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Abstract. For any ring R, let Nil(R) denote the set of nilpotent elements in R, and for
any subset S ⊆ R, let S[x] denote the set of polynomials with coefficients in S. Due to a
celebrated example of Smoktunowicz, there exists a ring R such that Nil(R[x]) is a proper
subset of Nil(R)[x]. In this paper we give an example in the converse direction: there exists
a ring R such that Nil(R)[x] is a proper subset of Nil(R[x]). This is achieved by constructing
a ring R with Nil(R)2 = 0 and a polynomial f ∈ R[x] \ Nil(R)[x] satisfying f2 = 0. The
smallest possible degree of such a polynomial is seven. The example we construct answers
an open question of Antoine related to Armendariz rings.

1. Introduction

In this paper rings are associative, but nonunital and noncommutative in general, unless
otherwise stated. If R is a commutative ring, an easy exercise shows that

(1.1) Nil(R[x]) = Nil(R)[x];

the nilpotent polynomials are exactly those polynomials with nilpotent coefficients. For
noncommutative rings this may easily fail. For instance, let R be the 2× 2 matrix ring over
any nonzero unital ring, and in the polynomial ring R[x] consider the two polynomials

f =

(
0 1
0 0

)
+

(
0 0
1 0

)
x and g =

(
0 1
0 0

)
+

(
1 0
0 −1

)
x+

(
0 0
−1 0

)
x2.

One easily checks that f ∈ Nil(R)[x]\Nil(R[x]) and g ∈ Nil(R[x])\Nil(R)[x], therefore neither
of the inclusions in (1.1) holds. This raises a natural question: if one of the inclusions in
(1.1) holds, does the other hold as well? In other words, does there exist a ring R satisfying
Nil(R[x]) ⊊ Nil(R)[x] or Nil(R[x]) ⊋ Nil(R)[x]?
The question whether the inclusion

(1.2) Nil(R[x]) ⊆ Nil(R)[x]

implies equality turns out to be equivalent to Amitsur’s classical problem asking if the
polynomial ring over a nil ring is nil. In fact, we show in Proposition 2.8 that if a ring R
satisfies (1.2) and this inclusion is proper, then R contains a nil subring S such that S[x] is
not nil. While Amitsur proved in [2, Theorem 2] that any nil algebra over an uncountable
field has a nil polynomial ring, in [20] Smoktunowicz constructed, for any countable field
F , a nil F -algebra whose polynomial ring is not nil. Answering Amitsur’s question in the
negative, Smoktunowicz’s example thus provides a ring such that the inclusion (1.2) holds
and is proper.
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The main goal in this paper is to give an example for the other direction, namely a ring
R such that

(1.3) Nil(R[x]) ⊇ Nil(R)[x]

and such that this inclusion is proper. The ring we construct is unital, has characteristic
2 and satisfies Nil(R)2 = 0, hence Nil(R) is a subring of R with trivial multiplication.
Remarkably, we show that the inclusion (1.3) does imply equality if R is an algebra over an
infinite field.

As further motivation, we present here some historical background related to our work.
Following Rege and Chhawchharia [19], a unital ring R is called Armendariz when for any
two polynomials f =

∑m
i=0 aix

i and g =
∑n

j=0 bjx
j in R[x], if fg = 0 then aibj = 0 for all

integers i, j ≥ 0. The name is given after Armendariz who showed in [5, Lemma 1] that
reduced rings (i.e., rings without nonzero nilpotents) satisfy this condition. Antoine proved
in [3, Corollaries 5.2 and 3.3] that every Armendariz unital ring R satisfies (1.1) and the set
of nilpotents Nil(R) forms a subring of R.

Rings R with Nil(R) a subring were studied in [11, 21] and called NR rings there. It was
shown in [21, Theorem 2.1] that Nil(R) is a subring whenever it is additively closed. (It is
currently unknown whether Nil(R) is a subring whenever it is multiplicatively closed.) An
interesting connection between the condition (1.1) and the NR condition is the following
equivalence (see [21, Corollary 2.5] and [9, Proposition 3.4]): a ring R satisfies (1.1) if and
only if R[x] is a NR ring. As a subring of a NR ring is clearly NR, this shows that every
ring satisfying (1.1) is NR.

Motivated by Antoine’s work in [3], Kwak and Lee in [15] studied rings R satisfying the
inclusion (1.2), calling them CN rings. We note that Theorem 4.3 below shows that any NR
ring that is an algebra over an infinite field satisfies (1.2). Thus, that theorem simplifies
some of the computations in [15], if one is willing to work over infinite fields rather than
general fields.

To give one final motivation for this study, we note the parallel situation of the Amitsur
property on radicals, particularly nilradicals. There are numerous recent papers on this
topic; see the references in [12] for a fairly thorough list.

The structure of the paper is as follows. In Section 2 we prove various implications between
the inclusions (1.2), (1.3), and the NR property of a ring R. We show that the inclusion
(1.3) implies the NR condition of a ring R (see Proposition 2.1), as does the inclusion
(1.2) under an additional mild assumption that the ring R satisfies Köthe’s conjecture or
has characteristic 2 (see Corollaries 2.3 and 2.7). We also describe how this is related to
Amitsur’s problem.

In Section 3 we consider an analogue of our problem for power series, and construct a ring
R such that Nil(R)[[x]] is a proper subset of Nil(R[[x]]). Here R[[x]] denotes the usual power
series ring. We use the tools developed in this section again when considering polynomial
rings.

In Section 4 we describe numerous conditions where nilpotent polynomials must have
nilpotent coefficients under the assumption that R satisfies the NR property. This holds for
algebras over infinite fields (see Theorem 4.3), as well as for polynomials of small degree. In
Section 5 we construct our main example, a ring R such that the inclusion (1.3) is proper
(see Theorem 5.27). As the main step in the proof, we characterize zero products in R, using
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a case analysis. Our example answers a question posed in [3] and [4], asking if there exists a
unital NR ring with zero upper nilradical that is not an Armendariz ring (see Remark 5.29).

In Section 6 we provide an Euler diagram that describes the various connections between
the classes of rings satisfying conditions (1.2), (1.3), and other important properties studied
in the paper.

Some of our main results are summarized by the following implication diagram:

Nil(R)[x] ⊆ Nil(R[x])

Nil(R) is a subring of R

Nil(R)[x] ⊇ Nil(R[x])

\

(5.27)

(2.1)

+algebra over infinite field (4.3)

+Köthe (2.3), +char(R)=2 (2.7)

In this paper N denotes the set of nonnegative integers. While rings considered in the paper
will be nonunital in general, many of our examples will be made unital for convenience only.
When we speak of a unital subring of a unital ring, we mean that the units in both rings
coincide. As above, if R is a ring and S ⊆ R is any subset, then Nil(S), S[x] and S[[x]] denote
the set of nilpotent elements in S, the set of polynomials, and the set of power series with
coefficients in S. For simplicity, we treat the zero polynomial as having degree 0.

2. Preliminary Results on Inclusions Between Nil(R[x]) and Nil(R)[x]

Recall that any ring satisfying Nil(R[x]) = Nil(R)[x] is a NR ring, i.e., nilpotents form a
subring of R (see [21, Corollary 2.5] for a stronger statement). If we weaken the equality to
the inclusion (1.3), then we still have the same conclusion.

Proposition 2.1. If a ring R satisfies Nil(R)[x] ⊆ Nil(R[x]) then Nil(R) is a subring of R.

Proof. Let a, b ∈ Nil(R). By assumption, the polynomial a+bx is nilpotent. Evaluating at 1,
we get that a+b ∈ Nil(R). (This argument also appears in the proof of [10, Theorem 2.11(1)].
Note that the evaluation map R[x] → R, f 7→ f(1), is a well-defined homomorphism even
when R is not unital.) This shows that Nil(R) is an additive subgroup. When Nil(R) is
additively closed, then it a subring by [21, Theorem 2.1], a fact we will use freely. □

As for the converse inclusion, we have the following partial result:

Proposition 2.2. If a ring R satisfies Nil(R[x]) ⊆ Nil(R)[x] then Nil(R) is closed under
commutators.

Proof. Take a, b ∈ Nil(R), and embed R into a unital ring R1. The polynomial 1 − ax is
invertible in R1[x], with the inverse (1 − ax)−1 = 1 + ax + a2x2 + · · · + an−1xn−1, where
an = 0. Since b is a nilpotent, it follows that

f = (1 + ax+ a2x2 + · · ·+ an−1xn−1)b(1− ax)
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is a nilpotent polynomial in R1[x]. Note that f ∈ R[x], so f ∈ Nil(R[x]), and hence by
assumption f ∈ Nil(R)[x]. We compute directly that the coefficient of f in degree 1 is
ab− ba. Hence ab− ba ∈ Nil(R), as claimed. □

A ring R is said to satisfy Köthe’s conjecture if every nil left ideal of R lies in Nil∗(R) (the
upper nilradical of R). It is an open question if every ring satisfies Köthe’s conjecture. By [21,
Remark 2.2], if R satisfies Köthe’s conjecture then Nil(R) being closed under commutators
implies that Nil(R) is a subring of R. Thus we have:

Corollary 2.3. Let R be a ring such that Nil(R[x]) ⊆ Nil(R)[x] and such that R satisfies
Köthe’s conjecture. Then Nil(R) is a subring of R. □

We were unable to prove the above statement without the additional assumption that R
satisfies Köthe’s conjecture. Thus we ask:

Question 2.4. If a ring R satisfies Nil(R[x]) ⊆ Nil(R)[x], is Nil(R) a subring of R?

There is one further special case where we can give a positive answer to Question 2.4,
which is an easy consequence of the following two lemmas.

Lemma 2.5. If Nil(R) is closed under the map (a, b) 7→ ab+ ba+ b2, then Nil(R) is closed
under addition.

Proof. Given a, b ∈ Nil(R) we want to show that a + b ∈ Nil(R). We work by induction on
the index of nilpotency of a. If that index is 1 then a = 0 and there is nothing to prove. For
the inductive step, note that (a + b)2 = a2 + (ab + ba + b2) with a2, ab + ba + b2 ∈ Nil(R).
Since the index of nilpotency of a2 is smaller than that of a, we get (a+ b)2 ∈ Nil(R), hence
a+ b ∈ Nil(R) as needed. □

Lemma 2.6. If Nil(R[x]) ⊆ Nil(R)[x], then Nil(R) is closed under the map (a, b) 7→ ab −
ba+ b2.

