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Abstract. The unary primitive recursive functions can be defined in terms of a finite set of
initial functions together with a finite set of unary and binary operations that are primitive
recursive in their inputs. We reduce arity considerations, by show that two fixed unary
operations suffice, and a single initial function can be chosen arbitrarily. The method works
for many other classes of functions, including the unary partial computable functions. For
this class of partial functions we also show that a single unary operation (together with any
finite set of initial functions) will never suffice.

1. Introduction

The set of primitive recursive functions is the smallest collection of multivariate functions
on the natural numbers that is closed under substitution and recursion, and that contains
a standard collection of initial functions (such as the projection functions, the multivariate
zero functions, and the successor function). The partial computable functions are defined
similarly, by adding another operation such as µ-minimization.

Julia Robinson [6, 7] and Raphael Robinson [8, 9] demonstrated how to eliminate mul-
tivariate considerations through the use of pairing strategies. Thus, we will likewise focus
only on unary computable functions. In this setting, [7, Theorem 1] is quite striking. It says
that all unary primitive recursive functions can be obtained from two certain (complicated)
primitive recursive functions, F1 and F2, under just two operations: (1) the binary operator
of function composition, and (2) the unary operator f 7→ f□ where

f□(n) = fn(0)

is the n-fold composition of f evaluated at 0; this operation is sometimes called pure iteration.
This naturally raises the question: What is the simplest possible definitional scheme for

unary primitive recursive functions?
Gladstone [3, 4] and Georgieva [2] studied this question with a focus on different recursion

schemes. The most recent work in this area seems to be that of Severin [10], who improved
many previous results. In particular, he showed that one can take the successor function
S(n) = n + 1 as the single initial function, if in addition to pure iteration and composition
we adjoin the binary subtraction operation defined by

(f − g)(n) =

{
f(n)− g(n) if f(n) ≥ g(n),

0 otherwise.

By [7, Theorem 3] (also see [11, Theorem 3]), a single initial function is insufficient if our
operations are limited to composition and pure iteration.
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In this paper, we are concerned with minimizing the “arity-complexity” of any definitional
scheme. We construct two fixed unary operators that generate all the unary primitive re-
cursive functions, using any initial function. The two unary operators can be replaced by a
single fixed binary operator.

The proof works by simulating other operations using an encoding of functions along
congruence classes. Due to the general nature of this construction, similar results hold for
many other classes of functions, including the unary partial computable functions, and in
that case we show that no single unary operator will suffice (for any finite set of initial
functions).

2. Notations and conventions

Throughout, we will only work with finite definitional schemes. Clearly, if we allow our-
selves infinitely many initial functions, then we don’t need any operations at all.

We treat each partial function f : N → N as the ordered list of its outputs, rather than
as a set of ordered pairs. For instance, the successor function is identified with the sequence
(1, 2, 3, . . .). For convenience, if f(n) never terminates, we put the symbol ∞ as the nth
term of f . Note that the unary operation f 7→ 0⌢f can be implemented with the simple
pseudo-code:
n:=UserInput,

If[n=0,

0,

Else

f(n-1)

]

In our definitional schemes, we will not allow arbitrary operations. Rather, an operation
is allowable only if it is partial computable in its inputs. In other words, our operations can
be performed by a Turing machine that can also make function calls on its inputs. (We may
suppose that these function calls are instantly evaluated by an oracle, and if the symbol ∞
is ever returned, then the program immediately terminates and outputs ∞.) When working
with primitive recursive functions (and elsewhere, when possible) an operation should be
primitive recursive in its inputs.

For instance, the operation f 7→ 0⌢f is primitive recursive in its input, as we see using the
pseudo-code above, and hence it is allowed. The operations used in the definitional schemes
of J. Robinson and Severin are also, clearly, allowed.

Not all operations are allowed. For instance, let (f0, f1, . . .) be a uniformly computable
list of all the unary partial computable functions. That such a list can be made, without
repetitions, is due to work of Friedberg [1], but also see Kummer’s paper [5]. The operation
A that takes fm 7→ fm+1 will not be allowed, as the following argument shows.

