5 September 2014 Inverse functions

(1) Find the exact value of each expression.
(a) $\log _{5}\left(\frac{1}{125}\right)$
(b) $\log _{10}(\sqrt{10})$
(c) $\log _{3} 100-\log _{3} 18-\log _{3} 50$
(d) $\log _{2}\left(\log _{2} 2^{2^{8}}\right)$
(2) In the theory of relativity, the mass of a particle with speed v is

$$
m(v)=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

where m_{0} is the rest mass of the particle (a constant) and c is the speed of light in a vacuum (also a constant). Find the inverse function $v(m)$ (that is, solve for v in terms of m) and explain its meaning.
(3) Express the following quantity as a single logarithm.

$$
\frac{1}{3} \log _{5}(x+2)^{3}+\frac{1}{2}\left[\log _{5} x-\log _{5}\left(x^{2}+3 x+2\right)^{2}\right]
$$

(4) A bacterial culture is known to triple every two hours. Suppose there are initially 80 bacteria.
(a) How many bacteria are there after 6 hours?
(b) How many bacteria are there after t hours?
(c) When will there be 80000 bacteria? Give an exact answer in terms of logs (no approximations).
(5) In this exercise we will show that $\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}$.
(a) Think of $\sin ^{-1} x$ as "the angle θ whose sine is x ". Draw a triangle representing this relationship (that is, a triangle that shows that $\sin \theta=\frac{x}{1}$). Make sure to fill in the length of the missing side.
(b) What is $\cos \theta$?
(c) Show that $\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}$.
(6) Solve each equation for x.
(a) $\log _{3} x+\log _{3}(x-1)=1$
(b) $9^{x}-3^{x+1}+2=0 \quad$ Hint: let $z=3^{x}$.

