
DIVISORS OF MODULAR PARAMETRIZATIONS OF ELLIPTIC
CURVES

MICHAEL GRIFFIN AND JONATHAN HALES

Abstract. The modularity theorem implies that for every elliptic curve E/Q there
exist rational maps from the modular curve X0(N) to E, where N is the conductor
of E. These maps may be expressed in terms of pairs of modular functions X(z)
and Y (z) where X(z) and Y (z) satisfy the Weierstrass equation for E as well as a
certain differential equation. Using these two relations, a recursive algorithm can be
used to calculate the q - expansions of these parametrizations at any cusp. Using
these functions, we determine the divisor of the parametrization and the preimage
of rational points on E. We give a sufficient condition for when these preimages
correspond to CM points on X0(N). We also examine a connection between the al-
gebras generated by these functions for related elliptic curves, and describe sufficient
conditions to determine congruences in the q-expansions of these objects.

1. Introduction and statement of results

The modularity theorem [2, 12] guarantees that for every elliptic curve E of con-
ductor N there exists a weight 2 newform fE of level N with Fourier coefficients in
Z. The Eichler integral of fE (see (3)) and the Weierstrass ℘-function together give
a rational map from the modular curve X0(N) to the coordinates of some model of
E. This parametrization has singularities wherever the value of the Eichler integral is
in the period lattice. Kodgis [6] showed computationally that many of the zeros of
the Eichler integral occur at CM points. Peluse [8] later proved several general cases
confirming many of these conjectured zeros using the theory of Hecke operators and
Atkin–Lehner involutions.

In [1], the authors use the modular parametrization of an elliptic curve to give a
harmonic Maass form of weight 3/2 whose Fourier coefficients encode the vanishing
of central L-values and L-derivatives of quadratic twists of the curve. The Birch and
Swinerton-Dyer conjecture asserts that the order of vanishing of the central L-value
of an elliptic curve is the rank of the curve. Kolyvagin [7] confirmed this conjecture
if the order of vanishing is less than 2. Unfortunately, the result of [1] is only fully
constructive if the modular parametrization is holomorphic on the upper half plane.
Otherwise we must remove the singularities, a task which is difficult without knowledge
of their locations.

For a modular function F for some subgroup Γ of SL2(Z), we consider the modular
polynomial of F

(1) ΦF (x) :=
∏

γ∈Γ\SL2(Z)

(
x− F (γz)

)
=
∑

Ai(z)xi.

One of our goals is to calculate the minimal divisor of (1) for F which are rational in
terms of the coordinates functions (X(z), Y (z)) of a given modular parametrization of
E, chosen so as to have poles at the divisor of the parametrization. We may calculate
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2 MICHAEL GRIFFIN AND JONATHAN HALES

the divisor by calculating the divisor of the coefficient functions Ai(z). In order to
calculate the product in (1) we need the expansion of F at each of the cusps of Γ.
Algorithms for calculating the coefficients of X(z) and Y (z) at the cusp infinity are
described by Cremona [3], and we include a variation of that method that allows for
the computation of coefficients at any cusp.

Example 1.1. For the elliptic curve

(11a1) E : y2 + y = x3 − x2 − 10x− 20

one can calculate that E has (5, 5) and (5,−6) as points of order 5. If we set F (z) =
(X(z)− 5)−1, then F (z) has zeros only when z is an element of the complex lattice
associated to E, and poles only when z is mapped to one of these 5-torsion points.
Computing the divisor of ΦF (X), we find that

X(z) = 5 =⇒ (j(z) + 24729001)(j(z) + 32768) = 0.

If z = 1+
√
−11

2
, then j(z) = −32768. Since j(z) is invariant under the action of SL2(Z)

while F is only Γ0(11) invariant, we look at the Γ0(11)\ SL2(Z) orbit of z to find

z0 =
−11 +

√
−11

55
=⇒

(
X(z0), Y (z0)

)
= (5, 5).

Thus the point z0 is a preimage of the rational point (5, 5), and is a CM point on
X0(11).

The points of X0(N) are in correspondence with pairs (e, c) where e is an elliptic
curve and c ⊂ e is a cyclic subgroup of order N (See Appendix C.13 of [10]). Using this
description, we give a sufficient condition for when a point P lying above a rational
point P on E is a CM point. The proof is given in section 3.

Theorem 1.2. Fix an elliptic curve E/Q of conductor N and P a point on E. Let
P a point on X0(N) that maps to P under some modular parametrization, and which
is in correspondence to the pair (e, c) where e is an elliptic curve over a number field
K. For each m || N , either e admits an m-isogeny defined over K or e has CM by an
order of discriminant D where 0 ≤ −D ≤ 4m and D is a square (mod 4m).

