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Abstract

The class S, consists of univalent, harmonic, and sense-preserving functions
f in the unit disk, A, such that f = h + g where h(z) = z + Y 5" axz",
g(z) = Y77 biz". Using a technique from Clunie and Sheil-Small, we construct
a family of 1-slit mappings in Sy by varying w(z) = ¢'(2)/f'(z). As w(z)
changes, the tip of the slit slides along the negative real axis from the point 0
to —1. In doing so, we establish that the inner mapping radius, p(f) can be as
large as 4. In addition, we show that the inner mapping radius for functions
in SY can be as small as 1/2 and as large as 2.

1 Introduction

For f € Sy, the inner mapping radius, p(f), of the domain f(A) is the real
number F’(0), where F(z) is the analytic function that maps A onto f(A)
and satisfies the conditions F'(0) = 0, F'(0) > 0. If f € S, the inner mapping
radius is denoted by po(f). The lower bound for p(f) is 0. It is conjectured
that the lower bound for p,(f) is %, although it has only been proved that
po(f) > % [6]. The upper bound for p(f) cannot be larger than 27, because of
the Koebe 1-theorem and Hall’s result [4] showing that f(A) omits some point
on any circle of radius R, where R > r = 7. Similarily, po(f) is bounded above
by %ﬁ < 4.837. Sheil-Small conjectured that p(f) < 5 [1,6]. This is based
upon Hall’s example [4] which maps A onto a disk whose radius is arbitrarily
close to 7. As far as we know no conjecture has been made on the upper
bound for p,(f). In an earlier paper [3], the first author presented a collection

of harmonic slit mappings for which there is a function in S, whose inner

mapping radius is 7 and a function in S with po(f) ~ 1.91.
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Here we will present a collection of univalent, harmonic 1-slit mappings,
[ =h+7 with ¢'(2) = w(z)h/(z), whose slit is on the negative real axis. By

changing w(z), we are able to slide the slit away from the origin. For f € S¢,

1

the tip of the slit can be brought as close as —g

and as far as —%. The inner
mapping radius for this last function is 2. When we enlarge the class so that
f € Sy, the slit point can be moved from 0 to —1, and thus the inner mapping
radius can be brought arbitrarily close to 4. Hence, these functions provide

the largest known values for the inner mapping radius.

2 Sliding 1-slit mappings

Let f = h+ g be a complex-valued harmonic function in A. Suppose that the

following conditions hold for all z € A:

1. h(z) = (1k_(zz))3, where k(z) = z + agz® + azz® + - -+ (a; € R);

2. ¢'(z) =w(z)h'(z), where |w(z)| < 1; and

3. w(z) = iZ’Ei;

We require that h be analytic in the entire plane except for a pole at z = 1.
By the first condition, we know that

1+ (2a2+2)2 4 -+ (0 + Dapgs + (3 —n)ay)z" + - --

W(z) (1—2)4

Notice A'(0) = 1. The second condition assures us that f is locally univalent
and sense-preserving, provided hA'(z) # 0 in A. The final condition comes
from forcing the function to be constant on the arc {e? : 0 < 6 < 27},
as required by a result of Hengartner and Schober [5, Corollary 2.2] if f is
to be a slit mapping. By 3, since h has real coefficients, |w(z)| = 1 when
z=¢€Y 0 < 6 < 27 and Hengartner and Schober’s theorem implies than an

arc of the circle cannot map onto a line segment.



From condition 3, we have

_ L[] 4 2022 | Bagtaz 4 (] — )4

T 2[1+ (200 +2)z + (Baz +ag)2? + (1 — 1)t
224200+ 2)2 4 (Baz ) + 24 4 - -
14 (209 +2)2 + (3as + ag)2? + 4ay2d + -

w(2)

We want w(z) to be analytic in A. Thus, a, = 0 for n > 4. Hence k(z) =

2+ a92® + asz® and

w(z) = 224 (202 4+2)2+ Bag +a2) P Haz+f (1)

14+ (2a2+2)2+ (3az +az)2? 1+ az+ (322
where o and (3 are real.

Since w(0) = [, the inequality —1 < § < 1 must hold. Also by conditions

1 and 2, we get

() = S 2

2 +az+f
/ p—
Lemma 2.1. : If w is given by (1) with o and (3 real then |w(z)| <1 in A if
and only if =1 < 3 < 1 and |a| < 1+ B. In this case, h'(2) # 0 (where b’ is
given by (2)).

PROOF: Notice that |322+az+1| = |[22+az+5| on A and that |32°+az+1| >
|22 + az + (] if z = 0. Hence if |322 + az + 1] # 0, then |82* + az + 1| >
|22 + az + B|. Thus it suffices to find the conditions on a and 3 such that
B22 +az+ 1 # 0. Since the product of the roots is % necessarily ﬁ > 1. If
the roots are complex, they are conjugates and both of them are outside of A.
On the other hand, if the roots are real, the condition —1 < § < 1 implies at

least one root is outside A so we require only 3z% + ax +1 > 0 when z = £1.

That is |a] < 1+ . This concludes the proof of the lemma.

Integrating (2) and normalizing the result so that h(0) = 0, we have

115 1008 0 1y 1)2
h(z):(3+3ﬂ Ga()fj—z)(;a )z +z'
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Repeating this for (3), we get

(51368 — 502" + (30 — §)2* + B2
(1-2) '

9(z) =

Therefore,

f(z) = Relh(z) +g(2)] +ilm [h(2) — g(2)]

G480+ 1= 4 00
Re
(1—2)°

i [022]

(1-2)

Lemma 2.2. Let || <1 and |a| < B+1. Ifa+B+1#0, then f(A) consists
of the entire plane slit along the negative real axis with the tip of the slit at
ta—3—10. Ifa+B+1=0, then f(A) is the half plane Re(f(z)) > —5—17.

