Harmonic univalent mappings onto asymmetric vertical strips

Michael John Dorff

January 1998

Abstract

Let Ω_{α} be the asymmetrical vertical strips defined by $\Omega_{\alpha}=\{w$: $\left.\frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re} w<\frac{\alpha}{2 \sin \alpha}\right\}$, where $\pi / 2 \leq \alpha<\pi$, and let D be the unit disk. We characterize the class $S_{H}\left(D, \Omega_{\alpha}\right)$ of univalent harmonic orientation-preserving functions f which map D onto Ω_{α} and are normalized by $f(0)=0, f_{\bar{z}}(0)=0$, and $f_{z}(0)>0$. Then we use this characterization to demonstrate a few other results.

1 Introduction

Let S_{H} be the class of complex-valued harmonic functions f which are univalent and orientation-preserving mappings of the unit disk $D=$ $\{z:|z|<1\}$ and are normalized by $f(0)=0$ and $f_{z}(0)=1$. Clunie and Sheil-Small [1] showed that functions in such a class have the form

$$
f=h+\bar{g},
$$

where

$$
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=\sum_{k=1}^{\infty} b_{b} z^{k}
$$

are analytic in D. They also showed that the orientation-preserving condition implies that $\left|b_{1}\right|<1$ and so $\left(f-\overline{b_{1} f}\right) /\left(1-\left|b_{1}\right|^{2}\right) \in S_{H}$. Hence it is customary to just consider the subclass

$$
S_{H}^{O}=\left\{f \in S_{H} \text { with } f_{\bar{z}}(0)=0\right\} .
$$

The uniqueness result of the Riemann Mapping Theorem does not extend to these classes of harmonic functions, and several authors have studied the subclass of functions that map D onto specific domains. In particular, Hengartner and Schober [3] considered the strip domain $\Omega=\{w:|\operatorname{Im} w|<\pi / 4\}$. We will apply their results to derive a family
of functions that includes all mappings in S_{H}^{O} from D onto vertical strip domains that are asymmetric with respect to the imaginary axis. Using this, we will characterize all mappings in S_{H}^{O} whose image is either a right-half plane or the entire plane minus a slit lying on the negative real axis.

2 Asymmetric vertical strip mappings

In [3], Hengartner and Schober investigated the family $S_{H}(D, \Omega)$ of normalized harmonic univalent mappings from the unit disk D onto the horizontal strip $\Omega=\{w:|\operatorname{Im} w|<\pi / 4\}$. By the use of a rotation and a composition on their family of functions, we derive analogous results about the family of normalized univalent mappings from D onto the vertical asymmetric strips.

In particular, let $f \in S_{H}\left(D, \Omega_{\alpha}\right)$, the family of normalized univalent mappings from D onto the the vertical asymmetric strips $\Omega_{\alpha}=\{w$: $\left.\frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}(w)<\frac{\alpha}{2 \sin \alpha}\right\}$, where $\frac{\pi}{2} \leq \alpha<\pi$. Recall that $f=h+\bar{g}$, where h, g are in the space of analytic functions, $H(D)$, on D, and that $|a(z)|=\left|g^{\prime}(z) / h^{\prime}(z)\right|<1$. Now, $f=\operatorname{Re}(h+g)+i \operatorname{Im}(h-g)$. So

$$
\begin{aligned}
h(z)-g(z) & =\int \frac{h^{\prime}(z)-g^{\prime}(z)}{h^{\prime}(z)+g^{\prime}(z)}\left[h^{\prime}(z)+g^{\prime}(z)\right] d z \\
& =\int \frac{1-a(z)}{1+a(z)} \cdot \varphi^{\prime}(z) d z
\end{aligned}
$$

where $\varphi(z)=h(z)+g(z)$.
Now φ is the conformal map from D onto Ω_{α}, normalized by $\varphi(0)=0$ and $\varphi^{\prime}(0)>0$. To see this, note that if we consider the $\operatorname{map} F(w)=\zeta=\xi+i \eta=\varphi\left(f^{-1}(w)\right)$, then f consists of the successive transformations $(u, v) \rightarrow(w, \bar{w}) \rightarrow(z, \bar{z}) \rightarrow(\varphi, \bar{\varphi}) \rightarrow(\xi, \eta)$ so that

