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Abstract. We investigate Riemann’s xi function ξ(s) := 1
2s(s − 1)π− s

2 Γ( s2 )ζ(s) (here ζ(s) is
the Riemann zeta function). The Riemann Hypothesis (RH) asserts that if ξ(s) = 0, then
Re(s) = 1

2 . Pólya proved that RH is equivalent to the hyperbolicity of the Jensen polynomials

Jd,n(X) constructed from certain Taylor coefficients of ξ(s). For each d ≥ 1, recent work proves
that Jd,n(X) is hyperbolic for sufficiently large n. Here we make this result effective. Moreover,
we show how the low-lying zeros of the derivatives ξ(n)(s) influence the hyperbolicity of Jd,n(X).

1. Introduction and Statement of Results

We recall the Riemann xi function ξ(s) := 1
2
s(s − 1)π−

s
2 Γ( s

2
)ζ(s) (here ζ(s) is the Riemann

zeta function). Define real numbers γ(n) by the Taylor expansion

(1.1) ψ(z) =
∞∑
j=0

γ(j)

j!
· z2j =: 8ξ

(1

2
+ z
)
.

It is known that γ(n) ≥ 0 for all n ≥ 0 (for example, see Section 4.4 of [2]). For integers d, n ≥ 0,
the degree d Jensen polynomial Jd,n(X) associated to the n-th derivative ξ(n)(s) is

(1.2) Jd,n(X) :=
d∑
j=0

(
d

j

)
γ(n+ j)Xj.

A polynomial with real coefficients is hyperbolic if all of its zeros are real. Expanding on notes
of Jensen, Pólya [10] proved that the Riemann Hypothesis (RH) is equivalent to the hyperbolicity
of Jd,n(X) for all d, n ≥ 0. Since RH remains unproved, some research has focused on proving
hyperbolicity for all n ≥ 0 and small d. Csordas, Norfolk, and Varga [4] and Dimitrov and Lucas
[6] proved hyperbolicity for n ≥ 0 and d ≤ 3. Chasse [3] proved hyperbolicity for d ≤ 2 · 1017

and n ≥ 0.
Recent work [8] provides a complementary treatment. For all d ≥ 1, it is now known that

there is an effectively computable threshold N(d) such that Jd,n(X) is hyperbolic for n ≥ N(d).
Specifically, under a suitable transformation (see (2.2)), the polynomials Jd,n(X) are closely

modeled by the Hermite polynomials Hd(X), where
∑∞

d=0Hd(X)td/d! := eXt−t
2
. Thus for large

n, the Jensen polynomials inherit hyperbolicity from the Hermite polynomials. Our main result
is an effective upper bound for N(d).

Theorem 1.1. If d ≥ 1 and n� e8d/9, then Jd,n(X) is hyperbolic.
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Remark. The proof of Theorem 1.1 actually shows that if d ≥ 1, C > 1, and n�C (32C2+3)
d
4 ,

then Jd,n(X) is hyperbolic. Theorem 1.1 is obtained by choosing C = 1.00001.

These results can be thought of as a proof of the Gaussian Unitary Ensemble (GUE) random
matrix model prediction for the spacing of zeros of ξ(n)(s) as n → ∞ (the “derivative aspect”)
(see [1]). Indeed, the zeros of the Hd(X) satisfy Wigner’s semicircular distribution, as do the
eigenvalues of random Hermitian matrices. In light of this, it is natural to pursue other explicit
relationships between the zeros of ξ(n)(s) and the Jensen polynomials.

For an integer m ≥ 0, let RHm to be the statement that if ξ(m)(s) = 0, then Re(s) = 1
2
. It

is well known that RH = RH0 implies RHm for all m ≥ 1 (see [10]). The ideas of Pólya lead
to the conclusion that ξ(m)(s) satisfies RHm if and only if Jd,n(X) is hyperbolic for d ≥ 1 and
n ≥ m. For T ≥ 0, we define RHm(T ) to be the statement that all zeros ρ(m) of ξ(m)(s) with
|Im(ρ(m))| ≤ T satisfy Re(ρ(m)) = 1

2
. Our second result is a relationship between RHm(T ) and

the hyperbolicity of Jd,n(X) for n ≥ m. This is a modest generalization of the work of Chasse;
we include it for the sake of completeness. In what follows, bxc denotes the usual floor function.

