The Inner Mapping Radius of Harmonic Mappings of the Unit Disk ${ }^{1}$

Michael Dorff and Ted Suffridge ${ }^{2}$

Abstract

The class S_{H} consists of univalent, harmonic, and sense-preserving functions f in the unit disk, Δ, such that $f=h+\bar{g}$ where $h(z)=z+\sum_{2}^{\infty} a_{k} z^{k}$, $g(z)=\sum_{1}^{\infty} b_{k} z^{k}$. Using a technique from Clunie and Sheil-Small, we construct a family of 1-slit mappings in S_{H} by varying $\omega(z)=g^{\prime}(z) / f^{\prime}(z)$. As $\omega(z)$ changes, the tip of the slit slides along the negative real axis from the point 0 to -1 . In doing so, we establish that the inner mapping radius, $\rho(f)$ can be as large as 4 . In addition, we show that the inner mapping radius for functions in S_{H}^{0} can be as small as $1 / 2$ and as large as 2 .

1 Introduction

For $f \in S_{H}$, the inner mapping radius, $\rho(f)$, of the domain $f(\Delta)$ is the real number $F^{\prime}(0)$, where $F(z)$ is the analytic function that maps Δ onto $f(\Delta)$ and satisfies the conditions $F(0)=0, F^{\prime}(0)>0$. If $f \in S_{H}^{O}$, the inner mapping radius is denoted by $\rho_{O}(f)$. The lower bound for $\rho(f)$ is 0 . It is conjectured that the lower bound for $\rho_{O}(f)$ is $\frac{2}{3}$, although it has only been proved that $\rho_{O}(f) \geq \frac{1}{4}[6]$. The upper bound for $\rho(f)$ cannot be larger than 2π, because of the Koebe $\frac{1}{4}$-theorem and Hall's result [4] showing that $f(\Delta)$ omits some point on any circle of radius R, where $R \geq r=\frac{\pi}{2}$. Similarily, $\rho_{O}(f)$ is bounded above by $\frac{8 \pi \sqrt{3}}{9}<4.837$. Sheil-Small conjectured that $\rho(f) \leq \frac{\pi}{2}[1,6]$. This is based upon Hall's example [4] which maps Δ onto a disk whose radius is arbitrarily close to $\frac{\pi}{2}$. As far as we know no conjecture has been made on the upper bound for $\rho_{O}(f)$. In an earlier paper [3], the first author presented a collection of harmonic slit mappings for which there is a function in S_{H} whose inner mapping radius is π and a function in S_{H}^{O} with $\rho_{O}(f) \approx 1.91$.

[^0]Here we will present a collection of univalent, harmonic 1-slit mappings, $f=h+\bar{g}$ with $g^{\prime}(z)=\omega(z) h^{\prime}(z)$, whose slit is on the negative real axis. By changing $\omega(z)$, we are able to slide the slit away from the origin. For $f \in S_{H}^{O}$, the tip of the slit can be brought as close as $-\frac{1}{6}$ and as far as $-\frac{1}{2}$. The inner mapping radius for this last function is 2 . When we enlarge the class so that $f \in S_{H}$, the slit point can be moved from 0 to -1 , and thus the inner mapping radius can be brought arbitrarily close to 4 . Hence, these functions provide the largest known values for the inner mapping radius.

2 Sliding 1-slit mappings

Let $f=h+\bar{g}$ be a complex-valued harmonic function in Δ. Suppose that the following conditions hold for all $z \in \Delta$:

1. $h(z)=\frac{k(z)}{(1-z)^{3}}$, where $k(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots\left(a_{i} \in \mathbb{R}\right)$;
2. $g^{\prime}(z)=\omega(z) h^{\prime}(z)$, where $|\omega(z)|<1$; and
3. $\omega(z)=\frac{\frac{1}{z} h^{\prime}\left(\frac{1}{z}\right)}{z h^{\prime}(z)}$.

