19 September 2014 The Derivative as a function
(1) Suppose that $f(x)=x^{3}$.
(a) Using the limit definition of the derivative, find $f^{\prime}(x)$.
(b) Sketch $y=f(x)$ and $y=f^{\prime}(x)$ on the same graph. Does your answer from part (a) make sense graphically?
(2) Suppose that $f(x)=\sqrt{x}$.
(a) Using the limit definition of the derivative, find $f^{\prime}(x)$.
(b) What is the domain of $f(x)$? What is the domain of $f^{\prime}(x)$? Does this make sense?
(3) Make a careful sketch of the graph of $f(x)=\cos (x)$. On the same graph, make a sketch of $f^{\prime}(x)$ (hint: where is the derivative equal to zero?). Can you guess a formula for $\frac{d}{d x} \cos x$ from your graph?
(4) (a) Sketch the graph of $f(x)=x|x|$.
(b) For what values of x is f differentiable?
(c) Find a formula for $f^{\prime}(x)$.
(5) Suppose f is a function that satisfies the equation

$$
f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}
$$

for all real numbers x and y. Suppose also that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
$$

(a) Find $f(0)$
(b) Find $f^{\prime}(0)$
(c) Find $f^{\prime}(x)$