Proof. Let a, b ∈ Nil(R). As in the proof of Proposition 2.2, we embed R into a unital ring
R1. Considering that (1−ax)−1 = 1+ax+ · · ·+an−1xn−1 in R1[x] (where a

n = 0), and that
b+ b2x ∈ Nil(R1[x]), we get that

f = (1 + ax+ · · ·+ an−1xn−1)(b+ b2x)(1− ax)

is a nilpotent polynomial in R1[x]. As f ∈ R[x], it follows that f ∈ Nil(R[x]) and hence
f ∈ Nil(R)[x]. The coefficient of f in degree 1 is exactly ab− ba+ b2. □

Corollary 2.7. If R is a ring satisfying Nil(R[x]) ⊆ Nil(R)[x] and the characteristic of R
is 2, then Nil(R) is closed under addition and hence a subring of R. □

With the above results at hand, we can show that the problem of finding a ring with
Nil(R[x]) ⊊ Nil(R)[x] is equivalent to Amitsur’s problem of finding a nil ring such that the
polynomial ring is not nil (note that this problem was solved in [20], see also [17]). One
direction is clear; if we are given a nil ring R such that R[x] is not nil, then the ring R itself
satisfies Nil(R[x]) ⊊ Nil(R)[x]. To get also the converse direction, we show the following:

Proposition 2.8. If a ring R satisfies Nil(R[x]) ⊊ Nil(R)[x] then R contains a nil subring
S such that S[x] is not nil.
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Proof. First assume that R satisfies Köthe’s conjecture. Then S = Nil(R) is a subring of R
by Corollary 2.3. We have Nil(S[x]) ⊆ Nil(R[x]) ⊊ Nil(R)[x] = S[x], hence S[x] is not nil.
Now assume that R does not satisfy Köthe’s conjecture. Then there exists a nil left ideal

S in R such that S ⊈ Nil∗(R). We claim that S[x] is not nil. Indeed, otherwise S[x] is a
radical ring. By the argument given in the first paragraph of the proof of [14, Theorem 2],
it follows that S ⊆ I for a nil two-sided ideal I of R, a contradiction. □

Remark 2.9. Note that if R is an algebra over an uncountable field, then R must satisfy
Köthe’s conjecture by [1, Theorem 10]. Hence in this case we have S = Nil(R) in the above
proof, so that S is actually a subalgebra of R. On the other hand, polynomials over a
nil algebra over an uncountable field are nil by a result of Amitsur [2, Theorem 2]. This
shows that the inclusion Nil(R[x]) ⊆ Nil(R)[x] cannot be proper if R is an algebra over an
uncountable field.

3. Power Series

The problems described in Section 1 retain their meaning if we replace polynomial rings
with power series rings. Thus, we can ask if there exists a ring R satisfying Nil(R[[x]]) ⊊
Nil(R)[[x]], or a ring satisfying Nil(R[[x]]) ⊋ Nil(R)[[x]]. One can quickly observe that Smok-
tunowicz’s example of a nil ring with polynomials not nil answers the first of these two
problems. The following answers the second problem:

Example 3.1. There exists a ring R satisfying Nil(R)2 = 0 and Nil(R)[[x]] ⊊ Nil(R[[x]]).

Proof. We take the ring from [4, Example 1]. Let R = Z⟨a, b : a2 = 0⟩, the unital Z-algebra
generated by a, b subject to the relation a2 = 0. It is known that the left and right zero-
divisors in R are, respectively, exactly Ra and aR; see [8, Example 9.3]. Hence Nil(R) =
Ra ∩ aR and therefore Nil(R)2 = 0. In particular, this implies Nil(R)[[x]] ⊆ Nil(R[[x]]). To
find a series f ∈ Nil(R[[x]]) \ Nil(R)[[x]], consider

f = (1− bx)−1a(1− bx) = (1 + bx+ b2x2 + · · · )a(1− bx)

= a+ (ba− ab)x+ b(ba− ab)x2 + b2(ba− ab)x3 + · · ·
Since a2 = 0, we have f 2 = 0. However, not all coefficients of f are nilpotent since ba− ab /∈
Nil(R). □

Remark 3.2. By Antoine [4, Example 1], the ring in the above example is Armendariz,
hence by [3, Corollary 5.2] it satisfies Nil(R[x]) = Nil(R)[x].

In the following we will give an alternative, universal construction of a ring R with
Nil(R)2 = 0 and with a square-zero power series whose coefficients are not all nilpotent
(which implies Nil(R)[[x]] ⊊ Nil(R[[x]])). The tools developed in the proof of this example
will be needed later when considering polynomials.

Given any power series f =
∑

i∈N aix
i, we see that f 2 = 0 if and only if the following

relations hold among the coefficients:

(3.3) aka0 = −
k−1∑
i=0

aiak−i, for each k ∈ N.

Let R0 denote Z⟨ai (i ∈ N)⟩, the unital ring freely generated by noncommuting variables
indexed by N. Let I be the ideal of R0 generated by the relations in (3.3), and define

R = R0/I.
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Thus, R is the coefficient ring of the universal construction of a unital power series ring with
a square-zero element.

We can well-order the generating variables in R0, by the usual order on the indices, so
that

a0 ≺ a1 ≺ a2 ≺ . . . .

Viewing this as giving a lexicographical order to the variables, we let ≺ also denote the
resulting shortlex order (also called the “length-lexicographical” order) on the monomials of
R0. In other words, the order ≺ on monomials in R0 is first determined by total degree, and
monomials of the same degree are ordered lexicographically. Notice that each monomial that
appears on the right side of the equality in (3.3) is smaller in this order than the monomial
that appears on the left side. The shortlex order is a strict monoid well-ordering on the free
monoid generated by the set {a0, a1, . . .}.

We view the relations in (3.3) as a reduction system, allowing us to replace the monomial
on the left side of the equality with the expression on the right side. (Note that the reductions
are homogeneous in the total degree of a monomial and homogeneous in the total sum of the
indices of a monomial.) To show that repeatedly applying these reductions (a finite number
of times until no more reductions can be made) always produces a unique reduced form for
elements of R, it suffices to check that each overlap (aℓa0)a0 = aℓ(a

2
0), for ℓ ∈ N, “resolves”

in the terminology of Bergman’s Diamond Lemma [7]. The right side of the overlap reduces
immediately to 0, for if k = 0 then (3.3) says a20 = 0. The left side reduces to

−

(
ℓ−1∑
i=0

aiaℓ−i

)
a0 =

ℓ−1∑
i=0

ℓ−i−1∑
j=0

aiajaℓ−i−j =
ℓ−1∑
i=0

ℓ−i−1∑
j=1

aiajaℓ−i−j −
ℓ−1∑
i=0

i−1∑
k=0

akai−kaℓ−i,

where the second equality comes from handling the j = 0 terms. Both of the final double
sums are (up to relabeling the indices) equal to∑

i,j,k∈N : j,k ̸=0,
i+j+k=ℓ

aiajak.

Thus the two double sums cancel, showing that the overlap resolves as needed.
Hereafter, abusing notation slightly, we will identify each variable ai with its image in

the factor ring R. In other words, we now assume that the variables satisfy the relations
given in (3.3). Accordingly, we can write every element in R in reduced form as a Z-linear
combination of monomials of the form

m = ai1ai2 · · · aik
where k ∈ N, and iℓ ̸= 0 whenever ℓ ̸= 1. For every r ∈ R, let supp(r) ⊆ R (the support of r)
denote the set of all monomials m of the above form which appear with nonzero coefficient
in the unique reduced form for r. Note that supp(r) = ∅ exactly when r = 0.
With the help of the next result we will be able to describe the set of nilpotents in R.

Proposition 3.4. Let R be the unital ring generated by variables ai (for i ∈ N) subject only
to the relations given in (3.3). If r, s ∈ R \ {0} satisfy rs = 0, then r ∈ Ra0 and s ∈ a0R.

Proof. We first prove that R can be embedded in the ring R′ = Z⟨a, b : a2 = 0⟩. By the
proof of Example 3.1, we know that f = a +

∑∞
i=1 b

i−1(ba − ab)xi is a square-zero power
series over R′ and hence its coefficients satisfy the relations (3.3). This allows us to define
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a unital ring homomorphism φ : R → R′ by setting φ(a0) = a and φ(ai) = bi−1(ba− ab) for
each integer i ≥ 1.
We claim that φ is injective. Pick any r ∈ R \ {0} and choose any monomial m =

ai1ai2 · · · aik ∈ supp(r). We have

(3.5) φ(m) =

{
bi1−1(ba− ab)bi2−1(ba− ab) · · · bik−1(ba− ab) if i1 ̸= 0,

abi2−1(ba− ab) · · · bik−1(ba− ab) if i1 = 0.

Let < denote the lexicographical order on the set of reduced monomials in R′ (which is not
to be confused with the shortlex order ≺ on R0). For any r′ ∈ R′, let supp(r′) denote the set
of all reduced monomials in R′ which appear with nonzero coefficient in the reduced form
for r′. (The reader should be able to tell from context whether support is being taken in R
or in R′.) From (3.5) we see that the maximal element in supp(φ(m)) with respect to < is,
in both cases,

max supp(φ(m)) = bi1abi2a · · · bika.
Note that this monomial uniquely determines m. Hence, picking m′ to be the <-maximal
element of {max supp(φ(m)) : m ∈ supp(r)}, we conclude that m′ cannot cancel with any
other term in φ(r). Hence φ(r) ̸= 0, showing that φ is indeed injective.

To finish the proof, pick now any r, s ∈ R \ {0} with rs = 0. By left-right symmetry in
the universal property defining R, it suffices to show only that s ∈ a0R. Since φ is injective,
φ(s) is a right zero-divisor in R′ and hence φ(s) ∈ aR′ by [8, Example 9.3]. (One of the
referees kindly pointed out that one can also use the earlier result [6, Lemma 2.16] here, as
well as in Example 3.1.) On the other hand, the previous paragraph shows that if supp(s)
contains a monomial not beginning with a0 then supp(φ(s)) contains a monomial beginning
with b and hence φ(s) /∈ aR′. Thus we must have s ∈ a0R as desired. □

The following theorem is now immediate.

Theorem 3.6. If R is the unital ring generated by variables ai (for i ∈ N) subject only
to the relations (3.3), then Nil(R) = a0R ∩ Ra0 and hence Nil(R)2 = 0. In particular,
Nil(R)[[x]] ⊊ Nil(R[[x]]). □

Remark 3.7. The ring R above is Armendariz since it is a subring of an Armendariz ring
Z⟨a, b : a2 = 0⟩. Hence it satisfies Nil(R[x]) = Nil(R)[x].

The universal construction above is isomorphic to a factor ring of a very special type of
skew differential polynomial ring. To recall the definition of skew differential polynomials,
let S be a ring and let σ : S → S be a ring endomorphism. Further, let δ be a right σ-skew
derivation on S, that is, an additive map δ : S → S satisfying the multiplication rule

δ(st) = sδ(t) + δ(s)σ(t), for each s, t ∈ S.

Note that when S is unital and σ is a unital homomorphism, this rule implies δ(1) = 0. Let
S[x;σ, δ] denote the set of all formal right polynomials in the variable x (i.e., the coefficients
appear on the right of the variable), which take the form

f = s0 + xs1 + · · ·+ xnsn

with s0, s1, . . . , sn ∈ S and n ∈ N. We define addition on these polynomials componentwise,
and multiplication is induced by the multiplication in S, along with the equality

sx = δ(s) + xσ(s), for each s ∈ S.
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Under these operations S[x;σ, δ] is a ring called the right σ-skew δ-differential polynomial
ring. (Another name for this construction is a “generalized Ore extension.” For more
information on this type of skew polynomial rings, and for additional references, we refer the
reader to [16].)

Proposition 3.8. Let R be a unital ring and assume that R = S ⊕ yS (as an Abelian
group) for some unital subring S and some element y ∈ R. Further, assume that the right
annihilator of y in S is zero. Let σ, δ : S → S be the maps defined by the equality

(3.9) sy = δ(s) + yσ(s), for each s ∈ S.