We require that h be analytic in the entire plane except for a pole at $z=1$. By the first condition, we know that

$$
h^{\prime}(z)=\frac{1+\left(2 a_{2}+2\right) z+\cdots+\left((n+1) a_{n+1}+(3-n) a_{n}\right) z^{n}+\cdots}{(1-z)^{4}}
$$

Notice $h^{\prime}(0)=1$. The second condition assures us that f is locally univalent and sense-preserving, provided $h^{\prime}(z) \neq 0$ in Δ. The final condition comes from forcing the function to be constant on the arc $\left\{e^{i \theta}: 0<\theta<2 \pi\right\}$, as required by a result of Hengartner and Schober [5, Corollary 2.2] if f is to be a slit mapping. By 3 , since h has real coefficients, $|w(z)|=1$ when $z=e^{i \theta}, 0<\theta<2 \pi$ and Hengartner and Schober's theorem implies than an arc of the circle cannot map onto a line segment.

From condition 3, we have

$$
\begin{aligned}
\omega(z) & =\frac{\frac{1}{z}\left[1+\frac{2 a_{2}+2}{z}+\frac{3 a_{3}+a_{2}}{z^{2}}+\cdots\right](1-z)^{4}}{z\left[1+\left(2 a_{2}+2\right) z+\left(3 a_{3}+a_{2}\right) z^{2}+\cdots\right]\left(1-\frac{1}{z}\right)^{4}} \\
& =\frac{z^{2}+\left(2 a_{2}+2\right) z+\left(3 a_{3}+a_{2}\right)+\frac{4 a_{4}}{z}+\cdots}{1+\left(2 a_{2}+2\right) z+\left(3 a_{3}+a_{2}\right) z^{2}+4 a_{4} z^{3}+\cdots} .
\end{aligned}
$$

We want $\omega(z)$ to be analytic in Δ. Thus, $a_{n}=0$ for $n \geq 4$. Hence $k(z)=$ $z+a_{2} z^{2}+a_{3} z^{3}$ and

$$
\begin{equation*}
\omega(z)=\frac{z^{2}+\left(2 a_{2}+2\right) z+\left(3 a_{3}+a_{2}\right)}{1+\left(2 a_{2}+2\right) z+\left(3 a_{3}+a_{2}\right) z^{2}}=\frac{z^{2}+\alpha z+\beta}{1+\alpha z+\beta z^{2}} \tag{1}
\end{equation*}
$$

where α and β are real.
Since $\omega(0)=\beta$, the inequality $-1<\beta<1$ must hold. Also by conditions 1 and 2 , we get

$$
\begin{align*}
h^{\prime}(z) & =\frac{1+\alpha z+\beta z^{2}}{(1-z)^{4}} \tag{2}\\
g^{\prime}(z) & =\frac{z^{2}+\alpha z+\beta}{(1-z)^{4}} . \tag{3}
\end{align*}
$$

Lemma 2.1. : If w is given by (1) with α and β real then $|w(z)|<1$ in Δ if and only if $-1<\beta<1$ and $|\alpha| \leq 1+\beta$. In this case, $h^{\prime}(z) \neq 0$ (where h^{\prime} is given by (2)).

Proof: Notice that $\left|\beta z^{2}+\alpha z+1\right|=\left|z^{2}+\alpha z+\beta\right|$ on $\partial \Delta$ and that $\left|\beta z^{2}+\alpha z+1\right|>$ $\left|z^{2}+\alpha z+\beta\right|$ if $z=0$. Hence if $\left|\beta z^{2}+\alpha z+1\right| \neq 0$, then $\left|\beta z^{2}+\alpha z+1\right|>$ $\left|z^{2}+\alpha z+\beta\right|$. Thus it suffices to find the conditions on α and β such that $\beta z^{2}+\alpha z+1 \neq 0$. Since the product of the roots is $\frac{1}{\beta}$ necessarily $\frac{1}{|\beta|}>1$. If the roots are complex, they are conjugates and both of them are outside of Δ. On the other hand, if the roots are real, the condition $-1<\beta<1$ implies at least one root is outside Δ so we require only $\beta x^{2}+\alpha x+1 \geq 0$ when $x= \pm 1$. That is $|\alpha| \leq 1+\beta$. This concludes the proof of the lemma.