Theorem 1.2. If RHm(T ) is true and d ≤ bT c2, then Jd,n(X) is hyperbolic for all n ≥ m.

Platt [11] has verified RH0(3.06×1010). Therefore, Theorem 1.2 implies the following corollary.

Corollary 1.3. If d ≤ 9.36× 1020, then Jd,n(X) is hyperbolic for all n ≥ 0.

Remark. One can generalize the notion of a Jensen polynomial by replacing the Taylor coeffi-
cients γ(n) with other suitable arithmetic functions in (1.2). Questions of hyperbolicity for such
polynomials can be of great arithmetic interest [8]. While some of the ideas presented here might
apply in other settings, we restrict our consideration and only present the strongest conclusions
for ξ(s) that our methods appear to permit.

In Section 2, we make use of results previously obtained in [8] to determine effective estimates
for the coefficients of Jd,n(X) under a certain normalization (see (2.3)). In Section 3, we prove
Theorem 1.1 using a classical result of Turán. Finally, in Section 4, we prove Theorem 1.2.

2. Renormalized Jensen polynomials

In Section 5 of [8], it was shown that for each integer d ≥ 1, there exists sequences of positive
real numbers

(
A(n)

)
,
(
δ(n)

)
, where δ(n) ∼ 1√

2n
, as well as sequences of real numbers

(
g3(n)

)
,(

g4(n)
)
, . . .

(
gd(n)

)
, such that

(2.1) log
(γ(n+ j)

γ(n)

)
= A(n)j − δ(n)2j2 +

d∑
i=3

gi(n)ji + o
(
δ(n)d

)
,

with gi(n) = O
(
n1−i) = o

(
δ(n)i

)
. These sequences were used to define renormalizations of the

Jensen polynomials1

(2.2) J̃d,n(X) :=
δ(n)−d

γ(n)
Jd,n

(δ(n)X − 1

exp(A(n))

)
.

1In [8], these polynomials were denoted Ĵd,nγ (X).
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We make use of a slight reformulation of these polynomials. Given a non-negative integer n
and degree d, let N := n+ d. We define

(2.3) Ĵd,n(X) :=
γ(N)d−1

γ(N − 1)d ·∆(N)d
Jd,n

(γ(N − 1)

γ(N)
·
(
∆(N)X − 1

))
,

where

(2.4) ∆(N) :=

√
1

2

(
1− γ(N − 2)γ(N)

γ(N − 1)2

)
.

That ∆(N) is real is equivalent to the log-concavity of the γ(n). This log-concavity follows from
the hyperbolicity of degree 2 Jensen polynomials J2,n(X) proven in [4]. Furthermore, (15) and
(18) of [8] imply that

(2.5) ∆(N) ∼ δ(N) ∼ 1√
2N

.

Remark. The polynomials Ĵd,n(X) make use of the Taylor coefficients themselves, instead of the

approximations used in [8]. Lemma 2.2 shows that the degree of Ĵd,n(X)−Hd(X) is ≤ d−3. We
stress that these polynomials enjoy the same asymptotic properties as the renormalized Jensen
polynomials in [8], and so the results therein apply to them mutatis mutandis.

The discussion above assumed d ≥ 1 is a fixed integer. In order to discuss the asymptotic

properties of all the Ĵd,n(X), regardless of the degree, it is convenient to have an extension of
(2.1), where the left hand side is expanded as an infinite convergent power series in j.

Theorem 2.1. There is a sequence of functions {Gm(z)}, analytic for Re(z) > 1, such that for
all positive integers j < N we have

(2.6) log

(
γ(N − j)
γ(N)

)
= −

∞∑
m=1

Gm(N)∆(N)2m−2jm.

