23 September 2014 Exam 1 Review

1. Suppose f is an odd function which is one-to-one. If $f(-4)=2$ then which of the following points lie on the graph of $y=f^{-1}(x)$? (You must circle all correct answers)
(f) $(-2,4)$
(h) $(2,-4)$

Incorrect points were $(4,2),(-4,2),(-4,-2),(4,-2),(2,4),(-2,-4)$.
2. Indicate whether each statement is true or false.

T A function can have two different horizontal asymptotes.
F If the line $x=1$ is a vertical asymptote of $y=f(x)$ then f is not defined at 1 .
T If $\lim _{x \rightarrow \infty} f(x)=7$ then $\lim _{x \rightarrow 4-}(f(-\ln (4-x))-5)=2$.
\mathbf{T} The equation $\sin x-10 x^{2}+5=0$ has a root in the interval $(0,2)$.
\mathbf{T} If $\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$ exists then f is continuous at $x=3$.
$\mathbf{F} \tan ^{-1} x=\frac{\sin ^{-1} x}{\cos ^{-1} x}$.
3. Let $f(x)=x-x^{2}$.

Use the definition of the derivative as a limit to find $f^{\prime}(x)$.
Show each step in your calculation and be sure to use proper terminology in each step.
Solution.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left[(x+h)-(x+h)^{2}\right]-\left[x-x^{2}\right]}{h}=\lim _{h \rightarrow 0} \frac{x+h-x^{2}-2 x h-h^{2}-x+x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h-2 x h-h^{2}}{h}=\lim _{h \rightarrow 0} 1-2 x-h=1-2 x .
\end{aligned}
$$

4. A population of bacteria starts out with 87 bacteria and grows by a factor of 17 every 3 hours. Find a formula for the number of bacteria after t hours.

Solution.

$$
P(t)=P_{0} a^{r t} \Longrightarrow P(t)=87 \cdot 17^{t / 3}
$$

5. What is the value of $\cos \left(2 \tan ^{-1}(7)\right)$?

Solution. Let $\theta=\tan ^{-1}(7)$ and draw a triangle to find that $\mathrm{opp}=7, \operatorname{adj}=1$, and $\mathrm{hyp}=\sqrt{50}$. Then

$$
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{1}{\sqrt{50}}\right)^{2}-\left(\frac{7}{\sqrt{50}}\right)^{2}=-\frac{48}{50}
$$

6. Suppose f is an odd function. Is $g(x)=\sin f\left(x^{3}\right)$ odd, even, or neither? Convince me.

Solution. Replace x by $-x$ to find

$$
g(-x)=\sin f\left((-x)^{3}\right)=\sin f\left(-x^{3}\right)=\sin -f\left(x^{3}\right)=-\sin f(x)^{3}=-g(x)
$$

so $g(x)$ is odd.
7. Solve for x in the equation below.

$$
\log _{3}(x-4)+\log _{3}(x-1)=2 \log _{3}(5-x)
$$

Solution.

$$
\begin{aligned}
\log _{3}(x-4)+\log _{3}(x-1) & =2 \log _{3}(5-x) \\
\log _{3}[(x-4)(x-1)] & =\log _{3}(5-x)^{2} \\
(x-4)(x-1) & =(5-x)^{2} \\
x^{2}-5 x+4 & =25-10 x+x^{2} \\
5 x & =21 \\
x & =21 / 5
\end{aligned}
$$

$$
(x-4)(x-1)=(5-x)^{2} \quad \text { (raise } 3 \text { to the power of each side) }
$$

8. Find all horizontal asymptotes on the graph of $f(x)=2^{-x^{2}} \cos x$

Solution. The horizontal asymptotes will be given by the limits of $f(x)$ as x approaches $\pm \infty$. Note that since $x^{2} \geq 0$, both limits $(\pm \infty)$ will be the same. We use the squeeze theorem:

$$
\begin{gathered}
-1 \leq \cos x \leq 1 \\
-e^{-x^{2}} \leq e^{-x^{2}} \cos x \leq e^{-x^{2}} \\
\lim _{x \rightarrow \pm \infty}-e^{-x^{2}} \leq \lim _{x \rightarrow \pm \infty} e^{-x^{2}} \cos x \leq \lim _{x \rightarrow \pm \infty} e^{-x^{2}} \\
0 \leq \lim _{x \rightarrow \pm \infty} e^{-x^{2}} \cos x \leq 0
\end{gathered}
$$

So the only horzontal asymptote is $y=0$.
9. Evaluate the following limits without the use of derivatives. Show sufficient justification for each answer. For infinite limits you must state if it is ∞ or $-\infty$.
(a) $\lim _{x \rightarrow 1} \frac{5^{x^{3}-x}}{\log _{2}(x+1)}$

Solution. Plug in $x=1$ and see if what you get makes any sense.

$$
\lim _{x \rightarrow 1} \frac{5^{x^{3}-x}}{\log _{2}(x+1)}=\frac{5^{0}}{\log _{2} 1}=1
$$

(b) $\lim _{x \rightarrow \infty} \frac{x^{2}-10}{\sqrt{x^{6}+4 x^{4}+16}}$

Solution. Multiply top and bottom by the highest power of x in the denominator.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-10}{\sqrt{x^{6}+4 x^{4}+16}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{\sqrt{x^{6}}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{10}{x^{3}}}{\sqrt{1+\frac{4}{x^{2}}+\frac{16}{x^{6}}}}=\frac{0}{1}=0
$$

(c) $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{1-x}+\frac{1}{|1-x|}\right)$

Solution. When x is slightly larger than 1 , the effect of the absolute value on $1-x$ is to multiply by a negative: $|1-x|=-(1-x)$. So we have

$$
\lim _{x \rightarrow 1^{+}}\left(\frac{1}{1-x}+\frac{1}{|1-x|}\right)=\lim _{x \rightarrow 1^{+}}\left(\frac{1}{1-x}-\frac{1}{1-x}\right)=0
$$

(d) $\lim _{x \rightarrow 0} \frac{\frac{1}{(3+h)}-\frac{1}{3}}{h}$

Solution. Get a common denominator on top.

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{(3+h)}-\frac{1}{3}}{h}=\lim _{x \rightarrow 0} \frac{3-(3+h)}{3(3+h)} \cdot \frac{1}{h}=\lim _{x \rightarrow 0} \frac{-h}{3 h(3+h)}=\lim _{x \rightarrow 0} \frac{-1}{3(3+h)}=-\frac{1}{9}
$$