In section 4 we consider the question, given an elliptic curve E, when are the coeffi-
cients of these parametrizations contained in some prime ideal p of a number ring O?
One sufficient condition we give is that the elliptic curves are isogenous, and have con-
gruent coefficients mod p for some prime p lying below p. Another sufficient condition
we provide is a bound similar to Sturm’s bound that implies that every coefficient of
the parametrizations are in p after a certain finite number of coefficients are.

2. Elliptic Curves

Given an elliptic curve E, we denote the periods of E by ω1, ω2, and the period
lattice they generate by ΛE. The Weierstrass ℘ function is defined in terms of ΛE and
a complex variable z as follows:

℘(z,ΛE) :=
1

z2
+
∑
λ∈ΛE
λ 6=0

1

(z + λ)2
− 1

λ2
.
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The ℘-function ℘(z,ΛE) is even as a function of z, and its defining series is abso-
lutely convergent and doubly periodic with periods ω1, ω2. The functions ℘(z,ΛE) and
℘′(z,ΛE) satisfy the relation

(2) ℘′(z,ΛE)2 = 4℘(z,ΛE)3 − g2℘(z,ΛE)− g3,

where
g2 = g2(ΛE) = 60

∑
λ∈ΛE
λ 6=0

(λ)−4

and
g3 = g3(Λ3) = 140

∑
λ∈ΛE
λ 6=0

(λ)−6.

Also associated E is the canonical differential

ω = mfE(z)dz,

where m is the Manin constant and fE is the weight two cusp form associated to E.
The Eichler integral is then defined as

(3) ε(z) =

∫ i∞

z

ω =

∫ i∞

z

mfE(τ)dτ.

The function ε(z) is not modular, but if γ = ( a bc d ) ∈ Γ0(N) acts as usual on the
upper-half plane, then

d

dz

(
ε(γz)− ε(z)

)
=

d

dz
2πi

∫ z

γz

mfE(τ)dτ

= 2πim
(
fE(z)− (cz + d)2fE(z)(cz + d)−2

)
= 0

where the second to last equality follows from the fundamental theorem of calculus
and the modularity of fE. So ε(z) is almost modular, in that the difference ε(γz)−ε(z)
depends only on γ, and not on z. Denote this difference by

C(γ) := ε(γz)− ε(z).

One readily verifies that C : Γ0(N) → mΛE is a group homomorphism. Eichler
and Shimura [4, 9] showed that when the Manin constant is 1, that C is actually an
isomorphism.

For any λ ∈ C such that λ ∈ End(E), we have that λΛE ⊆ ΛE. So it is possible to
define

℘λ(z,ΛE) := λ2℘(λz,ΛE) = ℘(z,
1

λ
ΛE),

where the extra factor λ2 normalizes ℘λ to have a leading coefficient of q−2 in its
Fourier expansion. Similarly,

℘′λ(z,ΛE) := λ3℘′(λz,ΛE) = ℘′(z,
1

λ
ΛE).

With this notation we define

Xλ(z) = m2℘λ(ε(z),ΛE)− a2
1 + 4a2

12
,

Yλ(z) =
m3

2
℘′λ(ε(z),ΛE)− a1m

2

2
℘λ(ε(z),ΛE) +

a3
1 + 4a1a2 − 12a3

24
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for E given in general Weierstrass form with the convention that if the subscript λ is
omitted we take λ = 1. Note that if E is given in Wierstrass short form then

Xλ(z) := m2℘λ(ε(z),ΛE) Yλ(z) :=
m3

2
℘′λ(ε(z),ΛE).

By construction Xλ(z), Yλ(z) satisfy the Wierstrass equation for the elliptic curve.
Importantly, Xλ(z) and Yλ(z) are modular over Γ0(N) since

℘λ(ε(γz),ΛE) = ℘λ(ε(z) + C(γ),ΛE) = ℘λ(ε(z),ΛE)

where the final equality holds because λC(γ) ∈ ΛE. A similar calculation holds for
Yλ(z) as well as the parametrizations for the general form.