Moreover, we have

(2.7) G2(N) = 1 + (1− 3G3(N))∆(N)2 +O
(
∆(N)4

)
.

For m ≥ 2, we have

(2.8) lim
N→∞

Gm(N) =
2m−1

m(m− 1)
.

Proof. Following the notation in [8, Section 4], for Re(z) > 0, we define

F (z) :=

∫ ∞
1

(log t)z t−3/4 θ0(t) dt ,

where θ0(t) :=
∑∞

k=1 e
−πk2t = 1

2
(t−1/2 − 1) + t−1/2θ0(1/t) . Equation (13) of [8] gives

γ(N) =
N !

(2N)!
·

32
(
2N
2

)
F (2N − 2)− F (2N)

22N−1 .

The function F (z) is holomorphic for Re(z) > 0. Therefore, for fixed N > 1, we have that

log
(γ(N−j)

γ(N)

)
has a Taylor expansion in j. By varying N , we find the Taylor coefficents are



4 M. J. GRIFFIN, K. ONO, L. ROLEN, J. THORNER, Z. TRIPP, AND I. WAGNER

themselves values of analytic functions in N . Therefore, the functions Gm(z) can be chosen by
dividing these analytic functions by the corresponding powers of ∆(N) to give (2.6).

Turning to the proof of (2.7), we may combine (2.4) and (2.6) to obtain a power series identity
involving ∆(N) and the Gm(N). Solving for G2(N) immediately gives (2.7).

To prove (2.8), we note that (2.6) clearly converges for j with |j| < N − 1. Thanks to (2.1)
and (2.5), where d can be chosen to be arbitrarily large, as N →∞ we have that G1(N) ∼ A(N)
and G2(N)∆(N)2 ∼ δ(N)2. For the first claim, notice the sign change between (2.1) and (2.6).
Moreover, for m ≥ 2 we have

Gm(N)∆(N)2m−2 ∼ (−1)m+1gm(N).

Using the asymptotics implied by [8, Equation 17] for gm(n), for m ≥ 2 we find that

gm(N) ∼ (−1)m+1

m(m− 1)
N1−m.

Claim (2.8) now follows from (2.5). �

We require precise asymptotic properties for the coefficients of the polynomials Ĵd,n(X). For
convenience, we define the coefficients Ad,k(n) by

(2.9) Ĵd,n(X) =:
d∑

k=0

Ad,k(n)Xd−k.

The following lemma shows that

(2.10) Ad,0(n) = 1, Ad,1(n) = 0, Ad,2(n) = −d(d− 1),

which are the first three coefficients of the Hermite polynomial Hd(X).

Lemma 2.2. Given a non-negative integer n and degree d, then we have that

deg
(
Ĵd,n(X)−Hd(X)

)
≤ d− 3.

Proof. The conclusion follows easily from (2.3) and the original definition

Jd,n(X) = γ(N)Xd + dγ(N − 1)Xd−1 +

(
d
2

)
γ(N − 2)Xd−2 +O(Xd−3).

�

The asymptotic properties of the remaining coefficients are critical in the sequel and are the
content of the next theorem. In order to state the theorem and obtain explicit bounds that
vary simply with k, we will let C > 1 and define NC so that 1

(2C(N−1))1/2 ≤ ∆(N) ≤ 1
N1/2 for all

N ≥ NC , which is possible since ∆(N) ∼ 1
(2N)1/2

.

Theorem 2.3. Assume that d ≥ 4 is a positive integer, that C > 1 is fixed, and that k > 2. If
n is a non-negative integer and N = n+ d, then the following are true.
(1) If k = 2` is even and N > max(`3, NC , 64C2`), then

Ad,k(n) =
(−1)` d!

(d− k)! `!

[
1 + `(`− 1)

(
−2

3
(3`+ 2) + 2`G3 −

`− 2

2
G2

3 −G4

)
·∆(N)2 + E1,k(N)

]
,

where |E1,k(N)| � k6(4C)k∆(N)4.
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(2) If k = 2`+ 1 is odd and N > max(`3, NC , 64C2`), then

Ad,k(n) =
(−1)` d!

