Final Review Topics

1 Chapter 1 and 2 Functions

Chapter 1 are linear functions. If you have troubles with the algebra for Exponential/Logarithmic functions review chapter 2.

2 Differential Calculus

2.1 Limits

\[\lim_{x \to a} f(x) = L \]

Read as “The limit as x approaches a of the function f(x) is L.”

- If \(f(x) \) is continuous at \(x = a \) then \(\lim_{x \to a} f(x) = f(a) \).

- A limit exists if and only if \(\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \).

- If \(f(a) = 0 \) for \(\lim_{x \to a} f(x) \) then you must try to rewrite \(f(x) \) (factoring, multiplying by conjugate etc.) to get a continuous function at \(x = a \) to be able to evaluate the limit.

- Review limits at infinity
2.2 Continuity

\(f(x) \) is continuous at \(x = a \) if:

1. \(f(a) \) is defined
2. \(\lim_{x \to a} f(x) \) exists
3. \(\lim_{x \to a} f(x) = f(a) \)

2.3 Derivatives

\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

- The derivative is the instantaneous rate of change of a function at a specified \(x \) value.
- \(f'(a) \) is the slope of the line tangent to \(f(x) \) at \(x = a \). The equation for the tangent line is

\[y - f(a) = f'(a)(x - a) \]

2.3.1 Derivative Rules

- Power rule: \(\frac{d}{dx} (x^n) = nx^{n-1} \)
- Product rule: \(\frac{d}{dx} (f(x)g(x)) = f'(x)g(x) + f(x)g'(x) \)
- Quotient rule: \(\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \)
- Chain rule: \(\frac{d}{dx} (f(g(x))) = f'(g(x))g'(x) \)

Be sure to have memorized the derivatives for individual functions (exponential, logarithmic, etc.)
2.3.2 Graphing a function using derivatives

- Find the intervals of increase and decrease from $f'(x)$ (Critical points are points in the domain of f where $f'(x) = 0$ or is undefined)
- Find the intervals of concavity from $f''(x)$ (Inflection points are where the function changes concavity)

2.3.3 Maximums and minimums

- A critical point is a:
 - relative max if the derivative to the left of the critical point is positive and the derivative to the right of the critical point is negative.
 - relative min if the derivative to the left of the critical point is negative and the derivative to the right of the critical point is positive.
- The absolute/global max or min is the y value that is greater or smaller respectively than every other y value of the function.
 - We use the Extreme Value Theorem for absolute extrema: “A function f that is continuous on a closed interval $[a, b]$ will have both an absolute maximum and an absolute minimum on the interval.”
 - p. 328 describes how to find absolute extrema.

Be sure to review section 6.2 for word problems involving applications of Extrema.

2.3.4 Implicit Differentiation

This is NOT a multivariable derivative situation. You use implicit differentiation when x is an independent variable and y is dependent on x but you cannot solve for y in terms of x.

- Rule: When you take the derivative of a y variable you must multiply that term on by $\frac{dy}{dx}$.
- Warning: All previous derivative rules still hold.
3 Sequences and Series

3.1 Geometric sequence

- geometric series \(a_n = ar^{n-1} \) where \(a \) is the first term in the sequence and \(r \) is the common ratio.
- Know all of the formulas involving geometric sequences
- Review the fact that the sum of an infinite series can converge to a finite number :)

3.2 Taylor Polynomial

\[
P(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n
\]

4 Integral Calculus

4.1 Antiderivatives

An antiderivative of \(f(x) \) is a function \(F(x) \) such that \(F'(x) = f(x) \).

4.2 Indefinite Integral

And antiderivative is a synonym for an indefinite integral

\[
F(x) = \int f(x)dx
\]

- Substitution: In order to choose what to make your \(u \) focus on the most complicated part of the integral.
- By parts: If you are using the table way just remember that the rules change for \(\log \) functions. Otherwise use

\[
\int uv = uv - \int vdu
\]
4.3 Definite Integral

The Fundamental Theorem of Calculus: If $F(x)$ is the antiderivative of $f(x)$ then:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

- $\int_{a}^{b} f(x) dx$ represents the area underneath the curve $f(x)$ on the interval $[a, b]$.
- Review area between two curves.

4.4 Volume, Average value, Improper integrals

- Volume of revolution: $\int_{a}^{b} \pi (f(x))^2 \, dx$
- Average value: $\frac{1}{b-a} \int_{a}^{b} f(x) dx$
- Improper integrals are where one of the bounds is either infinity or makes the function undefined (ex $x = 0$ with $\ln(x)$). Review how to completely these integrals.

5 Multi-variable Calculus

5.1 Differential Multi-Variable Calculus

- A partial derivative with respect to a specified variable is taking a normal derivative only considering that one variable and calling everything else a constant. (ex f_x would be treating x as a variable and y as a constant.)
- Optimization (max and mins) still requires us to find critical points
- A critical point (a, b) is where $f_x(a, b) = 0$ and $f_y(a, b) = 0$ at the same time.

$$D(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - [f_{xy}(x, y)]^2$$
1. $D(a, b) > 0$ and $f_{xx}(a, b) > 0$ gives us a minimum at (a, b)
2. $D(a, b) > 0$ and $f_{xx}(a, b) < 0$ gives us a maximum at (a, b)
3. $D(a, b) < 0$ gives us a saddle at (a, b)
4. $D = 0$ gives no information

- Lagrange Multipliers: $f(x, y)$ is what we want to optimize with a restriction of $g(x, y) = 0$.

\[F(x, y, \lambda) = f(x, y) - \lambda g(x, y) \]

Find the x and y value that makes F_x, F_y, and F_λ equal to zero.

5.2 Integral Multi-Variable Calculus

This finds the volume under a function over a certain region.

- All of the rules for normal integration still hold (substitution, by parts)
- Be careful what variable you are taking the antiderivative with respect to based on what order the dy and dx are given.

6 Differential Equations

- Separable: Get all of one variable on one side of the equation and all of the other on the opposite side. Then integrate both sides.

- Linear First-Order:

\[\frac{dy}{dx} + P(x)y = Q(x) \]

\[I(x) = e^{\int P(x)dx} \]

\[yI(x) = \int I(x)Q(x)dx \]

WARNING: Do not forget your plus C! Also be sure to review the Applications of Differential Equations section.
7 Probability and Statistics

- $f(x)$ is a probability density function over $[a, b]$ if it is continuous and
 $f(x) \geq 0$ on $[a, b]$ and $\int_a^b f(x)dx = 1$

- Review the formulas for expected value, variance and standard deviation.

- The z-scores table should be given on the exam for you.

GOOD LUCK