Homework 3, due September 13
(1) Compute $\operatorname{gcd}(455,1235)$ and $\operatorname{gcd}(2415,6909)$ by hand. Find integers x, y, z, w such that $455 x+1235 y=65$ and $2415 z+6909 w=63$.
(2) The Fibonacci numbers are given by $F_{1}=1, F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$. True or false: Any two consecutive Fibonacci numbers are relatively prime. If true, prove it. If false, give a counterexample.
(3) Let a and b be integers. Using the definition of congruence modulo n, prove that $a \equiv b$ $(\bmod n)$ if and only if $a^{2}+b^{2} \equiv 2 a b\left(\bmod n^{2}\right)$.