3. Expansions at Other Cusps

The first step in computing the coefficient functions Ai in (1) is to compute the
q-expansions of each of the factors (x−F (γz)) for x a formal variable and γ ∈ SL2(Z).
Since we are interested specifically in F that are rational functions of Xλ(z) and Yλ(z)
it suffices to calculate the q-expansions for X(γz) and Y (γz). These coefficients are
determined by two relations,

(4) qX ′ = (2Y + a1X + a3)fE

known as the invarient differential of E(see section III of [10]), and the elliptic curve
relation

(5) Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

A recursive algorithm was given by Cremona [3] using these two relations to calculate
the expansions of X(z) and Y (z). Acting on (3) and (4) by a matrix γ ∈ SL2(Z) gives
relations that allow us to recursively calculate the coefficients of modular parametriza-
tions around cusps other than infinity. There are, however, a few complications we
examine below.

If we let qN(z) = e
2πi
N
z, we can write the expansions of the modular parametrizations

at a cusp ρ with width w as Xλ(γz) =
∑∞

n=−2 bnq
n
w and Yλ(γz) =

∑∞
n=−3 dnq

n
w. Note

that bi, di might be zero for i = −3,−2,−1 if neither X nor Y have poles at ρ. By
examining the first few terms if the Laurent series of ℘λ and ℘′λ and evaluating them at
ε(γz) we can calculate b−2 and d−3. So our inductive set up will be to assume that we
know the bi coefficients for −2 ≤ i ≤ n− 1 and the dj coefficients for −3 ≤ j ≤ n− 2
and use this information to calculate bn and dn−1. Letting cn denote the coefficient of
qnw of fE(γz), relation (3) gives us that

1

w

∞∑
n=−2

nbnq
n
w =

(
2
∞∑

n=−3

dnq
n
w + a1

∞∑
n=−2

bnq
n
w + a3

) ∞∑
n=1

cnq
n
w.

Comparing the coefficients of qnw gives us one linear relation between bn and dn−1

nbn = 2w
n−1∑
k=−3

cn−kdk + a1w

n−1∑
k=−2

cn−kbk + a3wcn.
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Comparing the qn−4
w term in (4) gives us

n−1∑
k=−3

dn−4−kdk + a1

n−4∑
k=−3

bn−4−kdk + a3dn−4 =

n∑
k=−2

n−2−k∑
j=−2

bn−4−k−jbjbk + a2

n−2∑
k=−2

bn−4−jbj + a4bn−4 + a∗6

where a∗6 indicates that this term is present only if n − 4 = 0. This gives a second
linear relation between dn−1 and bn, which allows us to solve for dn−1 and bn uniquely
whenever the determinant of the system is not 0, i.e. when −2nd2

−3 + 6wc1b
2
−2 6= 0.

Supposing that Xλ(z) has a pole at ρ, (so that neither d−3 nor b−2 are 0), then

−2n(d−3)2 + 6wc1(b−2)2 = 0 =⇒ n =
3wc1(b−2)2

(d−3)2
.

So this recursive process will not fail if we can find the first 3wc1(b−2)2

(d2−3)
nontrivial terms

of X(z) and Y (z) via the Laurent series expansions of ℘λ and ℘′λ. Note that when
ρ = ∞, we have that w = c1 = b−2 = d−3 = 1 so that Cremona’s algorithm doesn’t
fail with simply 3 known terms of the Laurent expansion of ℘λ(ε(z)).

However, if there are no poles at ρ, then d−3 = b−2 = 0, and the determinant will be
0 for all n. So when calculating the qw-expansions around cusps without poles, we need
to compare other powers of qw to get information about such systems. Fortunately, we
can simply compare powers of qnw in (3) and (4) to get that a system with determinant
n(2d0 + a1b0 + a3).

Interestingly, this determinant is zero when 2d0+a1b0+a3 = 0, i.e when the constant
terms of the expansions give a point of order 2 on E. This is seen most easily by looking
at (3), and observing that 2d0 +a1b0 +a3 = 0 corresponds to a vertical tangent line on
E. However, this is easily rectified. We first take 2d0 + a1b0 + a3 = 0 as a hypothesis
and compare powers of qnw in (3) and powers of qnw in (4) exactly like the previous case.
The main difference is that since 2d0 + a1b0 + a3 = 0, this gives us a system in the
unknowns bn and dn−1 instead of in terms of bn and dn. So by examining 3 cases we
can effectively calculate the qw-expansions of the modular parametrizations X(z) and
Y (z) around any cusp.

Now that we can efficiently calculate these q-expansions for X(γz), Y (γz) it is pos-
sible to construct

ΦF (x) :=
∏

γ∈Γ0(N)\SL2(Z)

(
x− F (γz)

)
=
∑

Ai(z)xi

where x is a formal variable and F is any rational function in Xλ(z) and Yλ(z). Note
that by construction, the coefficients of ΦF (x) are modular functions which are invari-
ant under the action of SL2(Z), and so are rational functions in Klein’s j-function.