(d− k)! `!

[
`
(
G3(N)− 2

)
·∆(N) + E2,k(N)

]
,

where |E2,k(N)| � k4(4C)k∆(N)3.

2.1. Proof of Theorem 2.3. Using the functions Gm(N) given by Theorem 2.1, we define

S(N, j) := exp

( ∞∑
m=2

Gm(N)∆(N)2m−2(j − jm)

)
(2.11)

=:
∞∑
m=0

Qm(N)jm.

Then by (2.6), we have for integers j with 0 ≤ j ≤ N − 1 that

S(N, j) =
γ(N − j)γ(N)j−1

γ(N − 1)j
.

Thanks to (2.3), we may rewrite the coefficients Ad,k(n) as

(2.12) Ad,k(n) =

(
d
k

)
∆(N)−k

k∑
j=0

(−1)k−j
(
k
j

)
S(N, j).

Let sm,k :=
∑k

j=0(−1)k−j
(
k
j

)
jm, so that the the expression above becomes

(2.13) Ad,k(n) =

(
d
k

)
∆(N)−k

∞∑
m=0

sm,kQm(N).

We have the following lemma about the size of the sm,k.

Lemma 2.4. Let sm,k be defined as above. Then sm,k = 0 if m < k, and

sk,k = k!, sk+1,k = k!

(
k + 1

2

)
, sk+2,k = k!

(
k + 2

3

)
3k + 1

4
.

More generally, for i ≥ 1 we have that

sk+i,i = k!

(
k + i
1 + i

)
Pi(k),

where Pi(k) is some polynomial in k of degree i − 1, satisfying Pi(1) = 1 and Pi(k) ≤ ki−1 for
all positive integers k.

Proof. If f(x) is a rational function, the k-th difference
∑k

j=0(−1)k−j
(
k
j

)
f(j) is zero if and

only if f(x) is a polynomial of degree ≤ k. The expressions sm,k are precisely the k-th difference
of the polynomials xm. Thus sm,k = 0 if m < k. We may also see this fact using the generating
function

∞∑
m=0

sm,k
m!
·Xm = (eX − 1)k.
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This expression immediately gives sm,k for m ≤ k. The generating function for the i-th difference
of the

sk+i,k

(k+i)!
is given by

i∑
j=0

(−1)j
(
i
j

)
Xj
(
eX − 1

)k−j
=
(
eX − 1

)k−i(
eX −X − 1

)i
.

Since this expression has degree k + i, we see that
sk+i,k

(k+i)!
is a polynomial in k of degree i. For

i ≥ 1, we observe that si,0 = 0, and si,1 = 1. Thus, we can factor sk+i,k as

sk+i,k = k!
i−1∏
j=0

(k + i− j)
(1 + i− j)

· k · Pi(k) = k!

(
k + i
i+ 1

)
· Pi(k),

where Pi(1) = 1. A short calculation gives the claimed expressions for sk+1,k and sk+2,k.
The assertion that Pi(k) ≤ ki−1 follows by comparing the Taylor coefficients of(

eX − 1

X

)k
=
∞∑
i=0

k · Pi(k)

(i+ 1)!
X i and

ekX − 1

kX
=
∞∑
i=0

ki

(i+ 1)!
X i.

It suffices to show that the coefficients of
(
eX/2−e−X/2

X

)k
never exceed those of e

k
2X−e−

k
2X

kX
. This

follows from the stronger claim that for k ≥ 1 the coefficients of(
eX/2 − e−X/2

X

)(
e

k
2
X − e− k

2
X

kX

)
=
e

k+1
2
X + e−

k+1
2
X − e k−1

2
X − e− k−1

2
X

kX2

never exceed those of e
k+1
2 X−e−

k+1
2 X

(k+1)X
, or equivalently that for positive integers j,

2(k + 1)

(2j)!

((
k + 1

2

)2j

−
(
k − 1

2

)2j
)
≤ 2k

(2j − 1)!

