8 October 2014 Inverse Trig and Related Rates

(1) Find the derivative of each function.
(a) $f(x)=\frac{1}{\arcsin (x)}$ (hint: you don't need the quotient rule)
(b) $f(x)=x \arctan \sqrt{x}$
(2) Consider the following problem: A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?
(a) Draw a picture of this and label the horizontal and vertical distances x and y.
(b) What information has been given to you? What information do you want to find out?
(c) Write down the relationship between x and y.
(d) Differentiate both sides with respect to t, remembering the chain rule.
(e) Plug in all the givens (here you can use that $x=6$) and solve the problem.
(3) Use the method of problem 2 to solve the following: A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m . If water is being pumped into the tank at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$, find the rate at which the water level is rising when the water is 3 m deep.
(4) A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of $1.6 \mathrm{~m} / \mathrm{s}$, how fast is the length of his shadow on the building decreasing when he is 4 m from the building?