In practice, in order to compute the minimal divisor of ΦF (x) it is computationally
advantageous to compute each of the functions F (γz) and then use symmetric poly-
nomials to calculate the necessary coefficient functions until we locate all the poles of
F .

Example 3.1. Consider the elliptic curve

(26b1) E : y2 + xy + y = x3 − x2 − 3x+ 3.
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The point (1, 0) lies on E and has (1,−2) as its inverse. Then looking at the function

F (z) = Y (z)+2
X(z)−1

, we see that F has a simple pole at the values z ∈ H that map

(X(z), Y (z)) to (1, 0). Note that the conductor of E is 26, and [SL2(Z) : Γ0(26)] = 42.
Calculating the trace of ΦF (or the coefficient A41(z)) we get∑

γ∈Γ0(26)\ SL2(Z)

F (γz) =
−j(z)2 + 54688j(z)− 37627200

j(z)− 54000
.

Testing the 42 cosets of Γ0(26) in SL2(Z) gives us that for z0 = −7+
√
−3

52
, (X(z0), Y (z0)) =

(1, 0). Thus the preimage of the rational point (1, 0) is a CM point on X0(26).

Using this theory we are able to give a condition for when a point P on an elliptic
curve E is the image of a CM point P on the modular curve and prove Theorem 1.2.

Proof. Suppose that m exactly divides N and let P2 = (e2, c2) be the image of P1 =
(e1, c1) under the Atkin-Lehner involution Wm = ( am b

cN dm ) for integers a, b, c, d. The
matrix Wm imposes a rational map from X0(N) to itself, so if e1 is not isomorphic to
e2, then Wm is a rational isogeny of the curves e1 and e2. If e1 is isomorphic to e2

and we write the periods for e1, e2 as ω11, ω12 and ω21, ω22 respectively, then Wm takes
τ1 = ω12

ω11
to τ2 = ω22

ω21
. However, since e1

∼= e2, there must be a matrix A =
(
α β
γ δ

)
in

SL2(Z) such that Wmτ1 = τ2 = Aτ1. This gives a quadratic relation that τ1 satisfies,
namely

(amτ1 + b)(γτ1 + δ) = (ατ1 + β)(cNτ1 + dm).

Expanding and collecting like terms gives

(amγ − cαN)τ 2
1 + (bγ + amδ − cNβ − dmα)τ1 + bδ − dmβ = 0.

The discriminant of this quadratic is

D = (bγ + amδ − cNβ − dmα)2 − 4(amγ − cαN)(bδ − dmβ)

= b2γ2 + a2m2δ2 + c2N2β2 + d2m2α2

+ 2bγamδ − 2bγcNβ − 2bγdmα− 2amδcNβ − 2adm2αδ + 2cNβdmα

− 4(amγbδ − am2dβγ − cNbαδ + cαNdmβ).

We collect like terms and use the fact that det(Wm) = adm2 − cNb = m to get

D = b2γ2 + a2m2δ2 + c2N2β2 + d2m2α2

− 2bγamδ + 2bγcNβ − 2bγdmα− 2amδcNβ + 2adm2αδ − 2cNβdmα

− 4(mαδ −mβγ).

Factoring and using that det(A) = αδ − βγ = 1 gives that

D = (bγ − amδ + cNβ − dmα)2 − 4m.

Thus D is a square mod 4m. Since τ1 is in the upper half plane, we must have that
D < 0. However, since (bγ − amδ + cNβ − dmα)2 is non-negative, it follows that
−4m ≤ D < 0. �

Example 3.2. We return to the curve

(26b1) E : y2 + xy + y = x3 − x2 − 3x+ 3
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of conductor 26 and index 42. Consider the points (1,−2) and (3, 2) with inverses
(1, 0) and (3,−6) on E. Then the functions F and G given by

F (z) =
Y (z)− 0

X(z)− 1
, G(z) =

Y (z) + 6

X(z)− 3

have simple poles for z such that (X(z), Y (z)) = (1,−2) or (3, 2) respectively. We cal-
culate specific coefficient functions of ΦF =

∑
Ai(z)xi and ΦG = Bi(z)xi to determine

the location of these poles in the upper half plane:

A41(z) =
−j(z)2 + 288156 · j(z)− 199626768

j(z)− 287496
,

B40(z) =
j(z)3 − 3214 · j(z)2 + 2726620 · j − 274323456

j(z)− 1728
.