(
k + 1

2

)2j−1

.

This is immediate if 2j ≥
(

(k+1)2

2k

)
. Otherwise we have that 2j ≤ k

2
+ 1, and we expand(

k−1
2

)2j
=
((

k+1
2

)
− 1
)2j

in the left hand side as a binomial. The first few terms are easily seen
to be less than the right hand side, and the bound on j gives us that remaining alternating
terms are strictly decreasing in absolute value and are easily bounded.

�

Now that we have a formula for the sm,k, we only need to find the asymptotics of Qm to find
the desired asymptotics of Ad,k. To do so, we first bound the functions Gm using the explicit
formula for γ(n) given in (16) of [8]. Namely, we have that

(2.14) Gm(N)∆(N)2m−2 = − 1

m(m− 1)Nm−1 −
2(m−N)

m(m− 1)(N − 1)m
+ Em(N),
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where

|Em(N)| < 2N − 2

m!

∂m

∂jm

[
1

L(2N − 2j − 2)
− log(L(2N − 2j − 2))

]
j=0

+
2

(m− 1)!

∂m−1

∂jm−1

[
1

L(2N − 2j − 2)
− log(L(2N − 2j − 2))

]
j=0

− 1

4 ·m!

∂m

∂jm
[L(2N − 2j − 2)]j=0 +

1

2mNm
+

3

2m(N − 1)m

+
1

2 ·m!

∂m

∂jm
[log(K(2N − 2j − 2))]j=0 −

1

m!

∂m

∂jm
[log(β(2N − 2j − 2))]j=0

− (12N + 1)m − (12N)m

mNm(12N + 1)m
+

(24N − 23)m − (24N − 24)m

m(24N − 23)m(N − 1)m
.

Recall that L = L(n) is the solution to n = L
(
πeL + 3

4

)
, K(n) = 2L−2(1 + L) + 3

4
,

b1(n) = 24L4+9L3+16L2+6L+2
24(L+1)3

, and

β(2N − 2j − 2) =
1 + b1(2N−2j−2)

2N−2j−2

1 + b1(2N−2)
2N−2

.

This expression is computed in a similar way as in [8] and the inequality comes from cutting
off the asymptotic expansion for γ and using Stirling’s approximation. We can use Lambert’s
W -function to find an asymptotic expansion for L. Lambert’s W -function is defined as the

solution to z = W (z)eW (z) and has Taylor expansion W (x) =
∑

n≥1
(−n)n−1

n!
xn (see [7], §14.3).

For large x, we have the asymptotic expansion [5]

W (x) = log x− log log x+
log log x

log x
+

(log log x− 2) log log x

2(log x)2
+O

((log log x)3

(log x)3

)
.

We then find that ∣∣∣∣ ∂m∂jm [L(2N − 2j − 2)]j=0

∣∣∣∣ < (m− 1)!

(N − 1)m
,∣∣∣∣∣ ∂m∂jm

[
1

L(2N − 2j − 2)

]
j=0

∣∣∣∣∣ < 2

m(N − 1)m−1L(2N − 2)2
,∣∣∣∣ ∂m∂jm [log(L(2N − 2j − 2))]j=0

∣∣∣∣ < 2

m(N − 1)m−1L(2N − 2)
,∣∣∣∣ ∂m∂jm [log(K(2N − 2j − 2))]j=0

∣∣∣∣ < m!

(N − 1)m
, and∣∣∣∣ ∂m∂jm [log(β(2N − 2j − 2))]j=0

∣∣∣∣ < m!

(N − 1)m
.
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We can bound the above terms in a similar way and reduce the expression to

|Em(N)| < 2

m(m− 1)(N − 1)m−1L(2N − 2)
+

2

m(m− 1)(N − 1)m−1L(2N − 2)2

+
9 + 6m

4m(N − 1)m
+

2

m(N − 1)m+1
.