Then the following hold:

(1) σ is a unital ring endomorphism and δ is a right σ-skew derivation on S,
(2) σ is an automorphism if and only if R = S ⊕ Sy and the left annihilator of y in S is

zero, and
(3) if y2 = 0, then δ2 = σ ◦ δ + δ ◦ σ = 0 and R is isomorphic to the factor ring

S[x;σ, δ]/(x2).

Proof. (1) Using (3.9) we have

(s+ t)y = δ(s+ t) + yσ(s+ t),

but also by distributivity and two more uses of (3.9) we obtain

(s+ t)y = sy + ty = δ(s) + yσ(s) + δ(t) + yσ(t) = (δ(s) + δ(t)) + y(σ(s) + σ(t)).

From the direct sum decomposition of R, we see that σ and δ are additive. Similarly, working
with (st)y in two ways (using (3.9), associativity in R, and the direct sum decomposition
of R) we get that σ is multiplicative and δ satisfies the skew derivation axiom. Finally,
computing 1y using (3.9) we get σ(1) = 1 (and δ(1) = 0).

(2) Assume that σ is an automorphism and let s ∈ S be arbitrary. The equality (3.9) then
implies

ys = σ−1(s)y − δ(σ−1(s)) ∈ S + Sy.

Therefore R = S+Sy. Moreover, if sy ∈ S∩Sy then δ(s)+yσ(s) ∈ S, and hence yσ(s) ∈ S.
However, S ∩ yS = {0}, so σ(s) = 0, which implies s = 0. Therefore S ∩ Sy = {0}. This
computation also shows that if sy = 0 then s = 0.
Conversely, assume R = S⊕Sy and assume that the left annihilator of y in S is zero. For

each s ∈ S we can then write
ys = δ′(s) + σ′(s)y

for some maps σ′, δ′ : S → S. We find

ys = δ′(s) + σ′(s)y = δ′(s) + δ(σ′(s)) + yσ(σ′(s)).

In particular, σ ◦ σ′ = idS, and similarly σ′ ◦ σ = idS. Therefore σ is an automorphism.
(3) Assuming y2 = 0, we have for any s ∈ S that

0 = sy2 = (δ(s) + yσ(s))y = δ2(s) + yσ(δ(s)) + yδ(σ(s)) + y2σ2(s)

= δ2(s) + y(σ(δ(s)) + δ(σ(s))).

Hence δ2 = σ ◦ δ + δ ◦ σ = 0.
To prove the isomorphism R ∼= S[x;σ, δ]/(x2), we first check that I = x2S[x;σ, δ] is a

two-sided ideal in S[x;σ, δ], so that I = (x2). For this, it suffices to see that sx2 ∈ I for
every s ∈ S, which can be proved by computing that sx2 = x2σ2(s) (using sx = δ(s)+xσ(s),
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and the work in the previous paragraph). Hence I = (x2) as claimed. One now verifies by
another direct computation that the map

R → S[x;σ, δ]/I, s0 + ys1 7→ s0 + xs1 + I

is the needed isomorphism. □

Let R be the unital ring as described in Proposition 3.4, and let S be the unital subring
generated by the ai for i ∈ N≥1. We clearly have R = S ⊕ a0S, from the reduced form for
elements. Moreover, the right annihilator of a0 in S is zero. Thus, taking y = a0, the previous
proposition applies in full, since a20 = 0. Denoting the induced endomorphism σ and the right
σ-skew derivation δ, we conclude that R is isomorphic to the factor ring S[x;σ, δ]/(x2). By
directly considering the relations (3.3), we see that σ acts on the generators of S by the
action ai 7→ −ai (for each integer i ≥ 1). Hence σ is an automorphism with σ2 = idS.

The following proposition cleanly characterizes zero products in rings as described by
Proposition 3.8, when the ring is subject to some additional conditions.

Proposition 3.10. Let R be a ring as in Proposition 3.8, with y2 = 0, and with σ an
automorphism. If elements u, v ∈ R \ {0} satisfy uv = 0, then u ∈ Sy and v ∈ yS, as long
as

(∗) for any r, s, t ∈ S, if rs+ δ(r)t = 0 then r = 0 or s = 0.

Proof. Let uv = 0 with u, v ∈ R \ {0}, and assume that (∗) holds. Notice that (∗) implies
that S is a domain (by taking t = 0 in its statement).

Our first goal is to show that v ∈ yS. For this purpose we may assume that u ∈ yS,
since otherwise yu ̸= 0 and we may replace u by yu. Writing u = yr and v = s + yt with
r, s, t ∈ S, we now have

0 = uv = yr(s+ yt) = y(rs+ δ(r)t).

Since r ̸= 0, (∗) gives s = 0 and hence v ∈ yS.
In order to see that u ∈ Sy, write u as a “left polynomial” in y (using the fact that σ is

an automorphism), say u = r + sy for some r, s ∈ S, and v = yt with t ∈ S \ {0}. We find

0 = uv = (r + sy)yt = ryt = δ(r)t+ yσ(r)t.

In particular, σ(r)t = 0. Since S is a domain, we have σ(r) = 0, and hence r = 0. Thus
u ∈ Sy as claimed. □

It is possible to now reprove Proposition 3.4 by showing that condition (∗) holds, when S
is taken as in the paragraphs preceding Proposition 3.10. We leave that mundane task to the
enthusiastic reader. However, the motivation for providing Proposition 3.10 is not merely to
give an alternate way to handle Proposition 3.4, but primarily to provide some machinery
that will aid us in working with our main example in Section 5.

4. Polynomials of Small Degree

In this and the next section we return to our main problem of finding a ring R such
that Nil(R)[x] is a proper subset of Nil(R[x]). Note that by Proposition 2.1 the inclusion
Nil(R)[x] ⊆ Nil(R[x]) implies that Nil(R) is a subring of R. We will show that the condition
that Nil(R) is a subring in many cases implies the converse inclusion Nil(R[x]) ⊆ Nil(R)[x].
For example, this will hold if R is an algebra over an infinite field. Moreover, assuming that
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Nil(R) is a subring, we will show that polynomials f ∈ Nil(R[x]) of sufficiently small degree
and small index of nilpotency will satisfy f ∈ Nil(R)[x].
In this section, it will be convenient to work with algebras rather than rings. Thus,

throughout the section, k will be a commutative unital ring, and R in most cases will be
a (not necessarily unital) k-algebra (i.e., R is a ring, with the structure of a left k-module,
such that 1k · a = a and λ · (ab) = (λ · a)b = a(λ · b), for each λ ∈ k and a, b ∈ R). Note that
in this case, saying that Nil(R) is a subring is the same as saying that it is a subalgebra.
Further, this loses no generality, since every ring is a Z-algebra.
In what follows, for any (ordered) collection Λ = (λ1, λ2, . . . , λn) ∈ kn of n elements in k,

we denote by

VΛ =
∏

1≤i<j≤n

(λj − λi)

the Vandermonde determinant associated to λ1, . . . , λn, which is the determinant of the n×n
Vandermonde matrix (λj−1

i )i,j. (As is usual, we take λ0 = 1, for any λ ∈ k.)

Proposition 4.1. Let R be a k-algebra such that Nil(R) is a subalgebra of R. Let Λ be a
collection of n ≥ 1 elements in k, and let f ∈ R[x] be a polynomial with degree at most n. If
fd ∈ Nil(R)[x] for some integer d ≥ 1, then VΛf ∈ Nil(R)[x].

Proof. Write Λ = (λ1, . . . , λn) and f =
∑n

j=0 ajx
j for some elements λi ∈ k and aj ∈ R.

Since fd ∈ Nil(R)[x], then for each λi we know that f(λi)
d ∈ Nil(R), as this is a k-linear

combination of nilpotent elements. Hence f(λi) is nilpotent. Moreover, an is nilpotent (since
adn is the degree nd coefficient of fd).
Consider the system of equations

1 λ1 λ2
1 · · · λn−1

1 λn
1

1 λ2 λ2
2 · · · λn−1

2 λn
2

...
...

...
. . .

...
...

1 λn λ2
n · · · λn−1

n λn
n

0 0 0 · · · 0 1





a0
a1
a2
...

an−1

an

 =


f(λ1)
f(λ2)

...
f(λn)
an

 .

Writing this system as Av = b and multiplying both sides on the left by the adjugate matrix
adj(A), we get

det(A)v = adj(A)b.

As Nil(R) is closed under linear combinations, each entry of the right side is nilpotent. Thus
the same is true for the left side. In other words, det(A)aj ∈ Nil(R) for each j. Since the
upper left n × n block of A is the Vandermonde matrix, we have det(A) = VΛ and hence
VΛaj ∈ Nil(R) for each integer 0 ≤ j ≤ n. □

Corollary 4.2. Suppose R is an algebra over a field F and Nil(R) is a subalgebra. If f ∈ R[x]
has degree at most |F | and fd ∈ Nil(R)[x] for some integer d ≥ 1, then f ∈ Nil(R)[x].

Proof. In the previous proposition take k = F and Λ = (λ1, . . . , λn) where the λi are distinct
elements of F . Then VΛ is nonzero and hence a unit in F , so VΛf ∈ Nil(R)[x] implies
f ∈ Nil(R)[x]. □

In particular, when F is an infinite field, we get:
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Theorem 4.3. If R is an algebra over an infinite field and Nil(R) is a subalgebra, then any
polynomial f ∈ R[x] that has a positive power with nilpotent coefficients already has nilpotent
coefficients. In particular, Nil(R[x]) ⊆ Nil(R)[x]. □

Together with Proposition 2.1, this gives:

Theorem 4.4. If R is an algebra over an infinite field then Nil(R)[x] ⊆ Nil(R[x]) implies
Nil(R)[x] = Nil(R[x]). □

As mentioned in the introduction, Theorem 4.3 simplifies many examples in the literature.
The previous two theorems also place extremely strong restrictions on the structure of any
example of the type we will construct in the next section. Some of Amitsur’s results in [1],
concerning nil algebras over uncountable fields, can also be reinterpreted in the context of
Vandermonde determinants; this was part of the motivation for these results.

For the rest of the section we will repeatedly need the following easy result.

Lemma 4.5. Let R be a k-algebra. For any λ ∈ k and a ∈ R, if λna ∈ Nil(R) for some
integer n ≥ 2, then λa ∈ Nil(R).

Proof. Suppose (λna)m = 0 for some integer m ≥ 1. From the commutativity of λ, we see
that (λa)mn = (λna)mam(n−1) = 0. □

We can now prove another consequence of Proposition 4.1.

Corollary 4.6. Let R be a ring with Nil(R) a subring. Given any integer n ≥ 1 and any
polynomial f ∈ R[x] of degree at most n, if fd ∈ Nil(R)[x] for some integer d ≥ 1, then
(n− 1)!f ∈ Nil(R)[x].

Proof. Apply Proposition 4.1 with k = Z and Λ = (1, 2, . . . , n). By the definition of the
Vandermonde determinant, VΛ in this case divides a power of (n− 1)!, say

(n− 1)!r = mVΛ.

Now VΛf ∈ Nil(R)[x] implies (n − 1)!rf = mVΛf ∈ Nil(R)[x], which readily implies that
(n− 1)!f ∈ Nil(R)[x] by Lemma 4.5. □

Proposition 4.1 does not require that f is square-zero, or even that it is nilpotent, only that
some power has nilpotent coefficients, which is a weak hypothesis. However, our conclusion
is also weak; we only get that a scalar multiple of f , rather than f , has nilpotent coefficients.
For example, if f is of degree 3 then Corollary 4.6 only says that 2f ∈ Nil(R)[x], which is
irrelevant if the characteristic of the ring is 2.

