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Abstract

The class SH consists of univalent, harmonic, and sense-preserving functions
f in the unit disk, ∆, such that f = h + g where h(z) = z +

∑∞
2 akz

k,
g(z) =

∑∞
1 bkz

k. Using a technique from Clunie and Sheil-Small, we construct
a family of 1-slit mappings in SH by varying ω(z) = g′(z)/f ′(z). As ω(z)
changes, the tip of the slit slides along the negative real axis from the point 0
to −1. In doing so, we establish that the inner mapping radius, ρ(f) can be as
large as 4. In addition, we show that the inner mapping radius for functions
in S0

H can be as small as 1/2 and as large as 2.

1 Introduction

For f ∈ SH, the inner mapping radius, ρ(f), of the domain f(∆) is the real

number F ′(0), where F (z) is the analytic function that maps ∆ onto f(∆)

and satisfies the conditions F (0) = 0, F ′(0) > 0. If f ∈ SO
H , the inner mapping

radius is denoted by ρO(f). The lower bound for ρ(f) is 0. It is conjectured

that the lower bound for ρO(f) is 2
3
, although it has only been proved that

ρO(f) ≥ 1
4

[6]. The upper bound for ρ(f) cannot be larger than 2π, because of

the Koebe 1
4
-theorem and Hall’s result [4] showing that f(∆) omits some point

on any circle of radius R, where R ≥ r = π
2
. Similarily, ρO(f) is bounded above

by 8π
√

3
9

< 4.837. Sheil-Small conjectured that ρ(f) ≤ π
2

[1,6]. This is based

upon Hall’s example [4] which maps ∆ onto a disk whose radius is arbitrarily

close to π
2
. As far as we know no conjecture has been made on the upper

bound for ρO(f). In an earlier paper [3], the first author presented a collection

of harmonic slit mappings for which there is a function in SH whose inner

mapping radius is π and a function in SO
H with ρO(f) ≈ 1.91.

1Keywords: univalent, harmonic, mapping radius
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2Dedicated to A.W. Goodman on the occasion of his eightieth birthday.
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Here we will present a collection of univalent, harmonic 1-slit mappings,

f = h + g with g′(z) = ω(z)h′(z), whose slit is on the negative real axis. By

changing ω(z), we are able to slide the slit away from the origin. For f ∈ SO
H ,

the tip of the slit can be brought as close as −1
6

and as far as −1
2
. The inner

mapping radius for this last function is 2. When we enlarge the class so that

f ∈ SH, the slit point can be moved from 0 to −1, and thus the inner mapping

radius can be brought arbitrarily close to 4. Hence, these functions provide

the largest known values for the inner mapping radius.

2 Sliding 1-slit mappings

Let f = h + g be a complex-valued harmonic function in ∆. Suppose that the

following conditions hold for all z ∈ ∆:

1. h(z) = k(z)
(1−z)3

, where k(z) = z + a2z
2 + a3z

3 + · · · (ai ∈ R);

2. g′(z) = ω(z)h′(z), where |ω(z)| < 1; and

3. ω(z) =
1
z
h′(1

z
)

zh′(z)
.

We require that h be analytic in the entire plane except for a pole at z = 1.

By the first condition, we know that

h′(z) =
1 + (2a2 + 2)z + · · ·+ ((n + 1)an+1 + (3− n)an)zn + · · ·

(1− z)4
.

Notice h′(0) = 1. The second condition assures us that f is locally univalent

and sense-preserving, provided h′(z) 6= 0 in ∆. The final condition comes

from forcing the function to be constant on the arc {eiθ : 0 < θ < 2π},

as required by a result of Hengartner and Schober [5, Corollary 2.2] if f is

to be a slit mapping. By 3, since h has real coefficients, |w(z)| = 1 when

z = eiθ, 0 < θ < 2π and Hengartner and Schober’s theorem implies than an

arc of the circle cannot map onto a line segment.
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From condition 3, we have

ω(z) =
1
z
[1 + 2a2+2

z
+ 3a3+a2

z2 + · · ·](1− z)4

z[1 + (2a2 + 2)z + (3a3 + a2)z2 + · · ·](1− 1
z
)4

=
z2 + (2a2 + 2)z + (3a3 + a2) + 4a4

z
+ · · ·

1 + (2a2 + 2)z + (3a3 + a2)z2 + 4a4z3 + · · ·
.

We want ω(z) to be analytic in ∆. Thus, an = 0 for n ≥ 4. Hence k(z) =

z + a2z
2 + a3z

3 and

ω(z) =
z2 + (2a2 + 2)z + (3a3 + a2)

1 + (2a2 + 2)z + (3a3 + a2)z2
=

z2 + αz + β

1 + αz + βz2
(1)

where α and β are real.

