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1 Introduction

One of Archimedes’ favorite results was the fact that both the volume and surface
2

area ratios of a sphere to its circumscribed cylinder are %. After studying Archimedes
in our department’s Great Theorems in Mathematics class, the second author assigned
the following homework problem: “Show that, for the bicylinder (the solid formed by the
orthogonal intersection of two congruent right circular cylinders) and its circumscribing
cube, the volume and surface area ratios are also %.” This problem has been discussed
by DeTemple [2], and the most difficult part is finding the surface area of the bicylinder.
However, some of the students sidestepped the difficulty. They first found the volume in
terms of the radius, r, of the intersecting cylinders, using the usual calculus I method, and
then claimed that the surface area is simply the derivative of the volume with respect to
r. Surprisingly, this procedure does give the correct surface area, and the ratios of % are
obtained.

We were intrigued by the students’ work, and this paper is the result of our attempt to

answer the question, “When is surface area equal to the derivative of volume?” The only

other examples we knew of, at first, were the circle in R?, where d% (7r r2) = 27 r, and the
sphere in R?, where d% (%71’ 7'3) = 47 r2.
2 Regions in R?
In the R? case, we want to explore the equation
dA
— =P 1
dr ’ (1)

where A is area, P is perimeter, and r is some linear dimension. In [7] Tong showed that
(1) will always hold if r = 24/ P. However, we are interested in a geometric understanding
of this idea, especially in cases where r has additional geometric significance. Consider the
case of a square with side s, so that A = s and P = 4s. With r = s, (1) does not hold, and
Tong’s condition says we should use r = s/2 instead. Then, A = 472, P = 8r, and (1) holds.
Here, the r that “works” is the radius of the inscribed circle, and we can generalize this idea
to see that (1) holds for convex figures whose boundary consists of straight sides tangent
to the circle and arcs of the circle. Although we need the figure to have an inscribed circle,
the key idea is that by using the center of the circle, we can decompose such convex figures
into triangles and sectors which have the desired relationship between the derivatives of the
area and the length of the exterior side.



Lemma 1. Let R be either the region formed by a sector of a circle of radius v or a triangle
with altitude of length r. Also, let OR be the arc of the sector or the side perpendicular to
the altitude v, and L be the length of OR. Then R satisfies

dA
— = L.
dr
Proof. In the case of the triangular region, the length of R is linearly proportional to the
length of the altitude, r. Hence L = kr, for some constant k and A = %er (see FIGURE
1). For the region formed by a sector, let # be the central angle of the sector. Then L = r6
and A = 1720 (see FIGURE 2). Thus, in both cases the result holds. O

kr ro

FIGURE 1: Triangular region. FIGURE 2: Sectorial region.

Therefore, whenever a region is finitely decomposible into triangular and sectorial regions
in this manner, we will get eq. (1) to hold.

Theorem 2. Any conver region R in R? having an inscribed circle S* of radius r such
that every straight side of the boundary of R is tangent to S' and every curved arc of the
boundary of R is an arc of S' has the property

d A

— =P.
dr

In particular, using the radius of the inscribed circle as the variable of differentiation,

the result holds for triangles, rhombuses, and all regular polygons.

Exercise 1. Show that % = P for a 30° — 60° — 90° triangle with an inscribed circle of
2

radius 7.

If the circle S* does not touch each side of the convex region R, then the result as stated
in eq. (1) does not hold. For example, if R is a rectangle of length 47 and height 2r, a
circle of radius r can be tangent to at most three sides of the rectangle, and dA/dr # P.
However, we can modify the result in the following way. For any point O in the interior of
the rectangle, let r1, r9, r3, and r4 be the distances from O to the sides. We can express
the area and the perimeter in terms of 11, ry, r3, and r4 by

A = (7’1 + 7’3)(7’2 + 7“4)

and
P = 2(7"1 + 7"3) + 2(7‘2 + 7‘4).

"Miller [6] showed this for regular polygons.
2Upon request, the authors will provide solutions to any of the exercises.