However, if we add the stronger assumption f 2 = 0, we are able to get stronger conclusions.
To help in this derivation we will use the following standard lemma freely (see, for instance,
[10, Lemma 1.5]). We include the proof for completeness.

Lemma 4.7. Let R be a ring such that Nil(R) is closed under multiplication. Let a, b, z ∈ R.

(1) If ab, z ∈ Nil(R), then azb ∈ Nil(R).
(2) If z, zb2 ∈ Nil(R), then zb ∈ Nil(R).

Proof. (1) Since ab is nilpotent so is ba. One might refer to this as the “flip trick” for
nilpotents. Thus, by closure under multiplication, baz ∈ Nil(R). The flip trick applied once
more yields azb ∈ Nil(R).
(2) Since zb2 is nilpotent, by part (1) taking a = zb we have (zb)z(b) ∈ Nil(R). Hence

zb ∈ Nil(R). □
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Proposition 4.1 works because we know that f(λ) is nilpotent, for each λ ∈ k. (We also
used the fact that the leading coefficient, an, is nilpotent.) However, under the stronger
assumption f 2 = 0 we are able to obtain more nilpotents. To give one example, write
f =

∑n
j=0 ajx

j and assume f 2 = 0. Then

a0a2 + a21 + a2a0 = 0,

as this is the coefficient of f 2 at degree 2. Also a20 = 0, so multiplying the displayed equation
on the left by a0 we have

a0a
2
1 = −a0a2a0 ∈ Nil(R).

Thus, by Lemma 4.7(2), we get a0a1 ∈ Nil(R). Note that a0 = f(0) and a1 = f ′(0), where f ′

is the (usual) formal derivative of f . Thus f(0)f ′(0) ∈ Nil(R). Applying the same argument
for the (square-zero) polynomial g = f(x+ λ) with λ ∈ k, we get

f(λ)f ′(λ) ∈ Nil(R)

for each λ ∈ k.
By generalizing the previous computation, we will be able to go beyond the bounds ob-

tained in Proposition 4.1. To that end, for a polynomial f ∈ R[x] over any ring R, let us
say that a set X ⊆ R is sufficient for f if

for each z ∈ Nil(R), zX ⊆ Nil(R) implies zf ∈ Nil(R)[x].

In other words, to guarantee that zf has nilpotent coefficients, it suffices to show that zX
consists of nilpotent elements. Clearly, the set of coefficients of f itself is always sufficient
for f .

Lemma 4.8. Let R be a k-algebra such that Nil(R) is a subalgebra. Let Λ = (λ1, . . . , λn) be
a collection of n ≥ 1 elements in k, and let f =

∑2n+1
j=0 ajx

j ∈ R[x] be a polynomial of degree
at most 2n+ 1. Then the set

X = {f(λ1), . . . , f(λn), f
′(λ1), . . . , f

′(λn), a2n, a2n+1}
is sufficient for the polynomial VΛf .

Proof. Take any z ∈ Nil(R) such that zX ⊆ Nil(R). Consider the following system:

1 λ1 λ2
1 λ3

1 · · · λ2n
1 λ2n+1

1

0 1 · λ0
1 2 · λ1

1 3 · λ2
1 · · · 2n · λ2n−1

1 (2n+ 1) · λ2n
1

1 λ2 λ2
2 λ3

2 · · · λ2n
2 λ2n+1

2

0 1 · λ0
2 2 · λ1

2 3 · λ2
2 · · · 2n · λ2n−1

2 (2n+ 1) · λ2n
2

...
...

...
...

. . .
...

...
1 λn λ2

n λ3
n · · · λ2n

n λ2n+1
n

0 1 · λ0
n 2 · λ1

n 3 · λ2
n · · · 2n · λ2n−1

n (2n+ 1) · λ2n
n

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1





a0
a1
a2
...

a2n
a2n+1

 =



f(λ1)
f ′(λ1)
f(λ2)
f ′(λ2)

...
f(λn)
f ′(λn)
a2n
a2n+1


.

Write this system as Av = b. Multiplying both sides on the left by z · adj(A), where adj(A)
is the adjugate matrix of A, we get

det(A)zv = adj(A)zb.

Since zX ⊆ Nil(R) and Nil(R) is closed under linear combinations, each entry on the right
side is nilpotent. Thus the same is true for the left side. Hence det(A)zaj ∈ Nil(R) for each
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integer j. The matrix A is known as a confluent Vandermonde matrix and its determinant
is equal to V 4

Λ . (For a more general formula see [13, (6.1.34)], and for a proof see [18,
pages 3–5].) Hence V 4

Λzaj ∈ Nil(R), which implies VΛzaj ∈ Nil(R) by Lemma 4.5. Hence
zVΛf = VΛzf ∈ Nil(R)[x], which is what needed to be shown. □

Lemma 4.9. Let R be a k-algebra such that Nil(R) is a subalgebra, let n ∈ N, and let
f =

∑n
j=0 ajx

j ∈ R[x] be a polynomial of degree at most n. If a set X ⊆ R is sufficient for
f , then it is sufficient for the following polynomials g:

(1) g =
∑n

j=0 aj(x+ λ)j = f(x+ λ) for any λ ∈ k,

(2) g =
∑n

j=0 an−jx
j = f(x−1)xn.

Proof. In both (1) and (2), coefficients of g are k-linear combinations of coefficients of f .
Now the conclusion follows immediately from the definition. □

Lemma 4.10. Let R be a k-algebra with Nil(R) a subalgebra, and given an integer n ≥ 1,
let f =

∑n
j=0 ajx

j ∈ R[x] be a polynomial of degree at most n such that f 2 ∈ Nil(R)[x]. If
X ⊆ R is sufficient for f , then so is

(1) X \ Nil(R),
(2) X \ {f ′(λ)} for any λ ∈ k,
(3) X \ {an−1}.

Proof. (1) This follows from the fact that Nil(R) is multiplicatively closed.
(2) First let λ = 0, so that f ′(λ) = f ′(0) = a1. Take z ∈ Nil(R) with z(X \{a1}) ⊆ Nil(R).

Let m ≥ 0 be the minimal nonnegative integer with the property that

am−j
0 zaj0f ∈ Nil(R)[x], for each integer 0 ≤ j ≤ m.

Note that such an integer exists since a0 ∈ Nil(R).
Ifm = 0 then we are done, so assume by way of contradictionm ≥ 1. Pick any nonnegative

integer j ≤ m − 1 and set z′ = am−1−j
0 zaj0. By the definition of m, we have a0z

′f, z′a0f ∈
Nil(R)[x]. In particular,

a0z
′a2, z

′a0a2 ∈ Nil(R)

and hence (by the flip trick) also z′a2a0 ∈ Nil(R). Since f 2 ∈ Nil(R)[x], we have

a0a2 + a21 + a2a0 ∈ Nil(R),

as this is the coefficient of f 2 at degree 2. Multiplying this element on the left by z′, and
considering that Nil(R) is a subring of R, we get z′a21 ∈ Nil(R), and hence z′a1 ∈ Nil(R) by
Lemma 4.7(2).

Since z′(X \ {a1}) ⊆ Nil(R) we have z′X ⊆ Nil(R). Since X is sufficient for f , it follows
that z′f ∈ Nil(R)[x], contradicting the minimality on m. This proves the case when λ = 0.

If λ is arbitrary, we consider the polynomial g = f(x+λ). We have g′(0) = f ′(λ), and also
g2 ∈ Nil(R)[x] as the coefficients of g2 are linear combinations of the coefficients of f 2. Since
X is sufficient for f , it is sufficient for g by Lemma 4.9(1). By what we have shown above it
follows that X \ {g′(0)} is sufficient for g, which in turn gives that this set is sufficient for f
by Lemma 4.9(1).

(3) Consider the polynomial g = f(x−1)xn. We have g2 ∈ Nil(R)[x] and g′(0) = an−1.
By Lemma 4.9(2), X is sufficient for g, hence (2) gives that X \ {g′(0)} is sufficient for g.
Applying Lemma 4.9(2) once again, this set is sufficient for f . □
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We now have a strong extension of Proposition 4.1, if we slightly strengthen the hypothesis
on f .

Theorem 4.11. Let R be a k-algebra such that Nil(R) is a subalgebra of R. Let Λ be a
collection of n ≥ 1 elements in k, and let f ∈ R[x] be a polynomial with degree at most
2n+ 1. If f 2 ∈ Nil(R)[x], then VΛf ∈ Nil(R)[x].

Proof. Fix n and Λ = (λ1, . . . , λn). We will prove the statement by induction on m = deg(f).
When m = 0 the conclusion is clear, so suppose that f is of degree 1 ≤ m ≤ 2n+1 and that
the statement holds for all polynomials of degree less than m.

Let g = VΛf . Writing g =
∑2n+1

j=0 ajx
j, Lemma 4.8 says that the set

X = {g(λ1), . . . , g(λn), g
′(λ1), . . . , g

′(λn), a2n, a2n+1}

is sufficient for VΛg. We claim that it is then sufficient for VΛf = g. Taking z ∈ Nil(R) with
zX ⊆ Nil(R), we have V 2

Λzf = VΛzg ∈ Nil(R)[x] since X is sufficient for VΛg, which in turn
gives VΛzf ∈ Nil(R)[x]. This proves the claim.
Now, since g2 ∈ Nil(R)[x], we have g(λi) ∈ Nil(R) for all i and a2n+1 ∈ Nil(R), and

therefore we can apply Lemma 4.10 to remove all elements of X, and the set will remain
sufficient for g. Hence the empty set is sufficient for g, meaning that zg ∈ Nil(R)[x] for all
z ∈ Nil(R).

Since am is nilpotent (being either 0 or the leading coefficient of g), we have amg, gam ∈
Nil(R)[x]. Hence setting h = g − amx

m, we see that h2 ∈ Nil(R)[x]. However, deg(h) < m,
so by our inductive argument

VΛh ∈ Nil(R)[x].

This shows that VΛaj ∈ Nil(R) for j = 0, . . . ,m− 1. Since also am ∈ Nil(R), it follows that
VΛg ∈ Nil(R)[x]. Thus V 2

Λf ∈ Nil(R)[x] and hence VΛf ∈ Nil(R)[x], which completes the
proof. □

The following corollaries are analogous to Corollaries 4.2 and 4.6:

Corollary 4.12. Let R be an algebra over a field F such that Nil(R) is a subalgebra. If
f ∈ R[x] has degree at most 2|F |+ 1 and f 2 ∈ Nil(R)[x], then f ∈ Nil(R)[x]. □

Corollary 4.13. Let R be a ring with Nil(R) a subring. Given any integer n ≥ 1 and any
f ∈ R[x] of degree at most 2n+ 1, if f 2 ∈ Nil(R)[x] then (n− 1)!f ∈ Nil(R)[x]. □

In particular, taking n = 2 we get:

Corollary 4.14. Let R be a ring with Nil(R) a subring. If f ∈ R[x] has degree at most 5
and f 2 ∈ Nil(R)[x], then f ∈ Nil(R)[x]. □

For polynomials of degree 6, the conclusion of Corollary 4.13 (taking n = 3) is that
2f ∈ Nil(R)[x]. But we can get f ∈ Nil(R)[x] under a weak additional assumption. We were
unable to determine whether an extra condition is necessary. The proof of the following
proposition is quite technical, and the proposition isn’t used in later sections, so readers may
safely skip the proof.