$$
\begin{aligned}
\left(\begin{array}{ll}
\frac{\partial \xi}{\partial u} & \frac{\partial \xi}{\partial v} \\
\frac{\partial \eta}{\partial u} & \frac{\partial \eta}{\partial v}
\end{array}\right)=\left(\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2 i} & -\frac{1}{2 i}
\end{array}\right) & \left(\begin{array}{cc}
h^{\prime}+g^{\prime} & 0 \\
0 & \overline{h^{\prime}+g^{\prime}}
\end{array}\right) \\
& \cdot\left(\begin{array}{rr}
\overline{h^{\prime}} & -\frac{\overline{g^{\prime}}}{\Delta} \\
-\frac{g^{\prime}}{\Delta} & \frac{h^{\prime}}{\Delta}
\end{array}\right)\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right)
\end{aligned}
$$

and thus $\frac{\partial \xi}{\partial u}=1, \frac{\partial \xi}{\partial v}=0$ and $\frac{\partial \eta}{\partial v}=\frac{\left|h^{\prime}+g^{\prime}\right|^{2}}{\Delta}$ where $\Delta=\left|h^{\prime}\right|^{2}-\left|g^{\prime}\right|^{2}=$ $\operatorname{Re}\left[\left(\overline{h^{\prime}+g^{\prime}}\right)\left(h^{\prime}-g^{\prime}\right)\right]$. Therefore, φ is a univalent map from D onto a vertical strip. Because of the normalization of φ, we see that φ is the $\operatorname{map}(1 / 2) \log [(1+z) /(1-z)]$ rotated by $-i z$, composed with the Möbius transformation $(z+p) /(1+\bar{p} z)$, where $0<p<1$, and normalized.

Hence, any map f in $S_{H}\left(D, \Omega_{\alpha}\right)$ is of the form

$$
\begin{align*}
f(z) & =\operatorname{Re} \varphi(z)+i \operatorname{Im} \int \frac{1-a(z)}{1+a(z)} \cdot \varphi^{\prime}(z) d z \\
& =\varphi(z)-2 i \operatorname{Im} \int \frac{a(z)}{1+a(z)} \cdot \varphi^{\prime}(z) d z \tag{1}
\end{align*}
$$

Since a is in $H(D),|a(z)|<1$ on D, and $a(0)=0$, we have

$$
\frac{1-a(z)}{1+a(z)}=\int_{|\eta|=1} \frac{1+\eta z}{1-\eta z} d \mu(\eta)
$$

where \mathcal{P} is the set of probability measures on the Borel sets of $|\eta|=1$. Definition 2.1. For $z \in D$ and $|\eta|=1$, define the kernel

$$
\begin{aligned}
K(z, \eta) & =\left\{\begin{aligned}
z & \frac{1+\eta w}{1-\eta w} \frac{1}{\left(1+w e^{i \alpha}\right)\left(1+w e^{-i \alpha}\right)} d w \\
& =\left\{\begin{aligned}
& \frac{\cos \alpha}{2 \sin ^{2} \alpha} \log \left(\frac{1+z e^{i \alpha}}{1+z e^{-i \alpha}}\right) \\
&+\frac{1}{i \sin \alpha}\left(\frac{z e^{i \alpha}}{1+z e^{i \alpha}}\right), \quad \text { if } \eta=-e^{i \alpha} \\
& \frac{\cos \alpha}{2 \sin ^{2} \alpha} \log \left(\frac{1+z e^{-i \alpha}}{1+z e^{i \alpha}}\right) \\
&-\frac{1}{i \sin \alpha}\left(\frac{z e^{-i \alpha}}{1+z e^{-i \alpha}}\right), \quad \text { if } \eta=-e^{-i \alpha} \\
& \frac{1}{2 i \sin \alpha}\left(\frac{1-\eta e^{i \alpha}}{1+\eta e^{i \alpha}}\right) \log \left(\frac{1-\eta z}{1+z e^{-i \alpha}}\right) \\
&-\frac{1}{2 i \sin \alpha}\left(\frac{1-\eta e^{-i \alpha}}{1+\eta e^{-i \alpha}}\right) \log \left(\frac{1-\eta z}{1+z e^{i \alpha}}\right)
\end{aligned}\right. \\
& \text { if } \eta \neq-e^{ \pm i \alpha}
\end{aligned}\right.
\end{aligned}
$$

Define the family

$$
\begin{aligned}
\mathcal{F}_{\alpha}=\{f: f(z) & =\operatorname{Re}\left[\frac{1}{2 i \sin \alpha} \log \left(\frac{1+z e^{i \alpha}}{1+z e^{-i \alpha}}\right)\right] \\
& \left.+i \operatorname{Im} \int_{|\eta|=1} K(z, \eta) d \mu(\eta), \quad \mu \in \mathcal{P}\right\}
\end{aligned}
$$

where \mathcal{P} is the set of probability measures on the Borel sets of $|\eta|=1$.
From our discussion above, we obtain an isomorphism between the the family $S_{H}(D, \Omega)$ from Hengartner and Schober [3] and the class $S_{H}\left(D, \Omega_{\alpha}\right)$. Hence we have the following theorem.