Integrating (2) and normalizing the result so that $h(0)=0$, we have

$$
h(z)=\frac{\left(\frac{1}{3}+\frac{1}{3} \beta-\frac{1}{6} \alpha\right) z^{3}+\left(\frac{1}{2} \alpha-1\right) z^{2}+z}{(1-z)^{3}} .
$$

Repeating this for (3), we get

$$
g(z)=\frac{\left(\frac{1}{3}+\frac{1}{3} \beta-\frac{1}{6} \alpha\right) z^{3}+\left(\frac{1}{2} \alpha-\beta\right) z^{2}+\beta z}{(1-z)^{3}} .
$$

Therefore,

$$
\begin{aligned}
f(z)= & \operatorname{Re}[h(z)+g(z)]+i \operatorname{Im}[h(z)-g(z)] \\
= & \operatorname{Re}\left[\frac{\left(\frac{2}{3}+\frac{2}{3} \beta-\frac{1}{3} \alpha\right) z^{3}+(\alpha-1-\beta) z^{2}+(1+\beta) z}{(1-z)^{3}}\right] \\
& \quad+i \operatorname{Im}\left[\frac{(1-\beta) z}{(1-z)^{2}}\right] .
\end{aligned}
$$

Lemma 2.2. Let $|\beta|<1$ and $|\alpha| \leq \beta+1$. If $\alpha+\beta+1 \neq 0$, then $f(\Delta)$ consists of the entire plane slit along the negative real axis with the tip of the slit at $\frac{1}{6} \alpha-\frac{1}{3}-\frac{1}{3} \beta$. If $\alpha+\beta+1=0$, then $f(\Delta)$ is the half plane $\operatorname{Re}(f(z))>-\frac{1}{2}-\frac{1}{2} \beta$. Proof: Let $\frac{1+z}{1-z}=w=u+i v$. Then $z=\frac{w-1}{w+1}$. Substituting this into $f(z)$ and simplifying, we get:

$$
\begin{gathered}
f\left(\frac{w-1}{w+1}\right)=\frac{1}{12} \operatorname{Re}\left\{(w-1)\left[(1+\alpha+\beta)\left(w^{2}+w\right)+(4-2 \alpha+4 \beta)\right]\right\} \\
+\frac{1-\beta}{4} i \operatorname{Im}\left\{w^{2}-1\right\}
\end{gathered}
$$

Letting $\alpha+\beta+1=0$, using $w=u+i v$, and taking the real and imaginary parts, this becomes $\left(-\frac{1}{2}-\frac{1}{2} \beta\right)(1-u)+i\left(\frac{1}{2}-\frac{1}{2} \beta\right) u v$. If we fix $u v$, (i.e. fix $\operatorname{Im} f(z))$ then $\operatorname{Re} f(z)$ take all values $>-\frac{1}{2}-\frac{1}{2} \beta$. Thus, the image is a half plane. On the other hand, if $\alpha+\beta+1 \neq 0$,

$$
\begin{align*}
f\left(\frac{w-1}{w+1}\right) & =\frac{1+\alpha+\beta}{12} \operatorname{Re}\left\{w^{3}+3\left(\frac{1-\alpha+\beta}{1+\alpha+\beta}\right) w-\frac{4-2 \alpha+4 \beta}{1+\alpha+\beta}\right\}+\frac{1-\beta}{4} i \operatorname{Im}\left\{w^{2}-1\right\} \\
& =\frac{1+\alpha+\beta}{12}\left[u^{3}-3 u v^{2}+3\left(\frac{1-\alpha+\beta}{1+\alpha+\beta}\right) u-\frac{4-2 \alpha+4 \beta}{1+\alpha+\beta}\right]+\frac{1-\beta}{2} i u v \tag{4}
\end{align*}
$$

Notice that $u>0$. If $v=0$, then (4) is real and varies between $\frac{\alpha-2-2 \beta}{6}$ and ∞. On the level curve, $u v=c \neq 0$, the imaginary part of (4) is constant while the real part is $\left[\frac{1+\alpha+\beta}{12} u^{3}-\frac{(1+\alpha+\beta) c^{2}}{4 u}+\frac{(1-\alpha+\beta)}{4(1+\alpha+\beta)} u+\frac{\alpha-2-2 \beta}{6}\right]$, which varies
between $-\infty$ and $+\infty$ as u varies between 0 and $+\infty$. Thus, for any $c \neq 0$, $f(\Delta)$ contains the entire line parallel to the real axis and through the point $i c$.

