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Landau’s Theorem for Planar Harmonic Mappings

Michael Dorff and Maria Nowak

To Walter Hengartner

Abstract. Landau gave a lower estimate for the radius of a schlicht disk cen-
tered at the origin and contained in the image of the unit disk under a bounded
holomorphic function f normalized by f(0) = f ′(0)− 1 = 1. Chen, Gauthier,
and Hengartner established analogous versions for bounded harmonic func-
tions. We improve upon their estimates.
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1. Introduction

The classical Landau Theorem for bounded holomorphic functions states that
if f is a holomorphic function in the unit disk D with f(0) = 0, f ′(0) = 1, and
|f(z)| < M for z ∈ D, then f is univalent in the disk |z| < ρ0 with

ρ0 =
1

M +
√
M2 − 1

,

and f(|z| < ρ0) contains a disk |w| < R0 with

R0 = Mρ2
0.

This result is sharp (see [3, 7]). Furthermore, for holomorphic functions in D with
the only restriction that f ′(0) = 1, there is the Bloch Theorem which asserts the
existence of a positive constant b such that f(D) contains a schlicht disk, that is,
a disk of radius b which is the univalent image of some region in D. The Bloch
constant is defined as the supremum of all such b (see [6] and [5]).

Harmonic mappings can be regarded as generalizations of holomorphic functions.
A function f(z) = u(z) + iv(z) defined on a domain G in the complex plane is
a harmonic mapping if and only if f is twice continuously differentiable and
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∆f = 4fzz̄ = 0. If G is simply connected, then f can be written as f = h + g,
where h and g are holomorphic on G.

Chen, Gauthier and Hengartner [4] showed by giving an example that the Bloch
Theorem does not hold for normalized harmonic functions. However, they did
obtain a Bloch Theorem for open planar harmonic mappings and two versions
of the Landau Theorem for harmonic mappings. In this paper we give slightly
better results for these Landau Theorems. The proofs contained in Section 2
rely on some results obtained in [4] while the proofs in Section 3 are based on
coefficient estimates given in Lemma 3.

2. Versions of Landau Theorems for harmonic functions

Let f be a harmonic function in the unit disk D. Then f = h+ g, where g and h
are holomorphic on D. For such f , define

Λf = max
0≤θ≤2π

|fz + e−2iθfz̄| = |fz|+ |fz̄| = |h′|+ |g′|

and

λf = min
0≤θ≤2π

|fz + e−2iθfz̄| =
∣∣|fz| − |fz̄|∣∣ =

∣∣|h′| − |g′|∣∣.
The Jacobian of f is given by

Jf = |fz|2 − |fz̄|2 = |h′|2 − |g′|2.
Note that |Jf | = Λfλf . It is known [8] that a harmonic mapping is locally
univalent in D if and only if its Jacobian does not vanish anywhere in D.

The following Schwarz Lemma for harmonic mappings is proved in [4].

Theorem A (Schwarz Lemma). Let f be a harmonic mapping of the unit disk D
such that f(0) = 0 and f(D) ⊂ D. Then

Λf (0) ≤ 4

π
,(1)

Λf (z) ≤
8

π(1− |z|2)
, for z ∈ D,(2)

|f(z)| ≤ 4

π
arctan |z| ≤ 4

π
|z|, for z ∈ D.(3)

For r > 0 let Dr denote the disk with center at the origin and radius r. We will
use the following result obtained in [4]:

Theorem B (Chen, Gauthier, Hengartner). Let f be a harmonic mapping of
the unit disk D such that f(0) = 0, λf (0) = 1 and Λf (z) ≤ Λ for z ∈ D. Then f
is univalent on a disk Dρ0 with

ρ0 =
π

4(1 + Λ)
,
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and f(Dρ0) contains a schlicht disk DR0 with

R0 =
π

8(1 + Λ)
.

Now we can prove the following version of a Landau Theorem for harmonic
mappings.

Theorem 1. Assume that f is a harmonic mapping of D such that f(0) = 0,
Jf (0) = 1 and |f(z)| ≤M for z ∈ D. Then f is univalent in the disk Dr1 where

r1 =
π3

4
√

2(π2 + 64M2)

and f(Dr1) contains a schlicht disk DR1, where

R1 =
π4

32
√

2M(π2 + 64M2)
.

Proof. If we define

F (z) =

√
2f
(
z√
2

)
λf (0)

, z ∈ D,

then λF (0) = 1. By Theorem A,

(4)
1

λf (0)
= Λf (0) ≤ 4M

π
.

Hence

ΛF (z) =
Λf

(
z√
2

)
λf (0)

≤
16M
π

λf (0)
≤ 64M2

π2
.

Thus, using Theorem B, we get that F is univalent in the disk

D :=

{
z ∈ C : |z| < π3

4(π2 + 64M2)

}
and F (D) contains the schlicht disk |w| < π3/[8(π2 +64M2)]. Consequently, f is
univalent in Dr1 and using (4), we find that f(Dr1) contains a schlicht disk DR1 .