Now,

We can generalize this process for certain regions that are starlike with respect to a
point in their interior (a region R is starlike with respect to a point O if the line segment
connecting O to any point p on JR lies entirely in the interior of R).

Theorem 3. Let R be a region in R? that is starlike with respect to some point O in the
interior of R and whose boundary consists of arcs of circles whose center is at O and of
straight sides. Then R satisfies

where r; is the length of the radius of a sector or is the length of the altitude from O to a
straight side.

In some cases, the r;’s in Theorem 3 can be related to Tong’s value of r, giving his r an
additional geometric meaning.

Theorem 4. Let R be a n-sided polygon that is starlike with respect to a point T in the
interior of R such that R can be triangulated into n triangles of equal area with bases the
sides of the polygon and opposite vertex T. If r; is the distance from T to the ith side of R
and 7 s the harmonic mean of r1,...,ry,, then

a4 _
dr

Proof. As in the proof of Lemma 1, each side, s;, of R is proportional to the corresponding
T4, SO
"1 1,
A= Zl Esim = Zl §kiri
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n n
1
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Because each triangle has the same area, we have

P.

n

n 1
A= —kr? d P=kr?) —

2 17’1 an 1T1 l_zl ’ri,

and the r for which dA/dr = P is
24 n
r=—45 =" =
=1 T

which is the harmonic mean of rq,...,r,. U

When R is a triangle, its centroid satisfies the conditions for 7" and

37‘17"27‘3

rors + 113 + 172

This provides another proof of the following known result [5].



Corollary 5. For any triangle, the harmonic mean of its altitudes is three times the inradius
of the triangle.

The equal-area triangulation point 7" does not exist for every polygon, although it clearly
does exist for any triangle and any regular polygon. For a quadrilateral, T' will exist if and
only if one of the diagonals bisects the quadrilateral into two triangles of equal area. In this
case, T' is the midpoint of the bisecting diagonal and may or may not be the centroid. For a
parallelogram, T is the intersection of the diagonals and does coincide with the centroid.It
is straightforward to generalize Theorem 4.

Theorem 6. Let T be any point in the interior of a n—gon such that the n-gon is starlike
with respect to T and triangulate the polygon from T. Let the triangle with side s; and
altitude r; from s; to T have area A;. Then dA/dr = P for the polygon, where

1_iAi1
r i:lAlri

Besides thinking of the regions that satisfy the conditions of Theorem 3 as a decompo-
sition into triangular and sectorial regions whose “bases” form a connected Jordan curve
representing the boundary of R and which share the common vertex point O, these re-
gions R can be viewed as the union or intersection of regions that satisfy the conditions of
Theorem 2.

3 Solids in R3

In the same way that a circle of radius r plays an essential role for regions in R?, a
sphere of radius r is crucial for understanding when the equation

av

4, =4 (2)
holds for solids, S, in R?, where V is volume and A is surface area. Before we establish that
the results from the previous section have analogues for solids, we will explore a relationship
between a circle and a sphere. This allows us to prove ways in which a solid in R? with the
desired property can be created from a region in R? satisfying eq. (1). We can think of a
sphere as the revolution of a circle about a diameter line. Hence, we will consider surfaces
that are formed by revolving regions from R? for which eq. (1) holds.

Theorem 7. Let R € R? be a region which satisfies the conditions of Theorem 2 and which
is symmetric with respect to an axis through the center O of S*. Let S € R® be the solid
formed by revolving R about that axis of symmetry. Then

av

e A
Proof. Finding the volume and the surface area in this case is simplifed by using Pappus’
Centroid Theorems (see [3], pp. 915-917). These theorems are:

e The volume of a solid of revolution generated by revolving a planar region R about
an axis that does not intersect the interior of R is

V = (Area of R) - d,, = 27T, - (Area of R),

where d,, is the distance traveled by the area’s centroid Z,,.



e Let a plane curve « lie on one side of an axis in the plane. The surface area A of the
surface of revolution generated by revolving v about that axis is

A=s5-d,=271T,-s,

where s is the arc length of the curve and d,, is the distance traveled by the curve’s
centroid .