Proof. Suppose, by way of contradiction, that A is partial computable in its input. First,
consider the case that there exists some n ∈ N such that to evaluate A(f)(n) we make no
function calls to f . This would mean that A(f0)(n) = A(f1)(n) = · · · , which is clearly
nonsense, as the nth term of a computable function can become arbitrarily large. Thus, for
each n ∈ N, when evaluating A(f)(n) we must make at least one function call to f . Now
letting k be the index such that fk = (∞,∞, . . .), we have A(fk) = fk ̸= fk+1. □
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In the proof above, we leveraged the fact that the empty partial function (∞,∞, . . .) has
very specific behavior under unary operations that are partial computable in their inputs.
Similar ideas lead to the following strict lower bound on the arity-complexity of any definition
of the unary partial computable functions.

Theorem 2.1. Given finitely many unary partial computable functions, F0, F1, . . . , Fm−1,
and any unary operation, A, that is partial computable in its input, there is some unary
partial computable function not expressible in those symbols.

Proof. First, consider the case when there exists some n ∈ N such that A(f)(n) is computed
without making any function calls to f . This means that A(f)(n) does not depend on the
function f (but could possibly equal ∞). The well-formed expressions from the symbols
{F0, F1, . . . , Fm−1, A} are exactly of the form Ai(Fj) for i, j ∈ N with j ≤ m− 1. Thus, their
values at n are among the finite set

{F0(n), F1(n), . . . , Fm−1(n), A(F0)(n)}.

It is easy to construct a unary (total) computable function whose value at n differs from
these finitely many options.

We may now assume that, for each n ∈ N, to compute A(f)(n) there must be at least
one function call to f . Let mn ∈ N be the number such that the first function call when
evaluating A(f)(n) is exactly f(mn). (The function n 7→ mn is computable, since A is
computable in its inputs, but we won’t need the full power of this fact.) Without loss of
generality, expanding and renumbering our initial functions if necessary, we may assume that
F0 = (∞,∞, . . .) is the empty partial function. Note that A(F0) = F0.

Now, consider the case when M = {mn : n ∈ N} is a proper subset of N. Fixing some
k ∈ N−M , for each ℓ ∈ N we define

gℓ(n) =

{
∞ if n ̸= k,

ℓ otherwise.

Each gℓ is a unary partial computable function. Further, from the fact that k /∈ M , we have
that A(gℓ) = F0. Thus, for each of the finitely many j in the range 0 ≤ j ≤ m − 1, the
sequence of functions

Fj, A(Fj), A
2(Fj), . . .

contains at most one of the gℓ (since, immediately after gℓ appears, the sequence is constantly
F0). Thus, at least one of the gℓ is not expressible in the symbols {F0, F1, . . . , Fm−1, A}, as
desired.

All that remains is to handle when M = N. In that case, we see that for each function f
we have

|{n ∈ N : f(n) = ∞}| ≤ |{n ∈ N : A(f)(n) = ∞}|.
Write Cf = |{n ∈ N : f(n) = ∞}|. Thus, for each j, the cardinalities

CFj
≤ CA(Fj) ≤ CA2(Fj) ≤ . . .

either each have a finite upper bound kj, or not, in which case we set kj = 0. Letting
k = max(k0, k1, . . . , km−1) + 1, we see that there are only finitely many expressions G in
{F0, F1, . . . , Fm−1, A} such that CG = k. But there are infinitely many unary partial com-
putable functions with that same property. □
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As we will see in the next section, we have very different behavior when allowing two
unary operations, or a single binary operation.

3. Simulating higher arity operations using two unary operations

As mentioned in the introduction, J. Robinson proved that every unary primitive recursive
function can be expressed in the symbols {F1, F2,

□, ◦}, where F1 and F2 are specific initial
functions. With access to a binary operator, one can define operations of higher arity; for
instance, (f, g, h) 7→ f ◦ (g ◦ h) is a 3-ary operation. However, if we limit ourselves to unary
operations, there is no way to define derived operations of higher arity. In particular, we
have no way to define composition.

Instead, we will simulate composition in the following manner. Take f = (a0, a1, . . .) and
g = (b0, b1, . . .) to be two arbitrary functions. If we can somehow construct the function h =
(a0, b0, a1, b1, . . .), then we can simulate the composition of f and g by using computations
on the single function h.