Proposition 4.15. Let R be a ring with Nil(R) a subring and let f =
∑6

j=0 ajx
j ∈ R[x] be a

polynomial of degree 6. If a6Nil(R) = Nil(R)a6 = 0 and f 2 ∈ Nil(R)[x], then f ∈ Nil(R)[x].
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Proof. We have

(4.16) a4a6 + a25 + a6a4 ∈ Nil(R),

as this is the coefficient of f 2 at degree 10. Multiplying by a6 from the left, and considering
that a26 = 0 and a6a4a6 ∈ Nil(R), we have a6a

2
5 ∈ Nil(R). Hence a6a5 ∈ Nil(R) by Lemma

4.7(2). Similarly, multiplying

a0a2 + a21 + a2a0 ∈ Nil(R)

(the coefficient of f 2 at degree 2) by a6 from the left, and considering that a6a0 = 0 and
a6a2a0 ∈ Nil(R) (because a0a6 = 0), we have a6a

2
1 ∈ Nil(R) and hence a6a1 ∈ Nil(R) by

Lemma 4.7(2).
Now apply the same argument to the polynomial g = f(x+ 1). Note that g2 ∈ Nil(R)[x]

and the leading coefficient of g is a6, so g satisfies the same conditions as f . Thus, the above
argument gives that a6g

′(0) = a6f
′(1) is a nilpotent. Hence

(4.17) a6(a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6) ∈ Nil(R).

By Corollary 4.13 we have 2ai ∈ Nil(R) for each i. Since also a6a1, a6a5 ∈ Nil(R), then
(4.17) gives a6a3 ∈ Nil(R).

Now multiplying (4.16) by a6a3 from the left, and considering that a6a3a6 = 0 and
a6a3a4a6 ∈ Nil(R), we have a6a3a

2
5 ∈ Nil(R) and hence a6a3a5 ∈ Nil(R) by Lemma 4.7(2).

Similarly, multiplying (4.16) by a3a6 from the left, and considering that a26 = 0 and a3a6a4a6 ∈
Nil(R) (because a6a3a6 = 0), we have a3a6a

2
5 ∈ Nil(R) and hence a3a6a5 ∈ Nil(R).

Finally, multiplying

a2a6 + a3a5 + a24 + a5a3 + a6a2 ∈ Nil(R)

(the coefficient of f 2 at degree 8) by a6 from the left, and considering that a6a3a5, a6a5a3,
and a6a2a6 are nilpotents (and a26 = 0), we have a6a

2
4 ∈ Nil(R) and therefore a6a4 ∈ Nil(R).

Since a6(a0 + a1 + a2 + a3 + a4 + a5 + a6) = a6f(1) = 0 (as f(1) ∈ Nil(R)), we also
have a6a2 ∈ Nil(R). Thus a6ai ∈ Nil(R) for every nonnegative integer i ≤ 6. Therefore,
h = f − a6x

6 is a polynomial with deg(h) ≤ 5 and h2 ∈ Nil(R)[x], so that h ∈ Nil(R)[x] by
Corollary 4.13. Accordingly, f ∈ Nil(R)[x], as desired. □

Corollary 4.18. Let R be a ring with Nil(R)2 = 0 and let f ∈ R[x] have degree at most 6.
If f 2 ∈ Nil(R)[x] then f ∈ Nil(R)[x]. □

5. The Main Example

In this section we will construct our main example of a ring R with Nil(R)2 = 0 and with
a square-zero polynomial f ∈ R[x] of degree 7 whose coefficients are not all nilpotent. The
polynomial f must satisfy 2f ∈ Nil(R)[x], by Corollary 4.13. So the constructed ring will
have characteristic 2.

Given any degree 7 polynomial f =
∑7

i=0 aix
i, the condition f 2 = 0 is equivalent to the

following fifteen equations:

(5.1)
∑

i,j : i+j=k

aiaj = 0, for 0 ≤ k ≤ 14.

Thus, a natural candidate for the desired ring R would be to take the free unital F2-algebra
on the set {a0, . . . , a7} subject to these relations. However, we must also guarantee that
Nil(R)2 = 0, and it is difficult to fully describe all the nilpotent elements in that ring. There
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are three obvious nilpotents; namely, a0, a7 and f(1) =
∑7

i=0 ai, which already have index
2. Thus, to simplify the situation further, in the hopes of more easily classifying nilpotent
elements, we will force

(5.2) a0 = a7 =
7∑

i=0

ai.

This simplification enables us to eliminate the variables a7 and a6 from this system of gen-
erators and relations. After those eliminations, two equations in (5.1) can be removed; the
first equation a20 = 0 now coincides with the last equation a27 = 0, as well as the sum of
all fifteen equations f(1)2 = 0. The resulting system of relations is somewhat chaotic and
difficult to work with, so it will be convenient to introduce new variables

(5.3)
b0 = a0, b1 = a1, b2 = a2 + a0, b3 = a3 + a1,
b4 = a4 + a2 + a0, and b5 = a5 + a3 + a1,

and express the remaining thirteen equations in terms of these new variables. Note that these
variables generate the same algebra; this selection of new variables was discovered through
trial and error when reducing the number of monomials that appear in the relations.

In order to formally define the ring R, we will first introduce some notations. Let

X = {b0, b1, b2, b3, b4, b5}
be the given set of six symbols, and let ⟨X⟩ be the free monoid on X. We denote by
R0 = F2⟨X⟩ the free unital F2-algebra on the set X. The product in R0 will be denoted by
concatenation, as usual, and elements of ⟨X⟩ will be called words or monomials in R0.
Define the following reduction system in R0:

(R1) b20 7→ 0,
(R2) b1b0 7→ b0b1,
(R3) b2b0 7→ b21 + b0b2,
(R4) b3b0 7→ b2b1 + b1b2 + b0b3,
(R5) b4b0 7→ b0b4,
(R6) b5b0 7→ b0b5,
(R7) b3b1 7→ b22 + b1b3,
(R8) b4b1 7→ b3b2 + b2b3 + b1b4,
(R9) b5b1 7→ b4b2 + b23 + b2b4 + b1b5,
(R10) b5b2 7→ b4b3 + b3b4 + b2b5 + b4b2 + b23 + b2b4,
(R11) b5b3 7→ b24 + b3b5 + b4b3 + b3b4,
(R12) b5b4 7→ b4b5 + b24 + b21, and
(R13) b25 7→ b2b1 + b1b2 + b21.

These reductions come from the equations (5.1) and (5.2), where variables ai are substituted
by bi in accordance with (5.3). Let ≺ denote the shortlex order on ⟨X⟩, where we order the
variables bi via their subscripts. Then ≺ is a strict monoid well-ordering on ⟨X⟩, and the
reductions (R1)–(R13) are compatible with ≺, in the sense that they replace each monomial
by a sum of strictly ≺-smaller monomials.

Proposition 5.4. All ambiguities in the reduction system (R1)–(R13) are resolvable, in the
sense of Bergman’s Diamond Lemma [7].

Proof sketch. One needs to see that all overlaps and inclusions are resolvable. There are
no inclusions, but there are twenty overlaps. Checking that they resolve is a tedious but
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mechanically straightforward task. It can be done manually (computations take a page or
two) or by using one of the standard algebra programs. □

Let I be the (two-sided) ideal of R0 generated by the relations (R1)–(R13). Bergman’s
Diamond Lemma [7, Theorem 1.2], together with Proposition 5.4, implies that every element
of R0/I has a unique canonical form. One possible way to define the needed ring R would be
by letting it equal the quotient ring R0/I. However, for clarity of exposition, we will define
our ring R in another (isomorphic) way. For this purpose denote by ⟨X⟩irr the set of words
in ⟨X⟩ that do not contain, as a subword, any of the thirteen monomials on the left side
of the arrows in (R1)–(R13). We will call the elements of ⟨X⟩irr the irreducible or reduced
words of ⟨X⟩. We are now ready to define our ring R, by letting

(5.5) R = F2⟨X⟩irr

be the F2-subspace of R0 with basis ⟨X⟩irr. This subspace becomes a F2-algebra with respect
to multiplication

r · s = red(rs),

where rs denotes the usual product in R0 and red: R0 → R is the map induced by the
confluent reductions (R1)–(R13). According to [7, Theorem 1.2], the algebra R defined this
way is isomorphic to R0/I.

Remark 5.6. The reason why we defined R as a subspace of R0 rather than the quotient ring
R0/I is to distinguish the product r · s in R from the product rs in R0. This approach will
prove convenient in our computations. For example, using this notation we have b1·b0 ∈ b1·R,
but on the other hand b1 · b0 = b0b1 from reduction (R2) and hence b1 · b0 /∈ b1R. Note that
if r, s ∈ R and rs ∈ R then r · s = red(rs) = rs. In particular, if r, s ∈ ⟨X⟩irr are reduced
words and rs is reduced then r · s = rs.

The remainder of this section is devoted to proving the key property Nil(R)2 = 0. This
will be a consequence of the following complete characterization of zero-products in R:

Theorem 5.7. If r, s ∈ R \ {0} satisfy r · s = 0, then r ∈ R · b0 and s ∈ b0 ·R.

To prove this theorem, we need some additional notation. Let P be the free monoid on
the set {b1, b2, b3, b4, b5}, so P is a submonoid of ⟨X⟩. Let

M = ⟨X⟩irr ∩ P ⊆ P,

which is the set of reduced words that do not contain b0 as a subword. Finally, take S = F2M .
Note that S is a unital subring of R, since the reductions (R7)–(R13) do not involve any
instances of b0. From the reduced forms of elements in R, we have R = S ⊕ (b0 · S), and
the right annihilator of b0 in S is zero. Taking y = b0, we see that all of the conditions
in Proposition 3.8 hold, where the induced map σ is the identity map on S and the (right
σ-skew) derivation δ : S → S satisfies δ(s) = b0 · s+ s · b0 for each s ∈ S. Since b0 · b0 = 0 in
R, Proposition 3.10 also applies. Proving Theorem 5.7 thus reduces to showing the following
fundamental claim:

Lemma 5.8. If r, s, t ∈ S and r, s ̸= 0, then

(5.9) r · s ̸= δ(r) · t.
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Thus, for the remainder of this section, we will only work with the ring S. In particular,
the reductions (R1)–(R6) are only relevant when dealing with δ(r), on the right side of (5.9).

Rather than working with the shortlex order ≺, we find it more convenient to work with
the lex(icographical) order. Thus, in this section, < will always denote the lex order on
P , except when denoting the standard order on Z, as context dictates. When we speak of
one monomial being larger or smaller than another, we mean with respect to the lex order.
(The empty monomial, 1, is the smallest monomial.) When we write maxA, for some finite
subset A ⊆ P , we will mean the lex-maximal element of A, and similarly minA will be the
lex-minimal element.

When we speak of the support of an element s ∈ S, we mean the finite set supp(s) ⊆ M
such that

s =
∑

m∈supp(s)

m.