Theorem 2.1. If $|\beta|<1$ and $|\alpha| \leq \beta+1$, then $f \in S_{H}$. If it is also true that $\beta=0$, then $f \in S_{H}^{O}$.

Proof: Notice that $h(z)-g(z)=\frac{(1-\beta) z}{(1-z)^{2}}$ is an analytic univalent mapping of Δ onto a 1 -slit domain, whose slit is on the negative real axis from $\frac{-(1-\beta)}{4}$ to $-\infty$. Hence, by a theorem of Clunie and Sheil-Small [2, theorem 5.3], f is univalent in Δ and convex in the direction of the real axis.

Therefore, under the constraints that $-1<\beta<1,|\alpha| \leq \beta+1$, and $\alpha+\beta+1 \neq 0$, we see that $f(\Delta)$ is a 1 -slit domain with the slit on the negative real axis and the tip of the slit located at $\frac{1}{6} \alpha-\frac{1}{3}-\frac{1}{3} \beta$. As α and β vary, the tip of the slit moves along the negative real axis. If $\beta=0$, then $-1<\alpha \leq 1$ and $f \in S_{H}^{O}$, with the tip of the slit situated at any point from $-\frac{1}{6}$ up to, but, not including, $-\frac{1}{2}$. In particular, when $\alpha=1, f$ is the harmonic "Koebe" function for which $\rho_{O}(f)=\frac{2}{3}$. On the other extreme, as α approaches -1 , the inner mapping radius approaches 2 . If $-1<\beta<1$, then $f \in S_{H}$. For $\beta=-1+\epsilon$ and $\alpha=\delta$, where $0<\delta<\epsilon$, the tip of the slit approaches 0 . As β increases and α decreases, the tip moves away from the origin. With $\beta=1-\epsilon$ and $\alpha=-2+\delta$, where $0<\delta<\epsilon$, the tip can be brought arbitrarily close to -1 and hence $\rho(f)$ can be made arbitrarily close to 4 . We have proved the following theorem.

Theorem 2.2. If $0<c<4$, there exists $f \in S_{H}$ such that $\mathbb{C} \backslash f(\Delta)$ is a slit along the negative real axis starting at $-\frac{c}{4}$ so that the inner mapping radius of $f(\Delta)$ is c. If $\frac{2}{3} \leq c<2$, then f can be chosen in S_{H}^{0}. Thus, $\rho_{0}(f)$ can be as large as 2.

3 An Example

Let $K_{t}(z)=\frac{(1-t) z}{(1-z)^{2}}+\frac{t z}{1-z}=\frac{z-t z^{2}}{(1-z)^{2}}, \quad 0 \leq t \leq 1$. Since $K_{t}\left(e^{i \theta}\right)=\frac{t e^{i \theta}-1}{2(1-\cos \theta)}, \quad 0<$ $\theta<2 \pi$, it is easy to check that $K_{t}(\Delta)$ is the exterior of a parabola $K_{t}(\Delta)=$ $\left\{(u, v): u>-\frac{(1-t)}{t^{2}} v^{2}-\frac{t+1}{4}\right\}$ when $0<t<1$ while $K_{1}(\Delta)$ is the half plane $\left\{(u, v): u>-\frac{1}{2}\right\}$ and $K_{0}(\Delta)$ is the slit domain $\mathbb{C}-\left\{z: z \leq-\frac{1}{4}\right\}$. For each $t, \quad K_{t}$ is convex in the direction of the real axis and hence the theorem of Clunie and Sheil-Small applies. That is, if h and g are analytic with $h-g=$ $K_{t}, h(0)=g(0)=0$ and $g^{\prime}(z)=z h^{\prime}(z)$ then $f=h+\bar{g}$ is univalent and sense-preserving.