(2.15)

From our assumptions on NC , it is easy to bound each of the individual summands of (2.14)
and (2.15) to obtain Gm(N)� (2C)m for N ≥ NC , where the bound depends only on the choice
of C and not on m or N . We will omit this dependence on C in the rest of the calculations.

Expanding (2.11) by direct symbolic calculation would yield the main terms for Qm/∆
m, but

the error term would not be explicit in m. We obtain an explicit bound as follows.

Lemma 2.5. Let m and ` be positive integers and N ≥ max(`3, NC) for C > 1 fixed. Then∣∣∣∣Qm`!

∆m

∣∣∣∣� (4C)m``−
1
2
m.

Proof. From (2.11), we obtain

Qm`!

∆m
=

`!

∆m

∑
λ`m

(G̃1∆
2)λ1

λ1!

(−G2∆
2)λ2

λ2!
· · · (−Gm∆2m−2)λm

λm!

=
∑
λ`m

(−1)`(λ)−λ1
`!

λ1!λ2! · · ·λm!
G̃λ1

1 G
λ2
2 · · ·Gλm

m ∆m−2`(λ)+2λ1 ,(2.16)

where G̃1 :=
∑∞

m=2Gm∆2m−4 = 1 + O(∆2), λ is a partition of m, λi is the number of parts
of λ of size i, and `(λ) is the length of the partition. In order to bound the absolute value,

we will simply bound each summand by O
(

(2C)m``−
1
2
m
)

and use that p(m) ≤ 2m. First, we

note that G̃1 → 1 and Gi � (2C)i tells us that G̃λ1
1 G

λ2
2 · · ·Gλm

m � (2C)λ1+2λ2+···+mλm = (2C)m.

Additionally, using that ∆ ≤ N−
1
2 ≤ `−

3
2 , we can obtain

`!

λ1!λ2! · · ·λm!
∆m−2`(λ)+2λ1 ≤ `!

λ2!
`−

3
2
(m−2`(λ)+2λ1) ≤ ``−λ2−

3
2
(m−2`(λ)+2λ1).

Using that m = λ1 + 2λ2 + · · · + mλm and `(λ) = λ1 + · · · + λm, one can see that λ2 + 3
2
(m−

2`(λ) + 2λ1) ≥ 1
2
m, which completes the proof. �

In order to address the main terms for Qm/∆
m, first consider the case when m = 2`. If we

write out the terms with small powers of ∆ in (2.16) and bound the remaining terms, we could
instead obtain

(−1)`Qm`!

∆m
= G`

2 −

(
`G`−1

2

G̃2
1

2!
+ `(`− 1)G4G

`−2
2 + `(`− 1)G3G

`−2
2 G̃1

+ `(`− 1)(`− 2)
G2

3

2!
G`−3

2

)
∆2 +O

(
m6(4C)m∆4

)
.(2.17)
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The m6 comes from taking out a ∆4 in (2.16) when bounding the error. Similarly, when
m = 2`+ 1, we obtain

(2.18)
(−1)`Qm`!

∆m
=
(
G`

2G̃1 + `G3G
`−1
2

)
∆ +O

(
m4(4C)m∆3

)
.

Now, we can rewrite (2.13) using Lemma 2.4 as

(2.19) Ad,k(n) =
(−1)`d!

(d− k)!`!

(
(−1)``!Qk

∆k
+
∞∑
i=1

(
k + i
1 + i

)
(−1)``!Pi(k)Qk+i

∆k

)
,

where ` = bk
2
c. In the separate cases of k = 2` and k = 2` + 1, one can write out the first

few terms of (2.19) and obtain the main terms of the theorem by using the formulas (2.17) and
(2.18) for Qm, the formulas for Pi(k) given in Lemma 2.4, and using the additional estimate
G`

2 = 1 + `(1− 3G3)∆
2 +O(`2∆4), which follows from (2.7).

To complete the proof, one can then bound the remaining terms in (2.19) using the general
bounds in Lemmas 2.5 and 2.4. In the k = 2` case for example, this yields

∞∑
i=4

(
k + i
1 + i

)
ki−1(4C)k+i``−

1
2
(k+i)∆i =

(4C)k

k

∞∑
i=4

(
k + i
1 + i

)
(4Ck`−

1
2 ∆)i.

