Name

\qquad

- Do not open this exam packet until I say start.
- Turn off all electronic devices and and put away all items except for a pen/pencil and an eraser.
- Remove hats and sunglasses.
- If you have a question, raise your hand and I will come to you. When you stand up, you are done with your exam.
- Quit working and close this packet when I say stop.
- Good luck!

POSSIBLE	$[1] 15$	$[2] 16$	$[3] 16$	$[4] 12$	$[5] 15$	$[6] 8$	$[7] 8$	$[8] 15$	$[T] 100^{*}$
SCORE									

*It is possible to score a total of 105 points on this exam, but your score will be out of 100 .

The following formulas might be useful.

$$
\begin{aligned}
\sum_{k=1}^{n} k & =\frac{n(n+1)}{2} \\
\sum_{k=1}^{n} k^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\sum_{k=1}^{n} k^{3} & =\left[\frac{n(n+1)}{2}\right]^{2}
\end{aligned}
$$

1. (5 points each) Suppose that f is an even, continuous function and that

$$
\int_{0}^{2} f(x) d x=5, \quad \int_{2}^{3} f(x) d x=7
$$

Determine the following quantities. Please put boxes around your answers.
(a) $\int_{0}^{5} f(x) d x+\int_{5}^{3} f(x) d x$
(b) $\int_{-2}^{3} f(x) d x$
(c) $\int_{0}^{2} f\left(\frac{x+4}{2}\right) d x$
2. (8 points each) Evaluate the following definite integrals. Please put boxes around your answers.
(a) $\int_{0}^{\pi / 4} 5 \sec ^{2} t d t$
(b) $\int_{-7}^{0} 7 \sqrt{49-x^{2}} d x$
3. (8 points each) Find the most general antiderivative. Please put boxes around your answers.
(a) $\int x(2-x)^{7 / 2} d x$
(b) $\int \frac{\arctan x}{1+x^{2}} d x$
4. (12 points) A particle moves along the x-axis with position $s(t)$, velocity $v(t)$, and acceleration $a(t)$. Given that

$$
v(t)=\cos (\pi t)-\sin (\pi t)
$$

and $s(0)=0$ and $a(0)=-\pi$, find the particle's position, velocity, and acceleration at $t=1 / 2$. (Don't worry about units.)

$$
\begin{aligned}
& s(1 / 2)= \\
& v(1 / 2)= \\
& a(1 / 2)=
\end{aligned}
$$

5. (a) (11 points) Evaluate the following sum/limit. Please put a box around your answer.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{4 k}{n^{2}+2 n}-\frac{12 k^{2}}{n^{3}}+\frac{2}{5 n^{2}}\right)
$$

(b) (4 points) What is the sum of all the integers from 1 to 200 ?

$$
1+2+3+4+5+\ldots+198+199+200=
$$

6. (8 points) Suppose that $f(4)=6$ and that $f^{\prime}(x) \leq 1$ for $-4 \leq x \leq 4$. Use the mean value theorem (for derivatives) to determine the smallest value that $f(-4)$ can be. Make sure to show sufficient work.
7. (8 points) The graph of $y=f(x)$ is shown below. You may assume that any curve that looks like a circle is, in fact, a circle.

What is the average value of $f(x)$ for $-4 \leq x \leq 4$? Please put a box around your answer.
8. (15 points) Let $G(x)=\int_{x}^{x^{2}} \sqrt{8+t^{4}} d t$. Please put boxes around your answers.
(a) Find $G^{\prime}(x)$.
(b) Find the equation of the tangent line to $y=G(x)$ at $x=1$.
(c) Use linear approximation to estimate

$$
\int_{1.1}^{1.21} \sqrt{8+x^{4}} d x
$$

