REMARK ON THE HIGHER ORDER SCHWARZIAN DERIVATIVES FOR CONVEX UNIVALENT FUNCTIONS

MICHAEL DORFF AND J. SZYNAL

Abstract

We observe that in contrast to the class S, the extremal functions for the bound of higher order Schwarzian derivatives for the class S^{c} of convex univalent functions are different. We prove the sharp bound for three first consecutive derivatives.

Let S denote the class of holomorphic and univalent functions in the unit disk $\mathbb{D}=\{z:|z|<1\}$ of the form

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots, z \in \mathbb{D}
$$

and $S^{c} \subset S$ the class consisting of convex functions.
Let

$$
S(f)(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}, z \in \mathbb{D}
$$

denote the Schwarzian derivative for f, and let the higher order Schwarzian derivative be defined inductively (see [5]) as:

$$
\begin{align*}
\sigma_{n+1}(f) & =\left(\sigma_{n}(f)\right)^{\prime}-(n-1) \sigma_{n}(f) \cdot \frac{f^{\prime \prime}}{f^{\prime}}, n \geq 4 \tag{1}\\
\sigma_{3}(f) & =S(f) .
\end{align*}
$$

In [5] it was proved that the upper bound for $\left|\sigma_{n}(f)\right|, f \in S$ is attained for the Koebe function for each $n=3,4, \ldots$.

In this note we show that situation is different when we deal with the class of convex univalent functions. Because of linear invariance of the class S^{c} one can restrict the considerations to $\sigma_{n}(f)(0):=S_{n}$. We have the following

Theorem 1. If $f \in S^{c}$, then the following sharp estimates hold:

$$
\begin{aligned}
& \left|S_{3}\right|=\left|6\left(a_{3}-a_{2}^{2}\right)\right| \leq 2 \\
& \left|S_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 4 \\
& \left|S_{5}\right|=24\left|5 a_{5}-20 a_{4} a_{2}-9 a_{3}^{2}+48 a_{3} a_{2}^{2}-24 a_{2}^{4}\right| \leq 12
\end{aligned}
$$

The extremal functions (up to rotations) have the form

$$
\begin{equation*}
f_{n}(z)=\int_{0}^{z}\left(1-t^{n-1}\right)^{-\frac{2}{n-1}} d t, n=3,4,5, \tag{2}
\end{equation*}
$$

respectively.

Proof. From (1) one can easily find

$$
\begin{align*}
& \sigma_{4}(f)=\frac{f^{\prime \prime \prime \prime}}{f^{\prime}}-6 \frac{f^{\prime \prime \prime} f^{\prime \prime}}{f^{\prime 2}}+6\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{3} \\
& \sigma_{5}(f)=\frac{f^{\prime \prime \prime \prime \prime}}{f^{\prime}}-\frac{10 f^{\prime \prime \prime \prime} f^{\prime \prime}}{f^{\prime 2}}-6\left(\frac{f^{\prime \prime \prime}}{f^{\prime}}\right)^{2}+48 \frac{f^{\prime \prime \prime} f^{\prime \prime 2}}{f^{\prime 3}}-36\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{4} \tag{3}
\end{align*}
$$

Note that in [5] there are two misprints in the last formula.
Therefore we have from (3):

$$
\begin{align*}
& S_{3}=6\left(a_{3}-a_{2}^{2}\right) \\
& S_{4}=24\left(a_{4}-3 a_{2} a_{3}+2 a_{2}^{3}\right) \tag{4}\\
& S_{5}=24\left(5 a_{5}-20 a_{4} a_{2}-9 a_{3}^{2}+48 a_{3} a_{2}^{2}-24 a_{2}^{4}\right) .
\end{align*}
$$

We are going to use the connection of the class S^{c} and functions with positive real part in \mathbb{D}, as well as the functions satisfying the Schwarz lemma condition.

Namely we have

$$
\begin{equation*}
f \in S^{c} \Leftrightarrow 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p(z)=\frac{1+\omega(z)}{1-\omega(z)}, z \in \mathbb{D} \tag{5}
\end{equation*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots, \operatorname{Re}\{p(z)\}>0, z \in \mathbb{D}$ (i.e., $p \in P$, the class of functions with positive real part) and $\omega(z)=c_{1} z+c_{2} z^{2}+\cdots,|\omega(z)|<1, z \in \mathbb{D}$ (i.e., $\omega \in \Omega$, the class of Schwarz functions).

From (5) we find

$$
S_{3}=2 c_{2}
$$

and because $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$,

$$
\left|S_{3}\right| \leq 2
$$

which is as well the well-known result of Hummel [1]. The extermal function is

$$
f_{3}(z)=\int_{0}^{z} \frac{d t}{1-t^{2}}=\frac{1}{2} \log \frac{1+z}{1-z}
$$

The functional S_{4} has a special form of the functional $\left|a_{4}+s a_{2} a_{3}+u a_{2}^{3}\right|, u, s \in \mathbb{R}$ which was estimated sharply for each $s, u \in \mathbb{R}$ in [4] and therefore the result follows by taking $s=-3, u=2$ in Theorem 1 in [4].