Since ω(0) = β, the inequality −1 < β < 1 must hold. Also by conditions

1 and 2, we get

h′(z) =
1 + αz + βz2

(1− z)4
, (2)

g′(z) =
z2 + αz + β

(1− z)4
. (3)

Lemma 2.1. : If w is given by (1) with α and β real then |w(z)| < 1 in ∆ if

and only if −1 < β < 1 and |α| ≤ 1 + β. In this case, h
′
(z) 6= 0 (where h

′
is

given by (2)).

Proof: Notice that |βz2+αz+1| = |z2+αz+β| on ∂∆ and that |βz2+αz+1| >

|z2 + αz + β| if z = 0. Hence if |βz2 + αz + 1| 6= 0, then |βz2 + αz + 1| >

|z2 + αz + β|. Thus it suffices to find the conditions on α and β such that

βz2 + αz + 1 6= 0. Since the product of the roots is 1
β

necessarily 1
|β| > 1. If

the roots are complex, they are conjugates and both of them are outside of ∆.

On the other hand, if the roots are real, the condition −1 < β < 1 implies at

least one root is outside ∆ so we require only βx2 + αx + 1 ≥ 0 when x = ±1.

That is |α| ≤ 1 + β. This concludes the proof of the lemma.

Integrating (2) and normalizing the result so that h(0) = 0, we have

h(z) =
(1

3
+ 1

3
β − 1

6
α)z3 + (1

2
α− 1)z2 + z

(1− z)3
.

3



Repeating this for (3), we get

g(z) =
(1

3
+ 1

3
β − 1

6
α)z3 + (1

2
α− β)z2 + βz

(1− z)3
.

Therefore,

f(z) = Re [h(z) + g(z)] + i Im [h(z)− g(z)]

= Re

[
(2

3
+ 2

3
β − 1

3
α)z3 + (α− 1− β)z2 + (1 + β)z

(1− z)3

]

+i Im

[
(1− β)z

(1− z)2

]
.

Lemma 2.2. Let |β| < 1 and |α| ≤ β +1. If α+β +1 6= 0, then f(∆) consists

of the entire plane slit along the negative real axis with the tip of the slit at

1
6
α− 1

3
− 1

3
β. If α+β+1 = 0, then f(∆) is the half plane Re(f(z)) > −1

2
− 1

2
β.

Proof: Let 1+z
1−z

= w = u + iv. Then z = w−1
w+1

. Substituting this into f(z)

and simplifying, we get:

f

(
w − 1

w + 1

)
= 1

12
Re {(w − 1)[(1 + α + β)(w2 + w) + (4− 2α + 4β)]}

+1−β
4

i Im {w2 − 1}.

Letting α + β + 1 = 0, using w = u + iv, and taking the real and imaginary

parts, this becomes (−1
2
− 1

2
β)(1 − u) + i(1

2
− 1

2
β)uv. If we fix uv, (i.e. fix

Im f(z)) then Re f(z) take all values > −1
2
− 1

2
β. Thus, the image is a half

plane. On the other hand, if α + β + 1 6= 0,

f

(
w − 1

w + 1

)
= 1+α+β

12
Re {w3 + 3(1−α+β

1+α+β
)w − 4−2α+4β

1+α+β
}+ 1−β

4
i Im {w2 − 1}

= 1+α+β
12

[
u3 − 3uv2 + 3

(
1−α+β
1+α+β

)
u− 4−2α+4β

1+α+β

]
+ 1−β

2
iuv. (4)

Notice that u > 0. If v = 0, then (4) is real and varies between α−2−2β
6

and

∞. On the level curve, uv = c 6= 0, the imaginary part of (4) is constant

while the real part is [1+α+β
12

u3 − (1+α+β)c2

4u
+ (1−α+β)

4(1+α+β)
u + α−2−2β

6
], which varies
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between −∞ and +∞ as u varies between 0 and +∞. Thus, for any c 6= 0,

f(∆) contains the entire line parallel to the real axis and through the point ic.

Theorem 2.1. If |β| < 1 and |α| ≤ β + 1, then f ∈ SH. If it is also true that

β = 0, then f ∈ SO
H.

Proof: Notice that h(z) − g(z) = (1−β)z
(1−z)2

is an analytic univalent mapping

of ∆ onto a 1-slit domain, whose slit is on the negative real axis from −(1−β)
4

to −∞. Hence, by a theorem of Clunie and Sheil-Small [2, theorem 5.3], f is

univalent in ∆ and convex in the direction of the real axis.