Thus ΦF (z) has poles only when j(z) = 287496, i.e when z is in the SL2(Z) orbit of√
−4, and G(z) has poles only when j(z) = 1728 i.e when z is in the SL2(Z) orbit

of
√
−1. Comparing the actions of the coset representatives of Γ0(26), we find that

z0 := −5+
√
−1

52
satisfies (X(z), Y (z)) = (1,−2), and z1 = 5+

√
−1

13
satisfies (X(z), Y (z)) =

(3, 2).
Examining the action of the Atkin-Lehner involutions W2 and W13, we find that

F2 = F (W2z) , and G2 = G(W2z) have coefficient functions

A40(z) =
−j(z)2 + 3235 · j(z)− 2655936

j(z)− 1728
, B41(z) =

−42 · j(z) + 21954240

j(z)− 287496
,

while F13 := F (W13z) and G13 := G(W13z) have coefficient functions

A41(z) =
−j(z)2 + 288156 · j(z)− 199626768

j(z)− 287496
,

B40(z) =
j(z)3 − 3214 · j(z)2 + 2726620 · j − 274323456

j(z)− 1728
.

Thus since W2 exchanges the poles of F and G, Theorem 1.2 gives that the points z0,
z1 correspond to isogenous elliptic curves on X0(26). Additionally, since W13 fixes z0

and z1, Theorem 1.2 also tells us they are both CM points on X0(26) whose orders
have discriminants that must be squares mod 52. In fact, the minimal polynomial
of z0 is 104z2 − 20z + 1 which has discriminant −16 ≡ 62 mod 52, and the minimal
polynomial for z1 is 13z2 − 10z + 2 which has discriminant −4 ≡ 102 mod 52.

Example 3.3. Theorem 1.2 can also be visualized in the following way. Consider
again the elliptic curve E : y2 + y = x3 − x2 − 10x − 20 of conductor 11, and the
fundamental domain F11 in figure 1 for the congruence subgroup Γ0(11).

This fundamental domain has been constructed by taking SL2(Z) coset represen-
tatives of the form

(
0 −1
1 j

)
for −5 ≤ j ≤ 5, with each j labeled in the corresponding

hypertriangle. The associated newform of E is fE = q − 2q2 − q3 + 2q4 . . . . Taking

complex values z on the boundary of F11 and calculating ε(z) =
∫ i∞
z

mfE(τ)dτ gives
the image in Figure 2. The resulting image tiles the plane in a parallelogram-type pat-
tern, with the same periods as E. The points A,B and C have been labeled at 2/5,
3/5 and 4/5 times the real period of E respectively. They correspond to the points
(5,−6), (5, 5) and (16, 60) on E respectively. The action of W11 interchanges the two
cusps in Figure 2 (∞ located at the origin, and 0 located at the value .2538 . . . on
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Figure 1. fundamental do-
main F11 for Γ0(11)

Figure 2. Eichler integral
over the boundary of F11

the real line which is 1/5 the real period of E). Up to translation by the real period,
we see that W11 interchanges the points A and C but fixes point B. By Theorem
1.2 we conclude that the preimages of the points (5,−6) and (16, 60) on X0(11) give
isogenous elliptic curves, while the preimage of (5, 5) on X0(11) must be a CM point
as we saw in Example 1.1.

4. Congruences Between Generated Algebras

Consider the elliptic curves E1, E2 given by

E1 : y2 + xy + y = x3 + 4x− 6,(14a1)

E2 : y2 + xy + y = x3 − 36x− 70.(14a2)

These curves have coefficients that are congruent mod 8 and interestingly, if we look
at the q-expansions of the row reduced basis elements of Q[X(z), Y (z)], we notice a
similar phenomenon.
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Basis over E1, X = XE1(z), Y = YE1(z) q-expansion

1 1

X(z)− 2 q−2 +q−1 +2q +2q2 +3q3 + · · ·
−Y (z)− 2X(z)− 2 q−3 +2q−1 +5q +4q2 +2q3 + · · ·

X(z)2 + 2Y (z)−X(z) + 2 q−4 −q−1 −2q +8q2 +5q3 + · · ·
−Y (z)X(z)− 3X(z)2 + 2Y (z) + 3X(z)− 2 q−5 −2q −4q2 +18q3 + · · ·
X(z)3 + 3X(z)Y (z)− 5Y (z) + 2X(z)− 6 q−6 −2q−1 +4q −7q2 −6q3 + · · ·

