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Abstract

Let €, be the asymmetrical vertical strips defined by Q, = {w :
s~ < Rew < 52—}, where 7/2 < a < 7, and let D be the
unit disk. We characterize the class Sy, (D, ) of univalent harmonic
orientation-preserving functions f which map D onto €, and are nor-
malized by f(0) = 0, fz(0) = 0, and f,(0) > 0. Then we use this

characterization to demonstrate a few other results..

1 Introduction

Let Sy be the class of complex-valued harmonic functions f which are
univalent and orientation-preserving mappings of the unit disk D =
{# : |#| < 1} and are normalized by f(0) = 0 and f,(0) = 1. Clunie
and Sheil-Small [1] showed that functions in such a class have the form

f=h+3g,

where

h(z)=z+ Z arpz® and  g(z2) = Z by 2"
k=2 k=1

are analytic in D. They also showed that the orientation-preserving
condition implies that |b;| < 1 and so (f—b1 f)/(1—|b1]?) € Si. Hence
it is customary to just consider the subclass

SO = {f € S, with f=(0) = 0}.

The uniqueness result of the Riemann Mapping Theorem does not
extend to these classes of harmonic functions, and several authors have
studied the subclass of functions that map D onto specific domains.
In particular, Hengartner and Schober [3] considered the strip domain
Q={w:|Im w| < w/4}. We will apply their results to derive a family



of functions that includes all mappings in S¢ from D onto vertical strip
domains that are asymmetric with respect to the imaginary axis. Using
this, we will characterize all mappings in S§, whose image is either a
right-half plane or the entire plane minus a slit lying on the negative
real axis.

2 Asymmetric vertical strip mappings

In [3], Hengartner and Schober investigated the family S5 (D,€) of
normalized harmonic univalent mappings from the unit disk D onto
the horizontal strip Q@ = {w : | Im w| < w/4}. By the use of a rotation
and a composition on their family of functions, we derive analogous
results about the family of normalized univalent mappings from D
onto the vertical asymmetric strips.

In particular, let f € S, (D, Q,), the family of normalized univalent
mappings from D onto the the vertical asymmetric strips Q, = {w :
F < Re (w) < 52—}, where I < o < m. Recall that f = h +7,
where h, g are in the space of analytic functions, H(D), on D, and that
la(2)| = |¢'(z)/h'(2)] < 1. Now, f = Re (h+g)+¢Im (h—g). So

M) -d(2)

=[5 pee

1+a(z)

[1'(2) + g'(2)]dz

where ¢(z) = h(z) + g(2)-

Now ¢ is the conformal map from D onto (2,, normalized by
©(0) = 0 and ¢'(0) > 0. To see this, note that if we consider the
map F(w) = ¢ = &+in = ¢(f~*(w)), then f consists of the successive
transformations (u,v) — (w, W) — (2,2) — (¢, @) — (&, 1) so that
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and thus % =1, % =0 and % = Ly/‘z where A = |02 — |¢'|? =
Re [(W + ¢')(h — ¢")]. Therefore, ¢ is a univalent map from D onto a
vertical strip. Because of the normalization of ¢, we see that ¢ is the
map (1/2)log[(142)/(1—2z)] rotated by—iz, composed with the Mobius

transformation (z + p)/(1 + pz), where 0 < p < 1, and normalized.



Hence, any map f in Sy (D, ,) is of the form

f(:) = Reg()+im / L_flgz;'@'(z)dz.
= ¢(z) —2i Im /1_7_(222) - (2)dz. (1)

Since a is in H(D), |a(z)| < 1 on D, and a(0) = 0, we have

1—a(z) / 1+nz
1+ a(z) =1 1 —1nz

du(n),

where P is the set of probability measures on the Borel sets of |n| = 1.
Definition 2.1. For z € D and || = 1, define the kernel
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Define the family

1 1+ ze'@
Fa=1{f:f(z) = Re [Qisina log <1 Jrzeif")}

+i Im K(z,m)du(n), neP}
Inl=1
where P is the set of probability measures on the Borel sets of |n| = 1.

From our discussion above, we obtain an isomorphism between the
the family Sy (D, Q) from Hengartner and Schober [3] and the class
Su(D, Q). Hence we have the following theorem.



Theorem 2.2. The following properties hold:

1. If f is a univalent harmonic and orientation preserving map from
the unit disk D onto Qo = {w : &= < Re (w) < 52—} such

2sin o 2sin

that f(0) =0 and f.(0) > 0, then f,(0) = 1.
2. The set Sy(D, Q) C Fo with Sy(D, Q) = Fa.

3. If f € F,, then f(D) is either the strip Qq, a halfstrip, a triangle,
or a trapezium.

3 Consequences

The results from the previous section yield a few nice consequences.

Theorem 3.1. Every right-half plane mapping f € S can be ex-
pressed as a limit of functions in Fo. In particular, f maps 0D into
the line Re w = —%‘

Proof. This follows from the normality of the family S¢ and an ap-
proximation theorem (theorem 3.7 in [1]). O

Corollary 3.2. Let f = h+g € S be a right-half plane mapping.
Then

2m

—2i Im K(z,t) du(t),

f(z)=h(z)+9(z) —2i Im g(z) = 1> :

where

ifn=1

1 1—
n 1og( ) ifn#1
1—nz

(L=m@—n)
Proof. Let f € Sx(D,Q), where f is of the form in (1). The result
follows from taking the limit of f as o — 7. O

Corollary 3.2 provides a general description for right-half plane
mappings in S¢, so that in such cases we know that h(z) + g(z) =
z/(1 — z). In a similar fashion, it has been shown that all slit map-
pings in S whose slit lie on the negative real axis have the property
that h(z) — g(z) = 1/(1 — 2)? ([2] or see [4]). Corollary 3.3 provides

another proof of this.



Corollary 3.3. Let f = h+g € S9 be a slit mapping whose slit lies
on the negative real axis. Then

Proof. Sheil-Small (REMARK 7 in [5]) showed that if f =h+7g € S
is starlike, then f = h — § is convex in S9, where

ﬁ(z):Az M) gy and g(z)z/:g(w)dw.

w w

Let f = h+7 € 59 be a slit mapping whose slit lies on the negative
real axis. Then f is convex. In particular, f is a right-half plane
mapping since the process f(z) = foz f(w)/w dw makes the boundary

of f normal to the boundary of f. Hence, by Corollary (3.2)

L gt - [ Mo,

1—=2

Therefore,

O
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