Therefore, under the constraints that −1 < β < 1, |α| ≤ β + 1, and

α+β +1 6= 0, we see that f(∆) is a 1-slit domain with the slit on the negative

real axis and the tip of the slit located at 1
6
α− 1

3
− 1

3
β. As α and β vary, the

tip of the slit moves along the negative real axis. If β = 0, then −1 < α ≤ 1

and f ∈ SO
H , with the tip of the slit situated at any point from −1

6
up to, but,

not including, −1
2
. In particular, when α = 1, f is the harmonic ”Koebe”

function for which ρO(f) = 2
3
. On the other extreme, as α approaches −1,

the inner mapping radius approaches 2. If −1 < β < 1, then f ∈ SH. For

β = −1 + ε and α = δ, where 0 < δ < ε, the tip of the slit approaches 0. As β

increases and α decreases, the tip moves away from the origin. With β = 1− ε

and α = −2 + δ, where 0 < δ < ε, the tip can be brought arbitrarily close to

−1 and hence ρ(f) can be made arbitrarily close to 4. We have proved the

following theorem.

Theorem 2.2. If 0 < c < 4, there exists f ∈ SH such that C \ f(∆) is a slit

along the negative real axis starting at − c
4

so that the inner mapping radius of

f(∆) is c. If 2
3
≤ c < 2, then f can be chosen in S0

H . Thus, ρ0(f) can be as

large as 2.
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3 An Example

Let Kt(z) = (1−t)z
(1−z)2

+ tz
1−z

= z−tz2

(1−z)2
, 0 ≤ t ≤ 1. Since Kt(e

iθ) = teiθ−1
2(1−cos θ)

, 0 <

θ < 2π, it is easy to check that Kt(∆) is the exterior of a parabola Kt(∆) ={
(u, v) : u > − (1−t)

t2
v2 − t+1

4

}
when 0 < t < 1 while K1(∆) is the half plane{

(u, v) : u > −1
2

}
and K0(∆) is the slit domain C−

{
z : z ≤ −1

4

}
. For each

t, Kt is convex in the direction of the real axis and hence the theorem of

Clunie and Sheil-Small applies. That is, if h and g are analytic with h− g =

Kt, h(0) = g(0) = 0 and g
′
(z) = zh

′
(z) then f = h + ḡ is univalent and

sense-preserving.

Integrating, we find

h(z) =
z − (1

2
+ t)z2 + (1

6
+ 1

3
t)z3

(1− z)3

and

g(z) =
1
2
z2 + (1

6
− 2

3
t)z3

(1− z)3

Again setting w = 1+z
1−z

so that z = w−1
w+1

with Re (w) > 0 and using the fact

that f(z) = Kt(z) + 2 Re g(z), the result is

f(z) =
(1− t)(w2 − 1)

4
+

t(w − 1)

2
+ 2 Re

(
(w − 1)2

8

(
2

3
(1− t)w + (

1

3
+

2

3
t)

))

=

(
(1− t)uv

2
+

tv

2

)
i +

1− t

6
u3 − (1− t)

2
uv2 +

t

4
(u2 − v2)− 1

6
− t

12

where w = u + iv.

Set f(z) = R + iI. If I = 0, then v = 0 and R ≥ −1
6
− t

12
. If I = c =

constant then v = 2c
(1−t)u+t

. For constant I, R takes all values from − I2

t
− 1

6
− t

12

to ∞, t 6= 0. Thus, f(∆) is the exterior of the parabola R = − I2

t
− 1

6
− t

12
. To

find the inner mapping radius of f(∆), we want to find k > 0 and ρ, 0 < ρ < 1

such that kKρ(∆) = f(∆). Then k is the inner mapping radius of f(∆).

Setting kKρ(e
iθ) = R + iI, we have

R = −I2(1− ρ)

kρ2
− k(1 + ρ)

4
.
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Hence, we want 1−ρ
kρ2 = 1

t
and k(1+ρ)

4
= 1

6
+ t

12
. It follows that k =

(4t+2)−
√

6(2t2+t)

3

which is smallest when t = 1
4
. Thus k ≥ 1

2
with equality when t = 1

4
. We have

proved the following.

Theorem 3.1. If 2
3

> ρ ≥ 1
2
, there exists f ∈ S0

H such that f(∆) is the

exterior of a parabola and the inner mapping radius of f(∆) is ρ.

It is interesting to observe that contrary to the situation in many cases,

although
∣∣∣ g

′
(z)

h′ (z)

∣∣∣ = |z| = 1 when |z| = 1 for the mappings above, we still have

{f(eiθ) : 0 < θ < 2π} is the boundary curve for f(∆). This is only possible

because the boundary curve is concave with respect to f(∆) in conformity

with the result of Hengartner and Schober [5, Corollary 2.2].
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