The support is empty only when s = 0.
Also, for any monomial m ∈ P , let deg(m) be the total degree of m, i.e., the total number

of letters in the word m. It is an important observation that the reductions (R7)–(R13)
are homogeneous—they preserve the degree of monomials. More precisely, if p, q ∈ M and
m ∈ supp(p · q), then deg(m) = deg(p) + deg(q). This property will be used freely.

Rather than approach Lemma 5.8 directly, we will instead build up, through a sequence of
lemmas, information about the ring S that we will use to identify an element in the support
of the left side of (5.9) which doesn’t belong to the support of the right side. The heart of
the proof comes from handling the case when r is homogeneous of degree 1, and many of
the lemmas below will either deal with that case, or provide means whereby we can reduce
to that case.

In the following lemma we give some basic properties of the lex order on P . Since the
properties are well known, the proof is omitted.

Lemma 5.10. For every a, b ∈ P , the following hold:

(1) a < b if and only if ca < cb for every c ∈ P , and
(2) if a ≤ b then either b ∈ aP or ac < b for every c ∈ P . □

Remark 5.11. Without some additional constraint, if a < b then we do not necessarily
have ac < bc; for instance, take a = 1, b = b1, and c = b2. Thus, the order of the products in
(1) above matters. This is one of the reasons why we needed to use the shortlex order when
formulating Proposition 5.4, the other being that there are infinite <-decreasing chains such
as

b2 > b1b2 > b21b2 > . . . .

Note that the Diamond Lemma [7, Theorem 1.2] applies only when the partial order on
the monoid ⟨X⟩ is compatible with the multiplication and satisfies the descending chain
condition.

A crucial property of the system (R7)–(R13), or even the full system (R1)–(R13), is that
those reductions send monomials to sums of lex-smaller monomials. More formally:

Lemma 5.12. For every a, b ∈ M and c ∈ supp(a · b), we have either c = ab (if ab is
reduced) or c < a. In particular, c ≤ ab.

Proof. Only a finite number of reductions are needed to put a · b into reduced form. When
that number is zero, then c = ab. So, by recursion and Lemma 5.10, it suffices to show that
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if ab is not reduced, then after a single reduction it is a sum of monomials each <-smaller
than a. Since a, b ∈ M , the only way ab is not reduced is if a = m1bi and b = bjm2 for some
m1,m2 ∈ M , and bibj is not reduced. Therefore

ab = m1bibjm2 7→
∑

bkbℓ∈supp(bi·bj)

m1bkbℓm2,

and by inspecting the reductions we see that for each integer k that occurs in the sum, we
have k < i. Thus, each monomial in the sum on the right is smaller than a. □

The next few lemmas help codify which monomials may appear in (5.9).

Lemma 5.13. Let r, s ∈ S be nonzero elements, where r is homogeneous, and suppose that
u = max supp(r) satisfies u /∈ Mb5. Then r · s ̸= 0. Moreover, putting w = max supp(r · s)
we have one of the following cases:

(1) w ∈ uM ,
(2) supp(s) ⊆ b1M , u ∈ Mb3, and w ∈ u0b

2
2M where u = u0b3, or

(3) supp(s) ⊆ b1M , u ∈ Mb4, and w ∈ u0b3b2M where u = u0b4.

Proof. If u = 1, then r = 1 and the statement is trivial. Thus suppose that u ̸= 1.
First consider the case u ∈ Mb1∪Mb2. By inspecting (R7)–(R13), we see that b1M∪b2M ⊆

M (i.e., multiplying a reduced monomial in S by b1 or b2 from the left keeps it reduced).
Thus, for each q ∈ M we have uq ∈ M and hence u · q = uq. Therefore, multiplying
r = u+

∑
p∈supp(r)\{u} p and s =

∑
q∈supp(s) q, we get

(5.14) r · s =
∑

q∈supp(s)

uq +
∑

p∈supp(r)\{u}

p · s.

For every p ∈ supp(r)\{u}, q ∈ supp(s), and v ∈ supp(p ·q), we have v ≤ pq by Lemma 5.12.
Moreover, pq < u by the homogeneity of r and Lemma 5.10(2), and therefore v < u. Hence,
monomials in the second sum of (5.14) are strictly smaller than monomials in the first sum,
and therefore the maximal monomial in (5.14) is exactly uq where q = max supp(s). This
gives (1).

Now consider the case u ∈ Mb3 ∪ Mb4 and supp(s) ⊈ b1M . In this case, decompose
s = s1 + s2 where s1, s2 ∈ S with supp(s1) ∩ b1M = ∅, supp(s2) ⊆ b1M , and s1 ̸= 0. Notice
that uq ∈ M and hence u · q = uq for each q ∈ supp(s1). Hence, similarly as above we get

r · s =
∑

q∈supp(s1)

uq +
∑

q∈supp(s2)

u · q +
∑

p∈supp(r)\{u}

p · s.

Monomials in the third sum are smaller than u by the same argument as above. Moreover,
monomials in the second sum are smaller than u by Lemma 5.12. Since monomials in the
first sum are all greater than or equal to u, we conclude that max supp(r · s) = uq where
q = max supp(s1), which gives (1).

We now only need to consider when supp(s) ⊆ b1M , and u ∈ Mb3 or u ∈ Mb4. We first
consider the case u ∈ Mb3. Write u = u0b3 with u0 ∈ M , and note that u0 /∈ Mb5, otherwise
u0b3 /∈ M by (R11). We first prove that

max supp(r · b1) = u0b
2
2.
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From (R7) we get u · b1 = u0b3 · b1 = u0b
2
2 + u0 · b1b3. (Note that u0b

2
2 is reduced since

u0 /∈ Mb5.) Thus, multiplying r = u+
∑

p∈supp(r)\{u} p and b1 gives

(5.15) r · b1 = u0b
2
2 + u0 · b1b3 +

∑
p∈supp(r)\{u}

p · b1.

By Lemma 5.12, monomials in the second term are smaller than or equal to u0b1b3 and
hence smaller than u0b

2
2. We argue that monomials in the last term are also smaller than

u0b
2
2. Taking any p ∈ supp(r) \ {u}, by Lemma 5.12 it suffices to prove that pb1 < u0b

2
2.

Since p < u0b3 and r is homogeneous, we have p ≤ u0b2. Hence Lemma 5.10(2) gives either
u0b2 ∈ pM (which forces p = u0b2 by homogeneity) or pb1 < u0b2. In both cases we get
pb1 < u0b

2
2 as claimed. This shows that the maximal monomial in (5.15) is u0b

2
2.

Now, to complete this case, write s = b1s1 with s1 ∈ S. Since max supp(r · b1) = u0b
2
2 ∈

Mb2, the case in the second paragraph of this proof then gives

max supp(r · s) = max supp((r · b1) · s1) ∈ u0b
2
2M.

Thus (2) holds.
A similar argument in the case when u ∈ Mb4 yields (3); the details are left to the

reader. □

The next lemma shows that the left side of (5.9) is nonzero when r is homogeneous of
degree 1, and it gives bounds on the lex-maximal element as well.

Lemma 5.16. Let r, s ∈ S \ {0}, where r is homogeneous of degree 1. Then r · s ̸= 0.
Moreover, if r ̸= b1 then max supp(r · s) ≥ b2, and if b3 ∈ supp(r) then max supp(r · s) ≥ b22.

Proof. For any q ∈ M , we see that b1 · q = b1q, as a quick look at the reductions reveals. In
particular, if r = b1, then r · s ̸= 0.

Assume now that r ̸= b1. Our main goal is to prove that there is some monomial in
supp(r · s) not beginning with b1, and in particular r · s ̸= 0. Note that since every element
of supp(b1 · s) begins with b1, the monomials of supp(r · s) not beginning with b1 are exactly
the same as those of supp((r− b1) · s). Thus, without loss of generality, for the remainder of
the proof we assume b1 /∈ supp(r).
Next we consider the case b5 /∈ supp(r). In this case, r ·s ̸= 0 follows directly from Lemma

5.13. Moreover, denoting w = max supp(r · s), Lemma 5.13 yields the following cases:

w ∈ b2M, if max supp(r) = b2,
w ∈ b3M ∪ b22M, if max supp(r) = b3,
w ∈ b4M ∪ b3b2M, if max supp(r) = b4.

Hence w ≥ b2 holds under all three cases, with w ≥ b22 as soon as r ̸= b2 (i.e., max supp(r) >
b2). This proves the claim for this case.

We assume for the rest of the proof that b5 ∈ supp(r). Write r = b5 + r′ with supp(r′) ⊆
{b2, b3, b4}. We will consider each of the eight possibilities for r′; these cases are organized
to take advantage of arguments that pass from one case to another.

Let T denote the subring of S generated by reduced monomials without b5 as a subword—
this is a subring since (R7)–(R8) do not involve b5 in any way. We have

(5.17) t · b5 + b5 · t ∈ T for every t ∈ T ,

which is established using the reductions (R9)–(R12) and induction on degrees of monomials
in T . Hence we can write every element in S as v+ b5 ·w for some v, w ∈ T . Moreover, since
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b5 ∈ supp(r), we can also write such an element as v + r · w for some v, w ∈ T . Using this
idea, we can therefore decompose s as

s = s1 + r · s2
with s1, s2 ∈ T . Multiplying this equation on the left by r we get

(5.18) r · s = r · s1 + r · r · s2.
We have r · r = (b5 + r′) · (b5 + r′) ∈ T ; this is a simple consequence of (5.17) and the fact
that b5 · b5 ∈ T by (R13). Hence r · r · s2 ∈ T . Moreover, r · s1 + b5 · s1 = r′ · s1 ∈ T and
hence, by (5.17) once again, r · s1 + s1 · b5 ∈ T . Thus (5.18) gives r · s = s1 · b5 + s′ where
s′ ∈ T . In particular,

(5.19) pb5 ∈ supp(r · s) for every p ∈ supp(s1).

We reduce to the case supp(s1) ⊆ b1M ∪ b2b1M . In fact, if this condition is not satisfied
then we can find p ∈ supp(s1) such that either p = 1 or p = b2 or p ≥ b22. In all three cases
we have pb5 ≥ b22, and since also pb5 ∈ supp(r · s) by (5.19), we conclude that r · s ̸= 0 and
max supp(r · s) ≥ b22, which finishes the proof.

Case 1: b3 /∈ supp(r).
In this case, we only need to show that max supp(r · s) ≥ b2, rather than ≥ b22. The

argument of the previous paragraph lets us reduce to supp(s1) ⊆ b1M . Writing s1 = b1s
′
1

with s′1 ∈ T , then (5.18) gives

(5.20) r · s = r1 · s′1 + r2 · s2
where r1 = r · b1 and r2 = r · r are homogeneous polynomials of degree 2.
Case 1.1: r′ = 0 or r′ = b4. We compute directly (using (R8), (R9), (R12) and (R13))

that max supp(r1) = b4b2 and max supp(r2) = b2b1. By Lemma 5.13, it follows that either

s′1 = 0 or max supp(r1 · s′1) ∈ b4b2M,

and that either
s2 = 0 or max supp(r2 · s2) ∈ b2b1M.

Hence, if s′1 ̸= 0 then max supp(r · s) = max supp(r1 · s′1) ≥ b4b2 ≥ b2. Otherwise s2 ̸= 0
(because s ̸= 0) and max supp(r · s) = max supp(r2 · s2) ≥ b2b1 ≥ b2.
Case 1.2: r′ = b2 or r′ = b4 + b2. In this case we compute max supp(r1) = b4b2 and

max supp(r2) = b4b3. By Lemma 5.13 we have

s′1 = 0 or max supp(r1 · s′1) ∈ b4b2M,

and similarly
supp(s2) ⊆ b1M or max supp(r2 · s2) ∈ b4b3M.

