v) < u2(v).

Proof. First, calculations show that G[ 70
169 ] > −0.016 and G[1] < 0.704.

Since G is increasing, its values on all of [ 70
169 , 1] are between these endpoint

values.
Now it is straightforward to show that 2u/(1+u2) > 0.9 on [3/4, 3/2] and

2u/(1 + u2) < −0.4 on [−3/2,−1/4]. So, given the range of G[v], Equation
(2) will only allow values of u within [−1/4, 3/4]. On this interval, the
function 2u/(1 + u2) is strictly increasing. Taking these facts together, we
see that there will be exactly one u for each v ∈ [ 70

169 , 1] for which (2) holds,
and that the function u = u2(v) thereby defined is a strictly increasing
function.

Next, within [−3/2, 3/2] the inequality (1 − u2)/(1 + u2) ≥ 2u/(1 + u2)
is true precisely for u ∈ [−3/2,

√
2 − 1]. But for u ∈ [−(

√
2 − 1),

√
2 − 1],

(1−u2)/(1+u2) ≥
√

2/2, and so (1−u2)/(1+u2) is outside the range of G[v].
Thus, for (1) to hold, u must be within [−3/2, 1 −

√
2]. On this interval,

(1− u2)/(1 + u2) is strictly increasing, and again we obtain a single-valued,
increasing function u = u1(v) implicitly defined by (1).

Finally, since −1/4 ≤ u2 ≤ 3/4 and −3/2 ≤ u1 ≤ 1−
√

2 < −1/4, we see
that u1(v) < u2(v). �

From the above lemma, we infer that the shape of R is such that the
following proposition holds:

Propositon 7.4. If the v-values at the top and bottom of a rectangle B are
within [70/169, 1], and if either the two right corners of B are to the right of
R or the two left corners of B are to the right of R, then the entire rectangle
is outside R.

Finally, we use the following lemma to justify the tests “outsideright2var”
and “outsideleft2var”. In the lemma K represents G[v] which does lie be-
tween −

√
2

2 and
√

2
2 , as noted previously.

Lemma 7.5. If

−
√

2
2
≤ K ≤

√
2

2
and

cos−1K ≤ θ ≤ cos−1K +
π

2
then

cos θ ≤ K ≤ sin θ.

Proof. First note that π
4 ≤ cos−1K ≤ 3π

4 , and thus π
4 ≤ θ ≤ 5π

4 . In
particular, cos−1K ∈ [0, π], where the cosine function is decreasing. To
prove that cos θ ≤ K, consider
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Case a1: θ ∈ [0, π]. The fact that cos−1K ≤ θ implies K = cos(cos−1K)
≥ cos θ.

Case a2: θ ∈ [π, 5π
4 ]. Then cos θ ≤ −

√
2

2 ≤ K.

Now to prove that K ≤ sin θ, consider:

Case b1: θ ∈ [π
4 ,

3π
4 ]. Then K ≤

√
2

2 ≤ sin θ.

Case b2: θ ∈ [3π
4 ,

5π
4 ]. Then both θ and cos−1K+ π

2 are in an interval where
the sine function is decreasing. So the fact that θ ≤ cos−1K + π

2 implies
that sin θ ≥ sin(cos−1K + π

2 ) = K, as desired. �

7.4. The 2-variable inequality. The polynomials f1(u, v) and f2(u, v)
are the functions we need to prove positive on

√
2− 1 ≤ v ≤ 1, G(v) ≤ u ≤

G(v) +
π

2
in order to verify the inequality (8) in the proof of Theorem 4.7.

The following two commands accomplish this:
Test2Vars[f1, -3/2, 3/2, 70/169, 1]
Test2Vars[f2, -3/2, 3/2, 70/169, 1].

The test comes back positive.
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