In a much the same way one can obtain a second Landau Theorem.

Theorem 2. Assume that f is a harmonic mapping of D such that f(0) = 0,
λf (0) = 1 and |f(z)| ≤M for z ∈ D. Then f is univalent in the disk Dr2 where

r2 =
π2

4
√

2(π + 16M)

and f(Dr2) contains a schlicht disk DR2, where

R2 =
π2

8
√

2(π + 16M)
.
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Remark 1. It is known that if f is analytic in D, f(0) = 0, f ′(0) = 1 and
|f(z)| ≤ M , then M ≥ 1. Moreover, the example f(z) = z shows that 1 is
the best constant. Note that if f is harmonic in D, f(0) = 0, Jf (0) = 1 and
|f(z)| ≤M , then M ≥ π/4. Indeed, by (1) in Theorem A we get

1 = |a1|2 − |b1|2 ≤ |a1|2 ≤ Λ2
f (0) ≤

(
4

π

)2

M2,

which implies that M ≥ π/4. If we require that f(0) = 0,Λf (0) = 1 and
|f(z)| ≤ M , then also M ≥ π/4 and in this case the constant π/4 cannot be
improved as shown by the function

f(z) =
1

2
ln

(
1 + z

1− z

)
− 1

2
ln

(
1 + z

1− z

)
which maps D onto the open interval with endpoints −iπ/4 and iπ/4. This func-
tion also shows that the normalization Λf (0) = 1 does not imply the existence
of a schlicht disk for bounded harmonic functions.

Remark 2. In [4], Chen, Gauthier, and Hengartner proved similar theorems
with different values for ri and Ri. In particular, they established the results for

R1 =
π4

512mM3
,

and

R2 =
π2

32mM
,

where m = (11 + 3
√

13)(
√

4−
√

13)/2 ≈ 6.85. Our values for R1 and R2 are
slightly larger for all M ≥ 1. Our result can be improved somewhat by replacing√

2 with 1/r in F (z) and finding the value of r that maximizes the new ri
and Ri functions. This r-value depends upon M but is always less than 0.64 for
M ≥ π/4. However, these computations are messy and the improvements are
not very significant especially in light of Theorems 4 and 5.

3. Main results

Recall that the Bloch space B of D consists of functions h analytic in D and such
that

‖h‖B = sup{(1− |z|2)|h′(z)| : z ∈ D} <∞.
Let L∞(D) denote the set of all measurable and bounded functions on D. It is
well known that B = P (L∞(D)), where P is the Bergman projection given by

PF (z) =

∫
D

F (w)

(1− wz)2
dσ(w), z ∈ D.

Here dσ denotes the normalized area measure on D (see [2, p. 13] or [9]).
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If f = h+ g is harmonic on D with |f(z)| ≤M , then h, g ∈ B. Indeed, assuming
that h(0) = g(0) = 0 we get

(5) h(z) = Pf(z) =

∫
D

f(w)

(1− wz)2
dσ(w), z ∈ D,

and

g(z) = Pf(z) =

∫
D

f(w)

(1− wz)2
dσ(w), z ∈ D.

It is known that the coefficients of a Bloch function are bounded (see [1]). The
following lemma yields coefficient estimates for the functions h and g in the case
when f = h+ ḡ or Λf is bounded on D.

Lemma 3. Assume that f = h+ḡ with h(z) =
∑∞

n=1 anz
n and g(z) =

∑∞
n=1 bnz

n

for z ∈ D.

(a) If |f(z)| ≤M for z ∈ D, then

|an|, |bn| ≤ 2M, n = 1, 2, . . . .

(b) If Λf (z) ≤ Λ for z ∈ D, then

|an|+ |bn| ≤
4Λ

n+ 3
, n = 2, 3, . . . .

Proof. Differentiating under the integral sign in (5) gives

h(n)(z) =

∫
D

(n+ 1)!w nf(w)

(1− wz)n+2
dσ(w), n = 1, 2, . . . .

Consequently,

|an| =
|h(n)(0)|
n!

= (n+ 1)

∣∣∣∣∫
D

f(w)w n dσ(w)

∣∣∣∣
≤ M(n+ 1)

∫
D

|w n| dσ(w) =
2M(n+ 1)

n+ 2
< 2M.

Clearly, the same estimates hold for the Taylor coefficients of g.

To prove (b), define, for any real α,

Fα(z) = h(z) + eiαg(z), z ∈ D.

By assumption,

|F ′α(z)| ≤ Λ, z ∈ D.
If a function k, holomorphic in D, is such that k(0) = k′(0) = 0 and (1−|z|2)k′(z)
is an integrable function with respect to dσ, then

k(z) =

∫
D

(1− |w|2)k′(w)

w(1− zw)2
dσ(w), z ∈ D
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(see [p. 57][9]). Applying this formula to the function Fα − F ′α(0) and differenti-
ating under the integral sign yields

F (n)
α (z) = (n+ 1)!