Thus, if supp(s2) ⊈ b1M then max supp(r · s) = max supp(r2 · s2) ≥ b4b3 ≥ b2. Hence we
may assume that s2 = b1s

′
2 for some s′2 ∈ T .

If r′ = b2, then we take s′′1 = s′1 + (b1 + b2) · s′2. We can rewrite (5.20) as

r · s = r1 · s′1 + r2 · b1s′2 = r1 · (s′′1 + (b1 + b2) · s′2) + r2 · b1s′2 = r1 · s′′1 + r′2 · s′2
where r′2 = r1 · (b1 + b2) + r2 · b1. Note that r′2 is a homogeneous polynomial of degree 3, and
we can check directly that max supp(r′2) = b2b4b2. Thus by Lemma 5.13 we have either

s′2 = 0 or max supp(r′2 · s′2) ∈ b2b4b2M,
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and also either
s′′1 = 0 or max supp(r1 · s′′1) ∈ b4b2M.

Hence, if s′′1 ̸= 0 then max supp(r · s) ≥ b4b2 ≥ b2. Otherwise s′2 ̸= 0 (since s ̸= 0) and
max supp(r · s) ≥ b2b4b2 ≥ b2 as desired.

If r′ = b4 + b2 then we use the same argument, except that in this case we take s′′1 =
s′1 + b2 · s′2. Then (5.20) gives

r · s = r1 · s′1 + r2 · b1s′2 = r1 · (s′′1 + b2 · s′2) + r2 · b1s′2 = r1 · s′′1 + r′2 · s′2
where r′2 = r1 · b2 + r2 · b1. We check that max supp(r′2) = b2b4b2, so that the conclusion is
the same as above.

Case 2: b3 ∈ supp(r).
Recall that we are assuming that supp(s1) ⊆ b1M ∪ b2b1M . Write s1 = b1s

′
1 + b2b1s

′′
1 with

s′1, s
′′
1 ∈ T . Then (5.18) becomes

(5.21) r · s = r · (b1s′1 + b2b1s
′′
1) + r · r · s2 = r1 · s′1 + r2 · s′′1 + r3 · s2

where r1 = r · b1, r2 = r · b2b1 and r3 = r · r. Note that r1, r3 are homogeneous of degree 2
and r2 is homogeneous of degree 3. We can check that, for each of the four cases for r′, we
always get max supp(r1) = b4b2, max supp(r2) = b4b

2
2 and max supp(r3) = b24. Thus, if s2 ̸= 0

then Lemma 5.13 gives

max supp(r · s) = max supp(r3 · s2) ∈ b24M ∪ b4b3b2M

and thus max supp(r · s) ≥ b22. Hence we may assume that s2 = 0.
Case 2.1: r′ = b4 + b3 or r′ = b4 + b3 + b2. We set s′′′1 = s′1 + b2 · s′′1. Rewriting (5.21) we

get
r · s = r1 · (s′′′1 + b2 · s′′1) + r2 · s′′1 = r1 · s′′′1 + r′2 · s′′1

where r′2 = r1 · b2 + r2. We compute max supp(r′2) = b3b2b1. Hence, if s′′′1 ̸= 0 then Lemma
5.13 gives

max supp(r · s) = max supp(r1 · s′′′1 ) ∈ b4b2M.

Otherwise s′′1 ̸= 0 and hence Lemma 5.13 gives

max supp(r · s) = max supp(r′2 · s′′1) ∈ b3b2b1M.

Thus we have max supp(r · s) ≥ b22 in any case.
Case 2.2: r′ = b3 or r′ = b3 + b2. We use the same argument, except that in this case we

set s′′′1 = s′1 + (b1 + b2) · s′′1. Then (5.21) gives

r · s = r1 · (s′′′1 + (b1 + b2) · s′′1) + r2 · s′′1 = r1 · s′′′1 + r′2 · s′′1
where r′2 = r1 · (b1 + b2) + r2. We have max supp(r′2) = b3b2b1, so the conclusion is the same
as above. □

Our next step is to investigate the right side of (5.9). Particularly, we are interested in the
possible monomials belonging to the support of δ(r). Recall that we defined δ(r) = b0·r+r·b0.
The following lemma captures the information we will need.

Lemma 5.22. For every u ∈ M , t ∈ S, and v ∈ supp(δ(u) · t), then v < u. Moreover, if
u = pbi for some p ∈ M and 1 ≤ i ≤ 5, then

(1) v < p for i ∈ {1, 4, 5},
(2) v < pb2 for i = 2, and



NILPOTENT POLYNOMIALS AND NILPOTENT COEFFICIENTS 23

(3) v < pb22 for i = 3.

Proof. We use induction on deg(u). If u = 1 then δ(u) = 0 and all the inequalities hold
vacuously. Assuming deg(u) ≥ 1, write u = pbi for some p ∈ M and 1 ≤ i ≤ 5, with
deg(p) < deg(u). Then δ(u) = δ(p) · bi + p · δ(bi), hence v ∈ supp(δ(u) · t) yields either
v ∈ supp(δ(p) · bi · t) or v ∈ supp(p · δ(bi) · t).
In the first case, the inductive hypothesis gives v < p, and hence also v < pbi = u, as

desired. In the second case, the only nontrivial possibilities are i = 2 and i = 3, since
otherwise δ(bi) = 0. If i = 2 then δ(bi) = b21, hence v ∈ supp(p · b21 · t). By Lemma 5.12
it follows v < pb2 = u. If i = 3 then δ(bi) = b2b1 + b1b2, hence v ∈ supp(p · b1b2 · t) or
v ∈ supp(p · b2b1 · t). As before, we apply Lemma 5.12 to conclude that

v < pb22 < pb3 = u.

This completes the inductive step. □

Let r, s, t ∈ S be as in Lemma 5.8. There is one immediate simplification we can make
when checking the nonequality (5.9). If r ̸= 0 then b1 · r = b1r ̸= 0. Also δ(b1 · r) =
b1 ·δ(r)+δ(b1) ·r = b1 ·δ(r). Therefore, after replacing r by b1 ·r if necessary, we now assume
1 /∈ supp(r).

Before finally proving the nonequality (5.9), we need some more notation. For each p ∈ M
let Ip = {i ∈ {1, 2, 3, 4, 5} : pbi ∈ supp(r)}. (Note that Ip relies implicitly on r. We did
not include r in the notation for simplicity, and we will continue to follow this notational
choice.) Further, let A = {p ∈ M : Ip ̸= ∅}. We can thus decompose r in the form

(5.23) r =
∑
p∈A

∑
i∈Ip

pbi

 .

We think of each p ∈ A as a “left prefix” of the homogeneous element
∑

i∈Ip bi, which has
degree 1 and is thus amenable to the work in our previous lemmas.

Let pmax = maxA. The monomial pmax is an important element of A, but there is another
monomial that plays an even more critical role. The definition of this monomial is somewhat
complicated. First, define

A1 = {p ∈ A : pmax ∈ pb1M and Ip ̸= {1}} and

A2 = {p ∈ A : pmax ∈ pb2M, 3 ∈ Ip, and pb2biM ∩ supp(r) = ∅ for each i ≥ 2}.
One may think of the conditions defining the sets A1 and A2 as collecting those p ∈ A which
can extend to the right only in certain ways. We then put

(5.24) p0 =

{
minA1 ∪ A2 if A1 ∪ A2 ̸= ∅,
pmax otherwise.

From the first defining condition in both A1 and A2, we see that in every case

(5.25) pmax ∈ p0M.

We define one further auxiliary monomial

q0 =


p0 if Ip0 = {1},
p0b2 if 3 /∈ Ip0 and Ip0 ̸= {1},
p0b

2
2 if 3 ∈ Ip0 .
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The monomial q0 is related to some of the bounds we found in the previous lemmas, and
helps simplify the statement of the following lemma.

Lemma 5.26. If p ∈ A, then one of the following three conditions holds:

(1) pm < q0 for each m ∈ M ,
(2) p0 ∈ pM , or
(3) p = p0b2, Ip = {1}, and 3 ∈ Ip0.

Proof. Consider the case when deg(p) ≤ deg(p0). If p > p0, then p > pmax by (5.25) and
Lemma 5.10(2), which is impossible. Thus p ≤ p0 and hence either p0 ∈ pM or pm < p0 ≤ q0,
for each m ∈ M , by Lemma 5.10.

Now assume deg(p) > deg(p0). If p < p0, then Lemma 5.10(2) tells us that condition (1)
holds. So we may assume p ≥ p0. By Lemma 5.10(2) we get either p > p0m for each m ∈ M
or p ∈ p0M . The first case contradicts (5.25), so that p ∈ p0M . There are now three cases
to consider, according to how p0 was defined.

First, if p0 ∈ A1 then p ≤ pmax ∈ p0b1M . As deg(p) > deg(p0), we must have p ∈ p0b1M .
Therefore, pm < p0b2 ≤ q0 for each m ∈ M .
Second, if p0 ∈ A2 then p ≤ pmax ∈ p0b2M . As deg(p) > deg(p0), either p ∈ p0b1M or

p ∈ p0b2M . When p ∈ p0b1M , the same analysis as in the previous paragraph still works;
we may thus assume p ∈ p0b2M . The last defining condition for A2 then tells us that either
condition (3) of this lemma holds, or p ∈ p0b2b1M . In the latter case, pm < p0b

2
2 = q0 for

each m ∈ M .
Third, and finally, if A1∪A2 = ∅, then this contradicts the fact that deg(p) > deg(p0) and

p ≥ p0 = pmax. □

We are now prepared to prove Lemma 5.8.

Proof of Lemma 5.8. Let r, s, t ∈ S with r, s ̸= 0, and 1 /∈ supp(r). Let pmax, p0, and q0 be
as defined above. Also let s′ be the homogeneous component of s of largest degree. Our
analysis relies heavily on the decomposition (5.23).

By Lemma 5.16, we know that
(∑

i∈Ip0
bi

)
·s′ ̸= 0. Let u be the maximal monomial in the

support of this product. By the additional information in Lemma 5.16, we know that u ≥ b22
when 3 ∈ Ip0 , and also that u ≥ b2 when Ip0 ̸= {1}. Notice that p0 /∈ Mb5 since Ip0 ̸= ∅.
Further p0 /∈ Mb3 ∪Mb4 if 1 ∈ Ip0 . Therefore q = p0u is a reduced monomial. Further, this

must be the maximal monomial in the support of p0 ·
(∑

i∈Ip0
bi · s′

)
by Lemma 5.10(1) and

Lemma 5.12. Clearly, q = p0u ≥ q0.
Now, just from degree considerations, we see that

q ∈ supp

∑
i∈Ip0

p0bi · s

 .