Since the region R satisfying Theorem 2 can be separated into triangular and sectorial
regions, it suffices to show that the result holds for these regions with sides above or on
the z-axis and a vertex at the origin. First, consider the case of the triangular region. Let
01,65 be the angles formed from the sides and the median emanating from the vertex at the
origin (see FIGURE 3). The centroid 7, of the other side is the midpoint of that side and
the centroid of the area is the intersection of the medians of the triangle. Hence, T, = 575,
and because both are linear dimensions, 7, = kr, where r is the length of the altitude from

the origin. Thus, we have
A =27(kr)(rtanf; + rtanbs),

while
V =2r(3kr)(3r° tan 6y + 2r7 tan 6).

Hence, eq. (2) holds.

Next, consider the sector with center at the origin, central angle 0, radius r, and the
corresponding arc. Let R be the radial segment from the origin to the midpoint of the arc.
Note that Z, and T, lie on R (see FIGURE 4). In fact, using techniques from Calc. III, it
can be shown that z, = %E% where Z,, = kr, for some quantity k independent of r. Hence,
if S is the solid obtained by revolving the sector about the z-axis, and if 0S denotes the
surface generated by the arc only, the Theorems of Pappus yield

2
V = 277, (Area of sector) = §7rk 30

and
_ 9 dv
A = 27%(Length of arc) = 2nkr°6 = P
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FIGURE 3: Triangular region. FIGURE 4: Sectorial region.

This theorem establishes that a right circular cone and a right circular cylinder with an
inscribed sphere of radius r touching each side of the surface satisfy eq. (2).



Exercise 2. Show that % = A for a right circular cone with an inscribed sphere of radius
r and angle 6 between the base and the side of the cone.

For a circle or a regular polygon, the region’s centroid and the curve’s centroid are the
same. Thus we get the following corollary.

Corollary 8. Let R € R? be a disc or a regular polygonal region with an inscribed circle of
radius r and S € R be the solid formed by revolving R about an axis that does not intersect

R. Then
av

dr

This gives us the interesting result that a torus satisfies eq. (2). Recall that a torus
can be generated by rotating a circle centered at the point (a,0) and of radius r about the
y-axis, where r < a. By Pappus’ Theorems, V = (2ma)(nr?) and A = (2ma)(27r).

While a right circular cylinder can be formed by the approach in Theorem 7, it also
can be created by lifting a circle into R?. This suggests the following theorem which can
be proved by using Theorem 2, the Chain Rule, and the formulas V' = 2r - (Area of R) and
A =2 (Area of R) + 2r - (Perimeter of R).

A.

Theorem 9. Let R € R? be a region which satisfies the conditions of Theorem 2 where r
is the radius of the inscribed circle. Let S € R be the solid formed by lifting R to a height
of 2r. Then
av
— = A
dr

Intuitively, the R? version of Lemma, 1 replaces triangles with pyramids having polygonal
bases. However, we can generalize this further.

Lemma 10. Let S be a conver solid containing the origin O in R3. For every (smooth)
component 0S; of the boundary 0S assume that the position vector from O to any point g;
of 3S; has the form .

R; = ryni; + pj
where 1i; is the outward normal to 0S; at q; and p; L 7i;. Then the generalized pyramid S;
with base 0S; and vertex O satisfies

1
Vs, = gTiA(?Si
and iV
S.
L= Ajg..
d’l"i 05

Proof. Apply the divergence theorem to the vector field R; over S; to get

3Vs, = / R; - ;d(8S)
aS;

or

1
Vsi = —// i d(@S) = ’I"iAasi.
3./ Jos,

Because r; is a characteristic dimension of 5;, we have

2
Aasi = k‘iri



and so

dvs, d (1 ;

A (L3 2 = Ay
dr;  dry 3’“”) kiri = Aas;

O

Surfaces that satisfy R; = rift; + p; with §; L i; include right pyramids with polygonal
bases, right circular cones, right circular cylinders, spheres, and planes. In some cases the
location of O is restricted. For example, for a right circular cylinder or cone, O must be
on the axis of the solid and in the interior, and for a sphere, O must be the center of the
sphere.