Note that the term in parentheses is 8C`1/2∆ ≤ 8C`
1
2N−

1
2 < 1, so the sum does converge. We

can interpret this as the remainder to the degree three approximation of

(4C)k+1`−
1
2 ∆x−1

(
(1− x)−k − 1

)
at x = 8C`1/2∆, which will give us the desired error bound. The same method works in the
k = 2`+ 1 case, which finishes the proof of Theorem 2.3.

3. Proof of Theorem 1.1

3.1. Hyperbolicity of Jd,n(X). For each degree d ≥ 1, the Jensen polynomials Jd,n(X) are
hyperbolic for sufficiently large n. This fact was established in [8] as a consequence of a newly
established connection to Hermite polynomials.

The proof of Theorem 1 of [8] shows that these renormalized Jensen polynomials are modeled
by Hermite polynomials Hd(X), which we define (in a non-standard way) as the orthogonal

polynomials for the measure µ(X) = e−X
2/4. Explicitly, the Hd(X) are given by the generating

function

(3.1)
∞∑
d=0

Hd(X) · t
d

d!
= e−t

2+Xt = 1 +Xt+ (X2 − 2) · t
2

2!
+ (X3 − 6X) · t

3

3!
+ . . . ,

or in closed form by Hd(X) :=
∑bd/2c

k=0
(−1)kd!
k!(d−2k)! ·X

d−2k . Since the Hd(X) are well-known to be

hyperbolic, the following theorem is particularly satisfying.

Theorem 3.1. (Theorem 3 of [8]) If d ≥ 1, then

lim
n→+∞

Ĵd,n(X) = Hd(X).

In particular, Jd,n(X) is hyperbolic for all but possibly finitely many n.
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3.2. Proof of Theorem 1.1. To prove Theorem 1.1, we need the following theorem of Turán.

Theorem 3.2. Suppose that G(z) ∈ R[z] has degree n. If real numbers cj are defined by

G(z) =
n∑
j=0

cjHj(z),

and
n−2∑
j=0

2jj!c2j < 2n(n− 1)!c2n,

then the roots of G(z) are real and simple.

Although the Hermite polynomials we have defined are different than those that typically
appear in Turán’s theorem, the result turns out to be the same. In order to apply this theorem,

we first write Ĵd,n(X) in the Hermite basis as

Ĵd,n(X) =
d∑
j=0

cd,n,jHd−j(X).

Using that

Xm =

bm
2
c∑

`=0

m!

`!(m− 2`)!
Hm−2`(X),

we can write the Hermite coefficients in terms of the Ad,k(n) as

(3.2) cd,n,j =

b j
2
c∑

i=0

(d− j + 2i)!

i!(d− j)!
Ad,j−2i(n).

In particular, cd,n,0 = 1 and cd,n,1 = cd,n,2 = 0, so we ultimately can rewrite the Turán condition
in this case as

(3.3)
d∑
j=3

2−j
(d− j)!
(d− 1)!

c2d,n,j < 1.

To prove the theorem, we only need to use (3.3) and find the asymptotics of cd,n,j. We again
have to consider cases. When j = 2`, we can use (3.2), the asymptotics for Ad,2i given in
Theorem 2.3, and the fact that Ad,0 = 1 and Ad,2 = −d(d− 1) to obtain

cd,n,j =
∑̀
i=0

(d− 2i)!

(`− i)!(d− j)!
Ad,2i(n)

=
d!

`!(d− j)!

[∑̀
i=0

(
`
i

)
(−1)i +

∑̀
i=2

(
`
i

)
(−1)iP (i)∆2 +O

(∑̀
i=2

(
`
i

)
i6(4C)2i∆4

)]
,(3.4)

where

P (i) := i(i− 1)

(
−2

3
(3i+ 2) + 2iG3 −

i− 2

2
G2

3 −G4

)
.
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It is clear that the first sum in brackets in (3.4) is 0 for ` ≥ 1. Similarly, since P (i) is a
polynomial of degree 3, the second sum is also 0 when ` ≥ 4. As a result, we can obtain

cd,n,j �
d!