Basis over E2, X = XE2(z), Y = YE2(z) q-expansion

1 1

X(z)− 2 q−2 +q−1 +2q 10q2 −5q3 + · · ·
−Y (z)− 2X(z)− 2 q−3 +2q−1 −3q −4q2 +2q3 + · · ·

X(z)2 + 2Y (z)−X(z)− 14 q−4 −q−1 +14q +29q3 + · · ·
−Y (z)X(z)− 3X(z)2 + 2Y (z) + 3X(z) + 38 q−5 +6q −28q2 −14q3 + · · ·
X(z)3 + 3X(z)Y (z)− 5Y (z)− 22X(z)− 6 q−6 −2q−1 −12q +25q2 +138q3 + · · ·

The coefficients of the q-expansions are also congruent mod 8. This is not simply a
consequence of the congruence of the equations of E1 and E2. For example, the curves

E3 : y2 + xy + y = x3 + x2 − 5x+ 2,(15a3)

E4 : y2 + xy + y = x3 + x2 + 35x− 28.(15a4)

are congruent mod 10, but the q expansions of the X term of their optimal modular
parametrizations are

XE3(z) = q−2 + q−1 + 1 + 2q + 3q2 + q3 + · · · − 6q11 + · · · ,
XE4(z) = q−2 + q−1 + 1 + 2q − 5q2 + 9q3 + · · ·+ 7q11 + · · · .

Comparing the q2 terms shows that any congruence between these two parametriza-
tions must divide 8, and comparing the q11 terms shows that any such congruence
must divide 13. Thus we conclude that there are no nontrivial congruences between
the parametrizations. So when do congruences in the elliptic curve equation give rise
to congruences in the generated algebras?

If we assume that the two elliptic curves E1 and E2 given by

E1 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

E2 : y2 + α1xy + α3y = x3 + α2x
2 + α4x+ α6,

are isogenous, then their period lattices will intersect nontrivially in a lattice Λ3,
corresponding to an elliptic curve E3 with integral model

y2 + β1xy + β3y = x3 + β2x
2 + β4x+ β6.

Thus the difference

g(z) := ℘(z,Λ1)− ℘(z,Λ2)
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is an even, elliptic function with period lattice Λ3. If we let {ri} represent the complex
numbers such that ℘(ri,Λ3) is a zero of g(z) in a fundamental parallelogram of Λ3 and
let {tj} be the values in Λ3 such that ℘(tj,Λ3) is a pole of g(z) (repeated according to
multiplicities) except possibly at the origin (even if the origin is a zero or pole of g),
then the function ∏

i (℘(z,Λ3)− ℘(ri,Λ3))∏
j(℘(z,Λ3)− ℘(tj,Λ3))

is monic, and has the same zeros and poles as g(z) except possibly at 0. However, a
classical arguement shows that the product must have the same zero or pole as g(z)
at 0 as well (see [5] for example). Thus

(6) g(z) = ℘(z,Λ1)− ℘(z,Λ2) = C

∏
i(℘(z,Λ3)− ℘(ri,Λ3))∏
j(℘(z,Λ3)− ℘(tj,Λ3))

for some constant C. Since

℘(z,Λ1)− ℘(z,Λ2) =
g2(Λ1)− g2(Λ2)

20
z2 +

g3(Λ1)− g3(Λ2)

28
z4 + · · ·

we see that

C = C(Λ1,Λ2) =

{
g2(Λ1)−g2(Λ2)

20
if g2(Λ1) 6= g2(Λ2)

g3(Λ1)−g3(Λ2)
28

if g2(Λ1) = g2(Λ2).

With this notation we have the following.

Theorem 4.1. Suppose that E1, E2 are two isogenous elliptic curves over Q. Also
assume that the coordinates of the torsion points of order dividing N in Q are algebraic
integers. Then there is an explicit natural number D(Λ1,Λ2) so that the q-expansion
of XE1 −XE2 is congruent to a constant mod C(Λ1,Λ2)/D(Λ1,Λ2).