The extremal function is determined by taking $\omega(z)=z^{3}$ in (5) which gives (2). Finally in order to get the bound for $\left|S_{5}\right|$ which is complicated we transform it to the class Ω of Schwarz functions $\omega(z)$.

By equating the coefficients in (5) one can find the relations:

$$
\begin{aligned}
& a_{2}=c_{1} \\
& a_{3}=\frac{1}{3}\left(c_{2}+3 c_{1}^{2}\right) \\
& a_{4}=\frac{1}{6}\left(c_{3}+5 c_{1} c_{2}+6 c_{1}^{3}\right) \\
& a_{5}=\frac{1}{10}\left(c_{4}+\frac{14}{3} c_{3} c_{1}+\frac{43}{3} c_{2} c_{1}^{2}+2 c_{2}^{2}+10 c_{1}^{4}\right),
\end{aligned}
$$

which transform S_{5} as given by (4) to a nicer form

$$
\begin{equation*}
S_{5}=12\left(c_{4}-2 c_{3} c_{1}+c_{2} c_{1}^{2}\right) \tag{6}
\end{equation*}
$$

Now we can try to estimate (6) by the use of the Caratheodory inequalities applied to the class Ω as it was done in [4]. However, this leads to very complicated calculations. But one can observe that within the class Ω the functional $\mid c_{4}-2 c_{3} c_{1}+$ $c_{2} c_{1}^{2} \mid$ and $\left|c_{4}+2 c_{3} c_{1}+c_{2} c_{1}^{2}\right|$ have the same upper bound, because if $\omega(z) \in \Omega$, then $\omega_{1}(z)=-\omega(-z) \in \Omega$.

On the other hand, comparing the coefficients p_{k} and c_{k} in (5) one gets

$$
\begin{aligned}
& p_{1}=2 c_{1}, \\
& p_{2}=2\left(c_{2}+c_{1}^{2}\right) \\
& p_{3}=2\left(c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right) \\
& p_{4}=2\left(c_{4}+2 c_{1} c_{2}+c_{2}^{2}+3 c_{1}^{2}+c_{1}^{4}\right)
\end{aligned}
$$

from which we obtain that

$$
2\left(c_{4}+2 c_{3} c_{1}+c_{1}^{3}\right)=p_{4}-\frac{1}{2} p_{2}^{2}
$$

Leuthwiler and Schober [3] gave the precise bound for $\left|p_{4}-\frac{1}{2} p_{2}^{2}\right| \leq 2$, which implies that $\left|c_{4}+2 c_{3} c_{1}+c_{1}^{3}\right|=\left|c_{4}-2 c_{3} c_{1}+c_{1}^{3}\right| \leq 1$. This completes the proof. The extremal function is obtained by taking $\omega(z)=z^{4}$ in (5).

Note that writing S_{5} with the coefficients of p_{k} leads to another "bad" expression.

Remark. We conjecture that for every $n=6, \ldots$ the maximal value of $\left|S_{n}\right|$ is attained by the function given by (2).

Remark. The general approach to the bound of S_{4} or S_{5} would lead within the class P to consideration of functions of the form $p(z)=\sum_{k=1}^{n} \lambda_{k} \frac{1+z e^{-i \theta}}{1-z e^{-i \theta}}, n \leq$ 4 or 5 , which is very difficult to handle because it involves long and tedious calculations.

Remark. One can observe that the bound for $\left|\sigma_{n}(f)\right|$ given in [5] follows directly from the formula (1) in [5] and the result of R. Klouth and K.-J. Wirths [2].

References

[1] J.A. Hummel, A variational method for starlike functions, Proc. Amer. Math. Soc., 9 (1958), 82-87.
[2] R. Klouth and K.-J. Wirths, Two new extremal properties of the Koebe-function, Proc. Amer. Math. Soc., 80 (1980), no. 4, 594-596.
[3] H. Leutwiler and G. Schober, Toeplitz forms and the Grunsky-Nehari inequalities, Michigan Math. J. 20 (1973), 129-135.
[4] D.V. Prokhorov and J. Szynal, Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie Skłodowska Sect. A 29 (1981), 223-230.
[5] E. Schippers, Distortion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc., 128 (2000), no. 11, 3241-3249.

Department of Mathematics, Brigham Young University, Provo, UT 84602, USA
E-mail address: mdorff@math.byu.edu
Department of Applied Mathematics, Faculty of Economics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland

E-mail address: jsszynal@golem.umcs.lublin.pl