PROOF: Let 12 = w = u+4v. Then z = g—jr} Substituting this into f(z)

and simplifying, we get:

f (Zj—;) = %Re{(w— D1+ a+ 8)(w? +w) + (4 — 2a + 458)]}

+223Tm {w? — 1},

Letting a + 34+ 1 =0, using w = u + v, and taking the real and imaginary
parts, this becomes (—3 — 30)(1 — u) + z(— — 1w, If we fix uv, (ie. fix
Im f(z)) then Re f(z) take all values > —1 — 3. Thus, the image is a half

plane. On the other hand, if a + 3+ 1 # 0,

w—1 N . .
f (w +—1) — 1+12+_B Re {w3 +3(}+aig)w 41faiéﬁ} + 1— ,@ZIm {’LU . 1}

1+a+p 1-a+8 4-20+48] | 1-8,;
12 — 3w’ +3 (1+a+ﬁ) U= Trats ] + i, (4)

—2-28

5 and

Notice that u > 0. If v = 0, then (4) is real and varies between <

00. On the level curve, uv = ¢ # 0, the imaginary part of (4) is constant

while the real part is [ty 3 — (rath < ((11 +O:f3))u—l— a=2-20] which varies
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between —oo and +oo as u varies between 0 and +oo. Thus, for any ¢ # 0,

f(A) contains the entire line parallel to the real axis and through the point ic.

Theorem 2.1. If |B| < 1 and |o| < B+ 1, then f € Sy. If it is also true that
B =0, then f € Sf.

PROOF: Notice that h(z) — g(z) = (&:gf is an analytic univalent mapping
of A onto a 1-slit domain, whose slit is on the negative real axis from #
to —oo. Hence, by a theorem of Clunie and Sheil-Small [2, theorem 5.3], f is

univalent in A and convex in the direction of the real axis.

Therefore, under the constraints that —1 < § < 1, |a| < 8+ 1, and
a+(+1+#0, we see that f(A) is a 1-slit domain with the slit on the negative
real axis and the tip of the slit located at %a — % — %ﬁ. As o and 3 vary, the
tip of the slit moves along the negative real axis. If § =0, then —1 < a <1
and f € S9, with the tip of the slit situated at any point from —% up to, but,
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not including, —5. In particular, when a = 1, f is the harmonic ”Koebe”

function for which po(f) = % On the other extreme, as « approaches —1,
the inner mapping radius approaches 2. If —1 < 8 < 1, then f € S,. For
8 =—14¢€and a =4, where 0 < § < ¢, the tip of the slit approaches 0. As
increases and « decreases, the tip moves away from the origin. With 6 =1—¢
and a = —2 + 9§, where 0 < § < ¢, the tip can be brought arbitrarily close to
—1 and hence p(f) can be made arbitrarily close to 4. We have proved the

following theorem.

Theorem 2.2. If 0 < ¢ < 4, there exists f € Sy such that C\ f(A) is a slit

<
4

f(A) isc. If 2 < ¢ <2, then f can be chosen in S. Thus, po(f) can be as

along the negative real axis starting at —< so that the inner mapping radius of

large as 2.



3 An Example

Let Ky(z) = ((11:3; L = %, 0 <t <1. Since K;(e?) = %, 0<
6 < 2m, it is easy to check that K;(A) is the exterior of a parabola K;(A) =
{(u,v) Dou > —%vz — %} when 0 < ¢ < 1 while K;(A) is the half plane
{(u,v): u>—31} and Ky(A) is the slit domain C — {z: z < —1}. For each
t, K, is convex in the direction of the real axis and hence the theorem of
Clunie and Sheil-Small applies. That is, if h and g are analytic with h — g =
K;, h(0) = g(0) = 0 and ¢'(z) = zh'(2) then f = h + g is univalent and
sense-preserving.

Integrating, we find

z— (3 +1)22+ (3 + 31)2°

M) = (1—2)3
and
G-
g('Z) - (1 . 2)3

Again setting w = 1= so that z = ”“w”—ﬁ with Re (w) > 0 and using the fact

that f(z) = Ki(2) + 2 Re g(z), the result is

flz) = (1_75)(41” —1 +t(w2_1) +2Re (—(wgl) (g(l—t)w—F(%-’—%t)))

:((1_#4_%))2'_'_1_753 (1_t) 2 t(g 2)_1 t

where w = u + 0.

Set f(z) = R+il. If I =0,thenv=0and R > —t — 5. If I = ¢ =

12°

constant then v = ﬁ For constant I, R takes all values from —% —%—%
to 0o, t # 0. Thus, f(A) is the exterior of the parabola R = —172 — % — 5. To

find the inner mapping radius of f(A), we want to find £ > 0 and p, 0 < p < 1
such that KK,(A) = f(A). Then k is the inner mapping radius of f(A).
Setting kK ,(e") = R +il, we have

po P—p) k(l+p)
B kp? 4




_ 2
Hence, we want %é’ = % and W = %—I—%. It follows that k = 42 s 827 +)
which is smallest when ¢t = i. Thus k£ > % with equality when t = }L. We have

proved the following.

Theorem 3.1. ]f% > p > %, there exists f € S% such that f(A) is the

exterior of a parabola and the inner mapping radius of f(A) is p.

It is interesting to observe that contrary to the situation in many cases,
g ()
h'(2)
{f(e?): 0 < @ < 2r} is the boundary curve for f(A). This is only possible

although

= |z| = 1 when |z| = 1 for the mappings above, we still have

because the boundary curve is concave with respect to f(A) in conformity

with the result of Hengartner and Schober [5, Corollary 2.2].
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