Theorem 2.2. The following properties hold:

1. If f is a univalent harmonic and orientation preserving map from the unit disk D onto $\Omega_{\alpha}=\left\{w: \frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}(w)<\frac{\alpha}{2 \sin \alpha}\right\}$ such that $f(0)=0$ and $f_{z}(0)>0$, then $f_{z}(0)=1$.
2. The set $S_{H}\left(D, \Omega_{\alpha}\right) \subset \mathcal{F}_{\alpha}$ with $\overline{S_{H}\left(D, \Omega_{\alpha}\right)}=\mathcal{F}_{\alpha}$.
3. If $f \in \mathcal{F}_{\alpha}$, then $f(D)$ is either the strip Ω_{α}, a halfstrip, a triangle, or a trapezium.

3 Consequences

The results from the previous section yield a few nice consequences.
Theorem 3.1. Every right-half plane mapping $f \in S_{H}^{O}$ can be expressed as a limit of functions in \mathcal{F}_{α}. In particular, f maps ∂D into the line Re $w=-\frac{1}{2}$.

Proof. This follows from the normality of the family S_{H}^{O} and an approximation theorem (theorem 3.7 in [1]).

Corollary 3.2. Let $f=h+\bar{g} \in S_{H}^{O}$ be a right-half plane mapping. Then

$$
f(z)=h(z)+g(z)-2 i \operatorname{Im} g(z)=\frac{z}{1-z}-2 i \operatorname{Im} \int_{0}^{2 \pi} K(z, t) d \mu(t)
$$

where
$K(z, \eta)= \begin{cases}\frac{-\frac{1}{2} z^{2}}{(1-z)^{2}} & \text { if } \eta=1 \\ \frac{z}{(1-\bar{\eta})(1-z)} \\ +\frac{1}{(1-\bar{\eta})(1-\eta)} \log \left(\frac{1-z}{1-\eta z}\right), & \text { if } \eta \neq 1\end{cases}$
Proof. Let $f \in S_{H}(D, \Omega)$, where f is of the form in (1). The result follows from taking the limit of f as $\alpha \rightarrow \pi$.

Corollary 3.2 provides a general description for right-half plane mappings in S_{H}^{O}, so that in such cases we know that $h(z)+g(z)=$ $z /(1-z)$. In a similar fashion, it has been shown that all slit mappings in S_{H}^{O} whose slit lie on the negative real axis have the property that $h(z)-g(z)=1 /(1-z)^{2}$ ([2] or see [4]). Corollary 3.3 provides another proof of this.

Corollary 3.3. Let $f=h+\bar{g} \in S_{H}^{O}$ be a slit mapping whose slit lies on the negative real axis. Then

$$
h(z)-g(z)=\frac{z}{(1-z)^{2}}
$$

Proof. Sheil-Small (Remark 7 in [5]) showed that if $f=h+\bar{g} \in S_{H}^{O}$ is starlike, then $\hat{f}=\hat{h}-\overline{\hat{g}}$ is convex in S_{H}^{O}, where

$$
\hat{h}(z)=\int_{0}^{z} \frac{h(w)}{w} d w \quad \text { and } \quad \hat{g}(z)=\int_{0}^{z} \frac{g(w)}{w} d w
$$

Let $f=h+\bar{g} \in S_{H}^{O}$ be a slit mapping whose slit lies on the negative real axis. Then \hat{f} is convex. In particular, \hat{f} is a right-half plane mapping since the process $\hat{f}(z)=\int_{0}^{z} f(w) / w d w$ makes the boundary of \hat{f} normal to the boundary of f. Hence, by Corollary (3.2)

$$
\frac{z}{1-z}=\hat{h}(z)-\hat{g}(z)=\int_{0}^{z} \frac{h(w)-g(w)}{w} d w .
$$

Therefore,

$$
\frac{z}{(1-z)^{2}}=h(z)-g(z) .
$$

The author wishes to thank W. Hengartner and T. Suffridge for their helpful suggestions.

References

[1] Clunie, J. and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I Math. 9 (1984), 3-25.
[2] Hengartner, W., personal correspondence.
[3] Hengartner, W. and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
[4] Livingston, A. E., Univalent harmonic mappings, Ann. Polon. Math. 57 (1992), 57-70.
[5] Sheil-Small, T., Constants for planar harmonic mappings, J. London Math. Soc. 42 (1990), 237-248.