By decomposing the solid S in R? into finitely many of the regions described in Lemma,
10, we get the analogue of Theorem 3.

Theorem 11. Let S be a solid in R3 that is starlike with respect to some point O in the
interior of S and whose boundary satisfies the hypotheses of Lemma 10. Then S satisfies

n

oV
Zam =4,

=1

where r; is the altitude of the pyramid from O to the base side formed by the smooth surface
of the generalized right pyramid.

If S has an inscribed sphere, r; = r for all ¢, and dd_y = A. For any convex polyhedron
S with n faces and O in its interior, if r; is the perpendicular distance from O to the plane
containing face 05;, then

Also, Theorem 4 can be extended to R? by a simple modification of its proof and noting
that Tong’s result in R? is r = 3V/A.

Exercise 3. Show that 23:1 g—x = A for a right circular cylinder of radius r1 and height
r9 + 73.

Example 1. Suppose n right circular cylinders, all having radius r, have their axes copla-
nar and concurrent. The possible solids, call them planar multi-cylinders, formed by the
intersection of these cylinders and/or half-cylinders (half-cylinders have a D-shaped cross
section with the straight side of the D vertical) include the convex shapes which can be
made with the toy ODD BALLS®. For all such solids, W, there is an inscribed sphere of
radius r and center O at the intersection of the axes, and we have

av

— = A.
dr

If n = 2 and the axes intersect at right angles, the solid is the bicylinder studied by Hall’s

class (see also [2]), and the formulas are

16
= —’r‘3

3 and A=1672

Vv

Formulas for other cases are left to the reader, but remember, the surface area is easily
found once you have the volume.



Remark. The Archimedean property of the bicylinder also holds for any planar multi-
cylinder and its circumscribed prism. Because both the multi-cylinder W and its circum-
scribed prism P have the same inscribed sphere of radius r, the theorem gives us that

1 1
VW = gr AW and Vp = gr Ap
from which it is clear that
Yw _ Aw
Vp  Ap’

To show that these ratios are %, we will use a modification of the method in [2] for finding
the surface areas of the pieces of the cylinders. Consider a wedge cut from a cylinder of
radius r by a plane perpendicular to the axis and another plane intersecting the first plane
on the axis at an angle . In [2], o = §. Then the surface cut off from the cylinder by these
two planes has area

™r m
/ r tan o sin (—) du = 2r? tan a.
0 r

The faces of the circumscribing prism contained in the two intersecting planes will be in the
interior of the multi-cylinder, so their areas are not required. The areas of the other three
faces of the prism circumscribing the wedge are

1
Ap = (2r)(r tana) + 2 <§> r(r tan o) = 3r? tan .

Thus, the ratio of the surface areas is % The ratio is % for any multi-cylinder because any
multi-cylinder can be decomposed into a finite number of these wedges.

Exercise 4. Show that ‘fi—‘; = A for the orthogonal tricylinder formed by intersecting three
cylinders with radius r and concurrent mutually perpendicular axes.

Theorem 12. Let P be a n-faced polyhedron that is starlike with respect to a point T in
the interior of P such that P can be “triangulated” into n pyramids of equal volume with
bases the faces of the polyhedron and opposite vertex T. If r; is the distance from T to the
ith face of P and r is the harmonic mean of ri,...,ry, then

av

P A.
Example 2. Let S be a cylinder of radius r; and height 2ry. Let T be the point on
the axis of S that is equidistant from the bases. This forms two cones of equal volume
%71’7"%7‘2 inside the cylinder by connecting 7" with each base. Slicing the cylinder with two
mutually orthogonal planes whose intersection is the axis of S, the remaining interior of S is
“triangulated” into four wedges, also of volume lwr%rg. Then by Theorem 12, dV/dr = A,

3
where r = (3ri172)/(r1 + 2r3).

4 Areas For Further Investigation

Just as all the results in R? carry over to R3, there are R" analogues of the R3 results
(see [1],[4]). However, Theorems 7 and 9 for R® have no counterparts in R2, and it seems
reasonable that there should be new theorems in R” that have no analogues in R*~!. This
is an area that could be further investigated.
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