11 November 2014 The Fundamental Theorem of Calculus Part 1

(1) Find the derivative of each of the following functions.
(a) $f(x)=\int_{x}^{\pi} \sqrt{1+\sec t} d t$
(b) $g(x)=\int_{-e}^{\sqrt{x}} \frac{5 z^{2}}{z^{4}+1} d z$
(c) $h(x)=\int_{e^{-x}}^{\sin x} \ln \left(1+2 v^{2}\right) d v$
(2) Suppose $w(x)=\int_{10}^{x^{2}}(t-4)(t+1)^{6} d t$. Determine all the intervals on which $w(x)$ is increasing.
(3) Recall that the Fresnel $S(x)$ function is defined by $S(x):=\int_{0}^{x} \sin \left(\frac{\pi t^{2}}{2}\right) d t$. Make a rough sketch of the graph of $S(x)$ using $S^{\prime}(x)$ and $S^{\prime \prime}(x)$ (like we have done many times before).
(4) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \sin \left(\frac{\pi t^{2}}{2}\right) d t$. Hint: L'Hospital's rule.
(5) Find a function f and a number a such that $6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}$.