We will show, for each p ∈ A \ {p0} and each

w ∈ supp

∑
i∈Ip

pbi · s

 ,

that w ̸= q, thus showing that q belongs to the support of the left side of (5.9). We do this
by analyzing the three cases that arise in Lemma 5.26, separately. If condition (1) of Lemma
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5.26 holds, then Lemma 5.12 immediately gives w ≤ pm < q0 ≤ q (for some m ∈ M). If
condition (2) holds, with p ̸= p0, then deg(p) < deg(p0) and hence deg(w) < deg(q). Finally,
if condition (3) holds, then

∑
i∈Ip pbi = pb1 = p0b2b1, and then Lemma 5.12 gives us the first

inequality in the chain

w ≤ p0b2b1m < p0b
2
2 = q0 ≤ q,

for some m ∈ M , with the last equality coming from the fact that 3 ∈ Ip0 (again from
condition (3) of Lemma 5.26).

All that remains is to show that q does not belong to the support of the right side of (5.9).
It suffices to show, for each p ∈ A, each i ∈ Ip, and each

v ∈ supp(δ(pbi) · t),

that v < q0. We again do this by cases. If condition (1) of Lemma 5.26 holds, then the
inequality in the first sentence of Lemma 5.22 gives us v < pbi < q0. If condition (3) of
Lemma 5.26 holds, then pbi = p0b2b1 and the inequality in the first sentence of Lemma 5.22
yields v < p0b2b1 < p0b

2
2 = q0. Thus, only condition (2) of Lemma 5.26 remains.

Write p0 = pm for some m ∈ M . For i ∈ {1, 4, 5}, then Lemma 5.22(1) gives us v < p ≤
p0 ≤ q0.

For i = 2, then Lemma 5.22(2) gives us v < pb2. When m = 1 we have pb2 = p0b2 ≤ q0,
which suffices. Assuming m ̸= 1, suppose by way of contradiction that m ∈ b1M . By (5.25)
we find

pmax ∈ p0M = pmM ⊆ pb1M.

But also Ip ̸= {1} (since 2 ∈ Ip), and hence p ∈ A1, contradicting the minimality of
p0 = pm > p. Therefore m /∈ b1M , and hence v < pb2 ≤ pm = p0 ≤ q0.

For i = 3, then Lemma 5.22(2) gives us v < pb22. When m = 1 we have pb22 = p0b
2
2 = q0,

so assume m ̸= 1. Then p < p0 and so p /∈ A1 ∪ A2 (by the minimality assumption on p0).
Just as in the previous paragraph, from knowing p /∈ A1 we have m /∈ b1M . If m ≥ b22 then
v < pb22 ≤ pm = p0 ≤ q0. Thus either m ∈ b2b1M or m = b2.
First consider the possibility that m ∈ b2b1M . As pmax ∈ p0M ⊆ pb2b1M and 3 ∈ Ip, we

see that p /∈ A2 implies that pb2bjm
′ ∈ supp(r) for some m′ ∈ M and j ≥ 2. If m′ ̸= 1, this

would contradict the maximality of pmax ∈ pb2b1M . Thus m′ = 1, entailing pb2 ∈ A1 (since
then j ∈ Ipb2 and pmax ∈ pb2b1M), contradicting the fact that pb2 < p0.
Finally, suppose that m = b2, so that p0 = pb2. If Ip0 ̸= {1}, then

v < pb22 = p0b2 ≤ q0.

Thus, we may assume Ip0 = {1}, which implies p0 /∈ A1 ∪ A2, hence p0 = pmax. From the
maximality of pmax, and the fact that Ipmax = {1}, we have

pb2M ∩ supp(r) = pmaxM ∩ supp(r) ⊆ {pmax, pmaxb1}.

Thus p satisfies all the conditions to belong to A2, showing that this case cannot happen. □

Having proved Lemma 5.8, the proof of Theorem 5.7 is now complete. Hence, we are ready
to state:

Theorem 5.27. There exists a ring R such that Nil(R)2 = 0 and Nil(R)[x] ⊊ Nil(R[x]).

Proof. By Theorem 5.7, the ring R defined in (5.5) satisfies Nil(R) ⊆ b0 · R ∩ R · b0. As
b20 = 0, it follows that Nil(R)2 = 0. Clearly, this also implies that Nil(R)[x] ⊆ Nil(R[x]).
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Let f ∈ R[x] be defined as

f = b0 + b1x+ (b0 + b2)x
2 + (b1 + b3)x

3 + (b2 + b4)x
4 + (b3 + b5)x

5 + (b4 + b5)x
6 + b0x

7.

Note that this is exactly the polynomial from the beginning of this section, where we used
(5.2) and substitutions (5.3). One can check using (R1)–(R13) that f squares to zero as a
polynomial over R. Moreover, b1 /∈ Nil(R) since bn1 ∈ ⟨X⟩irr for each integer n ≥ 1, and
hence f /∈ Nil(R)[x]. □

We conclude this section by explaining the role of our example in the theory of Armendariz
rings. In [3], Antoine introduced a generalization of Armendariz rings called nil-Armendariz
rings. These are unital rings R with the property that for any two polynomials f =

∑m
i=0 aix

i

and g =
∑n

j=0 bjx
j in R[x], if fg ∈ Nil(R)[x] then aibj ∈ Nil(R) for all integers i, j ≥ 0.

Antoine derived many properties of nil-Armendariz rings, such as the fact that Armendariz
rings are nil-Armendariz. If R is nil-Armendariz then it satisfies the inclusion Nil(R[x]) ⊆
Nil(R)[x], and Nil(R) forms a subring of R.

Antoine in [3, Question 2] (see also the diagram on page 4133 of [4]) raised the question
whether every unital ring R such that Nil(R) is a subring (i.e., R is a NR ring) is nil-
Armendariz. With our example at hand, we can now answer this question:

Corollary 5.28. There exists a unital, NR ring that is not nil-Armendariz.

Proof. The ring R constructed above satisfies Nil(R)2 = 0, hence it is a NR ring. By the
contrapositive of [3, Lemma 5.1], the ring R is not nil-Armendariz. □

Remark 5.29. As shown by Antoine, nil-Armendariz rings are exactly those rings that are
Armendariz modulo the upper nilradical, see [3, Theorem 3.5]. Also note that a ring R is
NR if and only if R/Nil∗(R) is NR; here Nil∗(R) is the upper nilradical, as usual. Hence,
Antoine’s question is actually equivalent to the question whether every unital NR ring R
with Nil∗(R) = 0 is Armendariz.

It may be interesting to notice that the ring R we have constructed satisfies Nil∗(R) = 0.
To prove this, take any r ∈ Nil∗(R). Since Nil(R) = b0 · R ∩ R · b0 ⊆ b0S, we may write
r = b0s for some s ∈ S. Now,

b2 · r = b2 · b0s = (b0b2 + b21) · s = b0b2s+ b21s.

Since b2 · r ∈ Nil(R) ⊆ b0S, it follows that b21s = 0 and therefore s = 0. Hence r = 0 as
desired.

Remark 5.30. Note that F2⟨b1, b2⟩ ⊆ R is free in the variables b1 and b2. As pointed
out by one of the referees, this may be of interest as Smoktunowicz has constructed a nil
algebra whose iterated polynomial extension contains a free subalgebra. As far as we know
it is an open question how many iterations of the polynomial extension are needed, but our
construction may shed light on that question.

6. Final Remarks

In this section we study the connections between the different properties studied in this
paper. In Section 2 we have shown that each of the inclusions between the sets Nil(R)[x]
and Nil(R[x]) is related to the NR property for the ring R. The following proposition
describes some more natural situations where we can get information on the sets Nil(R[x])
and Nil(R)[x]. For convenience, below when we write S ⊆ R, S ≤ R, or S ⊴ R, we mean,
respectively, that S is a subset, subring, or (two-sided) ideal of R.
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Proposition 6.1. For any ring R the following hold:

(1) Nil(R) ≤ R if and only if Nil(R)[x] ≤ R[x].
(2) Nil(R) ⊴ R if and only if Nil(R)[x] ⊴ R[x].
(3) Nil(R[x]) ≤ R[x] if and only if Nil(R)[x] = Nil(R[x]).
(4) If Nil(R) ⊴ R then Nil(R[x]) ⊆ Nil(R)[x].
(5) Nil(R[x]) ⊴ R[x] if and only if both Nil(R)[x] ⊆ Nil(R[x]) and Nil(R) ⊴ R.

Proof. (1) and (2) are straightforward verifications, and (3) is [21, Corollary 2.5]. To prove
(4), assume that Nil(R) is an ideal. Then the factor ring R = R/Nil(R) is defined and
has no nonzero nilpotent elements. Thus Nil(R[x]) = 0, as any leading term of a nilpotent
polynomial must have been zero. Under the natural map φ : R[x] → R[x], the set Nil(R[x])
maps into Nil(R[x]) = 0. Hence Nil(R[x]) ⊆ ker(φ) = Nil(R)[x].
(5): Assuming Nil(R[x]) ⊴ R[x], we trivially have Nil(R) ⊴ R, and also Nil(R)[x] =

Nil(R[x]) by (3). Conversely, assume Nil(R)[x] ⊆ Nil(R[x]) and Nil(R) ⊴ R. By (4) we have
Nil(R)[x] = Nil(R[x]), and hence Nil(R[x]) = Nil(R)[x] ⊴ R[x] by (2). □

With all the work we have done we will now prove that Figure 6.2, below, is an Euler
diagram for the classes of rings R satisfying the stated properties, except that the region
marked with ? might be empty (see Question 2.4).

Nil(R[x]) ⊆ Nil(R)[x]

Nil(R) ⊴ R (or Nil(R)[x] ⊴ R[x])

Nil(R) ≤ R (or Nil(R)[x] ≤ R[x])

Nil(R)[x] ⊆ Nil(R[x])

Nil(R[x]) ⊴ R[x]

Nil(R[x]) ≤ R[x]

R1

R3

R2

R5

R7

R6

?

R4

Figure 6.2. Inclusions among some classes of rings.

The two implications

Nil(R)[x] ⊆ Nil(R[x]) ⇒ Nil(R) ≤ R

and

Nil(R) ⊴ R ⇒ Nil(R[x]) ⊆ Nil(R)[x]

are consequences of Propositions 2.1 and 6.1(4), respectively. Further, both of the par-
enthetical equivalences written in the diagram are consequences of Proposition 6.1, parts
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(1) and (2). Moreover, the two intersections (marked with thick lines) are consequences of
Proposition 6.1, parts (3) and (5).

It now suffices to show that each region, except the one marked with ?, is nonempty.
First, any commutative ring R1 belongs to all four boxes. Second, in the previous section we
constructed a ring R for which Nil(R)[x] ⊆ Nil(R[x]) holds but the reverse inclusion fails;
call any such ring R2.
Third, the ring R3 = Z⟨a, b : a2 = 0⟩ is Armendariz and hence it satisfies Nil(R3)[x] =

Nil(R3[x]), but Nil(R3) is not an ideal of R3. Fourth, the ring R4 of 2 × 2 matrices over a
field does not satisfy any of the four properties.

Fifth, let R5 be a nil ring such that R5[x] is not nil (as in [20]). Then Nil(R5) = R5 is an
ideal of R5, but Nil(R5)[x] ̸⊆ Nil(R5[x]).

Finally, it is straightforward to check that:

• R6 = R2×R5 has Nil(R6) as a subring but there are no inclusions between Nil(R6)[x]
and Nil(R6[x]), and

• R7 = R3 ×R5 has Nil(R7) as a subring but not an ideal, and Nil(R7[x]) ⊆ Nil(R7)[x]
holds but not the reverse inclusion.
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