Integrating, we find

$$
h(z)=\frac{z-\left(\frac{1}{2}+t\right) z^{2}+\left(\frac{1}{6}+\frac{1}{3} t\right) z^{3}}{(1-z)^{3}}
$$

and

$$
g(z)=\frac{\frac{1}{2} z^{2}+\left(\frac{1}{6}-\frac{2}{3} t\right) z^{3}}{(1-z)^{3}}
$$

Again setting $w=\frac{1+z}{1-z}$ so that $z=\frac{w-1}{w+1}$ with $\operatorname{Re}(w)>0$ and using the fact that $f(z)=K_{t}(z)+2 \operatorname{Re} g(z)$, the result is

$$
\begin{aligned}
f(z) & =\frac{(1-t)\left(w^{2}-1\right)}{4}+\frac{t(w-1)}{2}+2 \operatorname{Re}\left(\frac{(w-1)^{2}}{8}\left(\frac{2}{3}(1-t) w+\left(\frac{1}{3}+\frac{2}{3} t\right)\right)\right) \\
& =\left(\frac{(1-t) u v}{2}+\frac{t v}{2}\right) i+\frac{1-t}{6} u^{3}-\frac{(1-t)}{2} u v^{2}+\frac{t}{4}\left(u^{2}-v^{2}\right)-\frac{1}{6}-\frac{t}{12}
\end{aligned}
$$

where $w=u+i v$.
Set $f(z)=R+i I$. If $I=0$, then $v=0$ and $R \geq-\frac{1}{6}-\frac{t}{12}$. If $I=c=$ constant then $v=\frac{2 c}{(1-t) u+t}$. For constant I, R takes all values from $-\frac{I^{2}}{t}-\frac{1}{6}-\frac{t}{12}$ to $\infty, t \neq 0$. Thus, $f(\Delta)$ is the exterior of the parabola $R=-\frac{I^{2}}{t}-\frac{1}{6}-\frac{t}{12}$. To find the inner mapping radius of $f(\Delta)$, we want to find $k>0$ and $\rho, 0<\rho<1$ such that $k K_{\rho}(\Delta)=f(\Delta)$. Then k is the inner mapping radius of $f(\Delta)$. Setting $k K_{\rho}\left(e^{i \theta}\right)=R+i I$, we have

$$
R=-\frac{I^{2}(1-\rho)}{k \rho^{2}}-\frac{k(1+\rho)}{4} .
$$

Hence, we want $\frac{1-\rho}{k \rho^{2}}=\frac{1}{t}$ and $\frac{k(1+\rho)}{4}=\frac{1}{6}+\frac{t}{12}$. It follows that $k=\frac{(4 t+2)-\sqrt{6\left(2 t^{2}+t\right)}}{3}$ which is smallest when $t=\frac{1}{4}$. Thus $k \geq \frac{1}{2}$ with equality when $t=\frac{1}{4}$. We have proved the following.

Theorem 3.1. If $\frac{2}{3}>\rho \geq \frac{1}{2}$, there exists $f \in S_{H}^{0}$ such that $f(\Delta)$ is the exterior of a parabola and the inner mapping radius of $f(\Delta)$ is ρ.

It is interesting to observe that contrary to the situation in many cases, although $\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right|=|z|=1$ when $|z|=1$ for the mappings above, we still have $\left\{f\left(e^{i \theta}\right): 0<\theta<2 \pi\right\}$ is the boundary curve for $f(\Delta)$. This is only possible because the boundary curve is concave with respect to $f(\Delta)$ in conformity with the result of Hengartner and Schober [5, Corollary 2.2].

References

[1] Bshouty, D. and W. Hengartner (editors), "Problems and conjectures for harmonic mappings," from a workshop held at the Technion, Haifa, May 1995.
[2] Clunie, J. and T. Sheil-Small, "Harmonic univalent functions," Ann. Acad. Sci. Fenn. Ser. A.I Math. 9 (1984), 3-25.
[3] Dorff, M., "Some harmonic n-slit mappings," preprint (1995).
[4] Hall, R., "A class of isoperimetric inequalities," J. Analyse Math. 45 (1985), 169-180.
[5] Hengartner, W. and G. Schober, "On the Boundary Behavior of Orientation-Preserving Harmonic Mappings", Complex Variables, theory and applications 5 (1986), 197-208.
[6] Sheil-Small, T., "Constants for planar harmonic mappings," J. London Math. Soc. 42 (1990), 237-248.

[^0]: ${ }^{1}$ Keywords: univalent, harmonic, mapping radius 1991 Mathematics Subject Classification: 30C55, 30C45
 ${ }^{2}$ Dedicated to A.W. Goodman on the occasion of his eightieth birthday.