(d− j)!`!
∑̀
i=2

(
`
i

)
i6(4C)2i∆4 � d!

(d− j)!`!
`6(16C2 + 1)`∆4.

We can find the same bound in the case that ` = 2 and ` = 3 by just bounding the main terms
that we obtain. By substituting this in for the even j terms in (3.3) and using that (2`)!/(`!)2 ∼√
π`−

1
2 22`, one finds that the sum over the even terms can be bounded by d

25
2 (32C2 + 3)d∆8. A

similar bound over the odd terms holds as well. Using that ∆8 ∼ N−4, the result follows.

4. Proof of Theorem 1.2

For convenience, we introduce some notation. For 0 < δ < π/2, we define

S(θ, δ) := {z ∈ C× : | arg(z)− θ| ≤ δ}.

We define C(θ, δ) to be the set of entire functions F with the property that there exist a sequence
of complex numbers (βk)k≥1, an integer q ≥ 0, and constants c, σ ∈ C such that

F (z) = czqe−σz
∞∏
k=1

(
1− z

βk

)
,

where
∞∑
k=1

1

|βk|
<∞, βk, σ ∈ S(θ, δ).

Lemma 4.1. Let 0 < δ < π/2. If F ∈ C(θ, δ), then F is locally uniformly approximated by
polynomials, each of whose zeros lie in S(θ, δ), and conversely. Moreover, if m ≥ 1 is an integer
and the m-th derivative F (m) is not identically zero, then F (m) ∈ C(θ, δ).

Proof. The first claim is proved in [9, Chapter VIII]. For the second claim, suppose that F ∈
C(θ, δ) is non-constant. By the first claim, there exists a sequence of nonzero polynomials (gn)
which locally uniformly approximate F , and each zero of gn lies in S(θ, δ). By the Gauss-Lucas
theorem, the zeros of g′n belong to the convex hull of the set of zeros of gn; thus each zero of g′n
lies in S(θ, δ). Since the sequence (g′n) locally uniformly approximates F ′, it follows by the first
claim that F ′ ∈ C(θ, δ). For higher derivatives, we proceed by induction. �

Lemma 4.2. If ψ(m) ∈ C(π, δ), then Jd,m(X) is hyperbolic for d ≤ | sin(δ)|−2.

Proof. Since γ(n) is positive for all n ≥ 0 and the Taylor coefficients of ψ(m) are merely shifts of
8γ(n), the Taylor coefficients of ψ(m) are positive. Hence the lemma follows immediately from
[3, Theorem 3.6] with ϕ = ψ(m). �

Proof of Theorem 1.2. We follow [3]. Let m ≥ 0 be an integer. Suppose that RHm(T ) holds for
some T > 1

2
. Then the zeros of ψ(m) in the rectangle {z ∈ C : |Re(z)| ≤ T, |Im(z)| < 1

2
} are real.

Consequently, the zeros of ψ(m) must lie in S(0, arctan( 1
2T

))∪S(π, arctan( 1
2T

)). Hence the zeros
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of ψ(m) must lie in S(π, 2 arctan( 1
2T

)), and ψ(m) ∈ C(π, 2 arctan( 1
2T

)). We see from Lemma 4.2

that Jd,m(X) is hyperbolic for

d ≤ b| sin(2 arctan( 1
2T

))|−2c =
⌊
T 2 +

1

2
+

1

16T 2

⌋
.

Thus if d ≤ bT c2, then Jd,m(X) is hyperbolic. Since C(θ, δ) is closed under differentiation
per Lemma 4.1, we also have that ψ(m+1) ∈ C(π, 2 arctan( 1

2T
)). Thus by Lemma 4.2 again,

Jd,m+1(X) is hyperbolic for d ≤ bT c2. The theorem now follows by induction. �
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