Name \qquad

- Do not open this exam packet until I say start.
- Turn off all electronic devices and and put away all items except for a pen/pencil and an eraser.
- Remove hats and sunglasses.
- If you have a question, raise your hand and I will come to you. When you stand up, you are done with your exam.
- Quit working and close this packet when I say stop.
- Good luck! (If you get bored, you can try your hand at the sudoku puzzle below...)

FOXTROT

	3+4	$\left(\frac{1}{3}\right)^{-1}$		3^{2}			$\sqrt{16}$	
$\sqrt{81}$			0100		$\frac{d}{d x} 3 x$			$33^{2} x^{2} d x$
			$3!$					2^{3}
	2^{2}					$\frac{24}{8}$	$\sum_{k=1}^{3} k$	
$\frac{252}{36}$								$\log _{10}(10)$
	$\sqrt{4}$	74.65					0101	
${ }^{13} /{ }_{\text {dr }}$					$-\left(i^{2}\right)$			
0110			FF-F8		$\sqrt{64}$			${ }_{4}^{5}$? $?$
	$\sqrt[3]{27}$			$\sqrt[3]{64}$		$\sin \frac{\pi}{2}$	$\sqrt{49}$	

POSSIBLE	$[1] 12$	$[2] 10$	$[3] 18$	$[4] 10$	$[5] 20$	$[6] 15$	$[7] 10$	$[8] 10$	$[T] 100^{*}$
SCORE									

[^0]1. (3 points each) Find the following derivatives. No partial credit will be given for this problem.
(a) $\frac{d}{d x} \arcsin x=$
(b) $\frac{d}{d x} \operatorname{arcsec} x=$
(c) $\frac{d}{d x} \log _{7} x=$
(d) $\frac{d}{d x} 19^{x}=$
2. (10 points) Evaluate $\frac{d y}{d x}$ at the point $(0,1)$ given that

$$
x^{2}-3 x y+y^{2}=1
$$

$$
\left.\frac{d y}{d x}\right|_{(0,1)}=
$$

3. (6 points each) Find the following derivatives. Please put a box around your answer. As a general hint, it is sometimes useful to simplify a function before taking its derivative.
(a) $\frac{d}{d x} \ln \left(\frac{\sqrt{x^{2}+1}}{(x-5)^{4}}\right)$
(b) $\frac{d}{d y} e^{\cos (1 / y)}$
(c) $\frac{d}{d z}[(2 z-\sqrt{z})(2 z+\sqrt{z})]$
4. (10 points) A ladder 5 ft long rests against a vertical wall. The bottom of the ladder is being pushed toward the wall at a rate of $1 \mathrm{ft} / \mathrm{sec}$. How fast is the top of the ladder moving up the wall when the bottom of the ladder is 3 ft from the wall? Please put a box around your answer.
5. (20 points) Suppose that

$$
\begin{aligned}
h(x) & =x^{3}(x-4), \\
h^{\prime}(x) & =4 x^{2}(x-3), \\
h^{\prime \prime}(x) & =12 x(x-2)
\end{aligned}
$$

Fill in the blanks. It might help you to sketch the graph of $h(x)$ in the space provided, but you will not be graded on your sketch. If an answer does not exist, write DNE.
(a) h is increasing on the interval(s) \square
(b) h is decreasing on the interval(s) \square
(c) h has local maximum(s) at $x=$ \square
(d) h has local minimum(s) at $x=$ \square
(e) h has global maximum(s) at $x=$ \square
(f) h has global minimum(s) at $x=$ \square
(g) h is concave up on the interval(s) \square
(h) h is concave down on the interval(s) \square
(i) h has inflection point(s) at $x=$ \square
6. (5 points each) Circle the correct limit. You do not need to show any work. No partial credit will be given for this problem.
(a) $\lim _{x \rightarrow \infty} \frac{\sqrt{2} x^{4}}{e^{x / 4}}$

$$
\begin{array}{lllllllll}
-\infty & -\sqrt{2} & -1 & -\frac{1}{4} & 0 & \frac{1}{4} & 1 & \sqrt{2} & \infty
\end{array}
$$

(b) $\lim _{x \rightarrow \infty} x^{\left(1 / \ln \left(x^{2}\right)\right)}$

$$
\begin{array}{llllllll}
0 & \frac{1}{2} & 1 & \sqrt{2} & \sqrt{e} & e & e^{2} & \infty
\end{array}
$$

(c) $\lim _{x \rightarrow 0} \frac{1-x-e^{-x}}{x^{2}}$

$$
\begin{array}{lllllllll}
-\infty & -e & -1 & -\frac{1}{2} & 0 & \frac{1}{2} & 1 & e & \infty
\end{array}
$$

7. (10 points) $\sqrt{50}$ is slightly larger than 7 , say

$$
\sqrt{50}=7+t
$$

Use linear approximation or differentials to estimate t (your answer should be a fraction).
8. (10 points) In this problem, we will use calculus to prove the trig identity

$$
\begin{equation*}
\text { if } x>0 \text { then } \quad \arctan (x)+\arctan \left(\frac{1}{x}\right)=\frac{\pi}{2} . \tag{*}
\end{equation*}
$$

(a) Let $f(x)=\arctan x+\arctan (1 / x)$. Prove that $f^{\prime}(x)=0$ when $x>0$. (Make sure to show sufficient work.)
(b) What is $f(1)$?
(c) Using parts (a) and (b), explain why the trig identity (*) is true.

[^0]: *It is possible to score a total of 105 points on this exam, but your score will be out of 100 .