Proof. Evaluating equation (6) at ε(z), and adding the appropriate constant to both
sides of the equality gives

XE1(z)−XE2(z) = ℘(ε(z),Λ1) +
a2

1 − 4a2

12
− ℘(ε(z),Λ2)− α2

1 − 4α2

12

= C

∏
i(℘(ε(z),Λ3)− ℘(ri,Λ3))∏
j(℘(ε(z),Λ3)− ℘(tj,Λ3))

+
a2

1 − α2
1 + 4α2 − 4a2

12

= C

∏
iXE3 −Ri∏
j XE3 − Tj

+
a2

1 − α2
1 + 4α2 − 4a2

12

where Ri = ℘(ri,Λ3) − β2
1−4β2

12
and Tj = ℘(tj,Λ3) − β2

1−4β2
12

. The final equality follows

from In fact that XE3 = ℘(z,Λ3) +
β2
1−4β4

12
so that the fraction cancels out of the XE3

term and the Ri or Tj term.
The Tj’s are x-coordinates of torsion points of order dividing N because the poles

of g(z) occur at lattice points of either Λ1 or Λ2. By hypothesis, these coordinates are
algebraic integers. Since the q-expansions of both XE1 and XE2 are both integers, we
also have that each of ℘(ri,Λ3) must be algebraic. So we defineD = D(Λ1,Λ2) =

∏
iDi

where Di is the minimal natural number so that DiRi is an algebraic integer.Thus

XE1(z)−XE2(z) =
C

D

∏
iDiXE3 −DiRi∏

j XE3 − Tj
.
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Since the formal product (
∏

j XE3 − Tj)−1 has algebraic integer coefficients, and since
DiRi is an algebraic integer for all i, the above shows that all but the constant term
of the q-expansion of XE1(z)−XE2(z) are congruent to zero mod C/D. �

Example 4.2. Let’s return to the curves E1, E2 (Cremona labels 14a1 and 14a2) where
we found a congruence mod 8 between the q-expansions for their modular parametriza-
tions. The period lattices for E1, E2 are given by the generators

(z11, z12) ≈ (1.981341, .990670 + 1.325491i), (z21, z22) ≈ (.990670, 1.325491i),

and so we see that ΛE1 ⊆ ΛE2 . So we can write ℘(z,Λ2) as a rational function in
℘(z,Λ1). A quick calculation shows that in fact,

℘(z,Λ1)− ℘(z,Λ2) =
8

13/12− ℘(z,Λ1)
.

Since XE1(z) = ℘(ε(z),Λ1)− 1/12, we conclude that

XE1(z)−XE2(z) =
8

1−XE1

.

Since XE1 has integer coefficients, this makes the congruence mod 8 between XE1 and
XE2 now apparent.

Example 4.3. Using Theorem 4.1 we can now see why the curves

E3 : y2 + xy + y = x3 + x2 − 5x+ 2,(15a3)

E4 : y2 + xy + y = x3 + x2 + 35x− 28.,(15a4)

had only the trivial congruence mod 1 even though their expressions share a congruence
mod 10. These curves are isogenous and Λ3 ⊆ Λ4, so we can write the difference
XE4 − XE3 as a rational funtion in terms of XE3 . Since g2(ΛE3)/20 = 241/240 and
g2(ΛE4)/20 = −1679/240, we see that C = (241 + 1679)/240 = 8. Also, we compute
that

XE4 −XE3 = C
−(XE3 − 3

4
)(XE3 − 3

2
)

(XE3 − 1)(XE3)
2

.

So we see that D = 8 as well. Thus C/D = 1.

While Theorem 4.1 describes many congruent algebras, it does not describe all
congruences that we noticed computationally on curves of conductor less than 100.
For example, the curves

E1 : y2 = x3 + x2 − 32x+ 60(96a3)

E2 : y2 = x3 + x2 − 384x+ 2772.(48a5)

are not isogenous over Q, so Theorem 4.1 doesn’t tell us of any congruences between
the two algebras. However, looking at the difference of the q-expansions of the modular
parametrizations of the x coordinates of these two curves gives

−68q + 780q3 − 5020q5 + 24140q7 − 96712q9 + 340500q11 − 1086568q13 + O(q15).

So we see that this form appears to be 0 mod 4. In fact, computationally we can
confirm that a large number of coefficients are divisible by 4. We would like to be able
to tell that all of the coefficients are congruent to 0 by looking at some finite number of
terms in the q-expansion. To this end, we give a generalization of Sturm’s bound that
applies to meromorphic modular forms. The arguement is essentially the same, but
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we give a proof for completeness. For a modular form with q-expansion f =
∑
anq

n

we denote

ordpf := ord∞(f mod p) = min{n : an 6∈ p}

and observe that since p is a prime ideal, ordp(fg) = ordp(f)+ordp(g). We also denote
by M !!

k (Γ,O) the collection of meromorphic modular forms of weight k over Γ with
coefficients in O. Finally, let f [γ]k denote (cz + d)−kf(γz) where γ = ( a bc d ) ∈ SL2(Z).
With this notation we prove the following.