∫
D

(1− |w|2)F ′α(w)w n−1

(1− zw)n+1
dσ(w), z ∈ D, n = 2, 3, . . . .

By assumption we get∣∣an + eiαbn
∣∣ ≤ (n+ 1)

∫
D

(1− |w|2)Λ|w|n−1 dσ(w) = Λ
4

n+ 3
,

which implies (b).

Observe also that the fact that h, g ∈ B follows directly from (2). Since for z ∈ D

|h′(z)|, |g′(z)| ≤ Λf (z) ≤
8

π(1− |z|2)
,

we see that ‖h‖B, ‖g‖B ≤ 8/π.

Now we state our main results.

Theorem 4. Assume that f is a harmonic mapping of D such that f(0) = 0,
Jf (0) = 1 and |f(z)| ≤M for z ∈ D. Then f is univalent in the disk Dr1, where

r1 = 1− 4M√
π + 16M2

,

and f(Dr1) contains a schlicht disk DR1 with

R1 =
π

4M
+ 8M − 8M

√
1 +

π

162M2
>

π2

162M3
− π3

2 · 163M5
.

Proof. Let f = h + g , where h(z) =
∑∞

n=1 anz
n and g(z) =

∑∞
n=1 bnz

n are
analytic in D. It follows from (1) that

|a1| − |b1| = λf (0) =
Jf (0)

Λf (0)
≥ π

4M
.

For z1 6= z2 in Dr we have

|f(z1)− f(z2)| =

∣∣∣∣∫
[z1,z2]

fz(z)dz + fz̄(z) dz

∣∣∣∣ =

∣∣∣∣∫
[z1,z2]

h′(z) dz + g′(z) dz

∣∣∣∣
≥
∣∣∣∣∫

[z1,z2]

h′(0) dz + g′(0) dz

∣∣∣∣
−
∣∣∣∣∫

[z1,z2]

(h′(z)− h′(0)) dz + (g′(z)− g′(0)) dz

∣∣∣∣
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≥ λf (0)|z1 − z2|

−
∣∣∣∣∫

[z1,z2]

(h′(z)− h′(0)) dz

∣∣∣∣− ∣∣∣∣∫
[z1,z2]

(g′(z)− g′(0)) dz

∣∣∣∣
≥ π

4M
|z1 − z2|

−|h(z2)− h(z1)− h′(0)(z1 − z2)|
−|g(z2)− g(z1)− g′(0)(z1 − z2)|

=
π

4M
|z1 − z2| −

∣∣∣∣∣∑
n≥2

an(z2
n − z1

n)

∣∣∣∣∣−
∣∣∣∣∣∑
n≥2

bn(z2
n − z1

n)

∣∣∣∣∣
=

π

4M
|z1 − z2|

−|z1 − z2|
∑
n≥2

(|an|+ |bn|)
∣∣z1

n−1 + z1
n−2z2 + · · ·+ zn−1

2

∣∣
≥ π

4M
|z1 − z2| − |z1 − z2|

∑
n≥2

(|an|+ |bn|)nrn−1.

Now, using Lemma 3 (a) we obtain

|f(z1)− f(z2)| ≥ π

4M
|z1 − z2| − 4M |z1 − z2|

∑
n≥2

nrn−1

=
π

4M
|z1 − z2| − 4M |z1 − z2|

2r − r2

(1− r)2
.

Finally, observe that r1 is a solution of the equation

π

4M
= 4M

2r − r2

(1− r)2

and
π

4M
> 4M

2r − r2

(1− r)2
,

if 0 < r < r1. This shows that f(z1) 6= f(z2), if z1 6= z2 ∈ Dr1 .

Furthermore since f(0) = 0, we have

|f(z)| ≥ |a1z + b1z| −

∣∣∣∣∣
∞∑
n=2

anz
n + bnz

n

∣∣∣∣∣ ≥ πr1

4M
− 4M

r1
2

1− r1

= R1,

where

R1 =
π

4M
+ 8M − 8M

√
1 +

π

16M2
.

Finally, note that the inequality stated in the theorem follows from
√

1 + x < 1 +
1

2
x− 1

8
x2 +

1

16
x3, x > 0.
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Using a similar proof as for the previous theorem, we get the following result.

Theorem 5. Assume that f is a harmonic mapping of D such that f(0) = 0,
λf (0) = 1 and |f(z)| ≤M for z ∈ D. Then f is univalent in the disk Dr2 where

r2 = 1− 2
√
M√

1 + 4M

and f(Dr2) contains a schlicht disk DR2, where

R2 = 8M + 1− 8M

√
1 +

1

4M
>

1

16M
− 1

128M2
.

Remark 3. For all M ≥ π/4 the values for ri and Ri in Theorems 4 and 5 are
better than the results obtained in [4] and in our Theorems 1 and 2.
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