28 October 2014 Mean Value Theorem / Antiderivatives
(1) State the Mean Value Theorem.
(2) Verify the conclusion of the Mean Value Theorem (that is, find c) for the function

$$
f(x)=\sqrt{1+\cos x}
$$

on the interval $[-\pi / 2, \pi / 2]$.
(3) Does there exist a function f such that $f(0)=-1, f(2)=4$, and $f^{\prime}(x) \leq 2$ for all x ?
(4) For each function $f(x)$, find a function $F(x)$ such that $F^{\prime}(x)=f(x)$.
(a) $f(x)=x^{n},(n \neq-1)$
(b) $f(x)=1 / x$
(c) $f(x)=e^{x}$
(d) $f(x)=\cos x$
(e) $f(x)=\sin x$
(f) $f(x)=\sec ^{2} x$
(g) $f(x)=\sec x \tan x$
(h) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$
(i) $f(x)=\frac{1}{1+x^{2}}$
(5) For each problem below, find the most general function $f(x)$ that satisfies all the given conditions.
(a) $f^{\prime}(x)=\frac{3}{1+x^{2}}, \quad f(\pi / 4)=7$
(b) $f^{\prime}(x)=3 \frac{\sqrt{x}}{x^{2}}-\frac{12}{\sqrt{x}}+14 x^{7 / 2}$
(c) $f^{\prime \prime}(x)=20 x^{3}+\sin x$
(d) $f^{\prime \prime \prime}(x)=6 x, \quad f^{\prime \prime}(1)=3, \quad f^{\prime}(0)=-4, \quad f(2)=0$
(e) $f^{(173)}(x)=e^{x}, \quad f^{(n)}(0)=1$ for all $n \geq 0$