Lemma 4.4. Let p be a prime ideal in the ring of integers O of a number field K.
Further suppose that f ∈ M !!

k (Γ,O) and |Γ\ SL2(Z)| = m. Finally, let Ω be the set of
points on X0(N) where f has poles. Then

ordp(f) +
∑
τ∈Ω

ordτ (f) >
km

12

implies that f ≡ 0 (mod p).

Proof. We start with the case Γ = SL2(Z). We first note that since f is meromorphic,
ordτf <∞ for all τ ∈ Ω. Also, since the coefficients of f are elements of O, for each
of the finite complex numbers τi ∈ Ω ∩ Γ\H, we can pick relatively prime algebraic
integers αi, βi so that βij(z)− αi has a zero of order at least 1 at τi. So

g(z) := f(z)
∏
i

(βij(z)− αi)−ordτif

has poles only at infinity, and is modular over SL2(Z). Thus Sturm’s theorem applies
giving g(z) ≡ 0 mod p since

ordp(g) = ordp(f)−
∑
τi∈Ω

ordτi(fi)ordp(βij + αi)

≥ ordp(f) +
∑
τi∈Ω

ordτi(f) >
k

12
.

The first inequality holds since αi and βi are relatively prime algebraic integers in O,
implies that each of the terms (βij+αi) has order 0,−1 mod p corresponding to βi ∈ p
or not. Thus g ≡ 0 (mod p) which implies that f ≡ 0 (mod p). This concludes the
proof in the case that Γ = SL2(Z).

If Γ is an arbitrary congruence subgroup, we first pick N so that Γ(N) ⊆ Γ with m
coset representatives γ` for Γ(N) and we set L = K(ζN). Since f ∈M !!

k (Γ(N), L) and
Γ(N) is a normal subgroup of SL2(Z), the functions f [γ`]k are elements of M !!

k (Γ(N), L).
Furthermore, the denominators of the fourier coefficients of f [γ`]k are bounded because
each is a finite L-linear combination of some integral basis of a finite dimensional
subspace of M !!

k (Γ(N), L). Note that in general M !!
k (Γ(N), L) is not finite dimensional;

however, if we restrict ourselves to the subspace that has poles of the same order and
at the same locations as those of f and f [γ`]k , then this subspace is finite dimensional.
Thus we can pick constants A` ∈ L× so that each of the functions ordP(A`f

[γ`]k) = 0
for some prime ideal P lying over p. Letting γ1 be the identity matrix, the function

G(z) := f(z)
m∏
`=2

A`f
[γ`]k
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is a meromorphic modular form of weight km over SL2(Z) with coefficients in OL.
Then

ordP(G) ≥ ordp(G) ≥ ordp(f) +
∑
τ∈Ω

ordτ (f) >
km

12
,

where the first equality follows because P ∩ OK = p. We conclude that G ≡ 0
(mod P) from the SL2(Z) case. Since each of the functions Aγ`f

[γ`]k were chosen such
that ordP(A`f

[γ`]k) = 0, this gives G ≡ 0 (mod p) and so f ≡ 0 (mod p). See theorem
9.18 in [11] to compare the above to the proof of Sturm’s theorem for elements of
Mk(Γ,O). �

Corollary 4.5. If XE1 and XE2 are modular parametrizations for the x coordiantes
of elliptic curves E1 and E2 of conductor N1 and N2 with modular degrees d1 and d2

respectively, then if ordp(XE1 −XE2) > 2(d1 + d2), then XE1 ≡ XE2 mod p.

Proof. The number of poles of XEi is at most 2di counting multiplicities. Thus the
corollary follows immediately from Theorem 4.4 applied to the difference XE1 −XE2

which is modular over Γ0(lcm (N1, N2)) since

ordp(XE1 −XE2) +
∑
τ∈ω

ordτ (XE1 −XE2) > 2(d1 + d2)− 2(d1 + d2) = 0 =
km

12
.

�

Note that this bound is independent of both N1 and N2 since the weight k of the
modular parametrizations is zero. We obtain a better estimate if we know a priori the
locations of the poles of XEi and if they cancel in the difference XE1 −XE2 .

Corollary 4.4 gives us an easy way for determining if two related parametrizations
are congruent mod p. Returning to our earlier example with the curves

E1 : y2 = x3 + x2 − 32x+ 60,(96a3)

E2 : y2 = x3 + x2 − 384x+ 2772,(48a5)

since the modular degree of both E1 and E2 is 8, computing 2(8 + 8) = 32 coefficients
of the difference function and observing that they are congruent to 0 mod 4 is sufficient
to prove that all of the coefficients are congruent mod 4.
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