16 October 2014 L'Hospital's Rule

(1) Evaluating the following limits using L'Hospital's rule.
(a) $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}$
(b) $\lim _{x \rightarrow 0} \frac{\ln \sqrt{x}}{x^{2}}$
(c) $\lim _{x \rightarrow 0} \frac{x}{\tan ^{-1}(4 x)}$
(2) Sometimes you have to use an algebraic "trick" to put the indeterminate form in $\frac{0}{0}$ form or $\frac{\infty}{\infty}$ form. Evaluate the following limits by manipulating them until they look like fractions of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
(a) $\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right)$
(b) $\lim _{x \rightarrow 1^{+}}\left(\ln \left(x^{7}-1\right)-\ln \left(x^{5}-1\right)\right)$
(3) When you encounter the indeterminate forms involving powers $\left(1^{\infty}, 0^{0}, \infty^{0}\right)$ you should write the function as $y=f(x)$ and then take the natural \log of both sides. Now take the limit of $\ln f(x)$ using L'Hospital's rule; when you finish, don't forget that you have found $\ln y$, not y.
(a) $\lim _{x \rightarrow 0^{+}}(\tan 2 x)^{x}$.
(b) $\lim _{x \rightarrow \infty} x^{\ln 2 /(1+\ln x)}$
(c) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$