More generally, for any modulusm ≥ 2, and functions f0, f1, . . . fm−1, we write them-tuple
(f0, f1, . . . , fm−1) to denote the function

(f0(0), f1(0), . . . , fm−1(0), f0(1), f1(1), . . . , fm−1(1), . . .).

In other words, this is the function where each fi has been encoded along the congruence
class i (mod m).

Given an m-tuple of functions (f0, f1, . . . , fm−1) we will make use of the following unary
operations.

Operation 1: Right rotation:

(f0, f1, . . . , fm−2, fm−1) 7→ (fm−1, f0, f1, . . . , fm−2).

Operation 2: Switching the first two functions:

(f0, f1, ∗, . . . , ∗) 7→ (f1, f0, ∗, . . . , ∗).
(Here, and hereafter, we use ∗ to denote an entry that is left unchanged.)

The symmetric group on m letters is always generated by the m-cycle (1 2 . . . m) and the
transposition (1 2). Thus, with these two operations in place, we can permute the entries of
any m-tuple arbitrarily.

Operation 3: Replace the first function with F1:

(f0, ∗, . . . , ∗) 7→ (F1, ∗, . . . , ∗).

Operation 4: Replace the first function with F2:

(f0, ∗, . . . , ∗) 7→ (F2, ∗, . . . , ∗).

Operation 5: Apply pure iteration to the first function:

(f0, ∗, . . . , ∗) 7→ (f□
0 , ∗, . . . , ∗).

Operation 6: Replace the first function with the composition of the first two functions:

(f0, f1, ∗, . . . , ∗) 7→ (f0 ◦ f1, f1, ∗, . . . , ∗).
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Starting with the constant zero function 0, we use these operations to simulate the con-
struction of any unary primitive recursive function. We illustrate this process by constructing
G = (F1F2)

□(F1(F2F1)
□)□. (We write compositions as concatenations to ease notation.)

Take m = 5; any modulus at least as large as the number of instances of F1 and F2 will
suffice. We then have

(0, 0, 0, 0, 0)
37−→ (F1, 0, 0, 0, 0)

17−→ (0, F1, 0, 0, 0)
47−→ (F2, F1, 0, 0, 0)

67−→ (F2F1, F1, 0, 0, 0)
57−→ ((F2F1)

□, F1, 0, 0, 0)
17−→ (0, (F2F1)

□, F1, 0, 0)
37−→ (F1, (F2F1)

□, F1, 0, 0)
67−→ (F1(F2F1)

□, (F2F1)
□, F1, 0, 0)

57−→ ((F1(F2F1)
□)□, (F2F1)

□, F1, 0, 0)
17−→ (0, (F1(F2F1)

□)□, (F2F1)
□, F1, 0)

47−→ (F2, (F1(F2F1)
□)□, (F2F1)

□, F1, 0)
17−→ (0, F2, (F1(F2F1)

□)□, (F2F1)
□, F1)

37−→ (F1, F2, (F1(F2F1)
□)□, (F2F1)

□, F1)
67−→ (F1F2, F2, (F1(F2F1)

□)□, (F2F1)
□, F1)

57−→ ((F1F2)
□, F2, (F1(F2F1)

□)□, (F2F1)
□, F1)

27−→ (F2, (F1F2)
□, (F1(F2F1)

□)□, (F2F1)
□, F1)

1◦47−−→ ((F1F2)
□, (F1(F2F1)

□)□, (F2F1)
□, F1, F2)

67−→ (G, (F1(F2F1)
□)□, (F2F1)

□, F1, F2)

Of course, we also need a seventh operation, (f0, f1, . . . , fm−1) 7→ f0, that extracts our
final answer from the class 0 (mod m). All that remains are the technical details.

Theorem 3.1. There exist two unary operations, A1 and A2, each of which is primitive
recursive in its input, and the closure under these operators using any single unary primitive
recursive function, F0, is the set of all unary primitive recursive functions.

Proof. Let A1 be the operation f 7→ 0⌢f . When f(0) < 2, define A2 by the rule

A2(f)(n) =


f(1) + 1 if f(0) = 0 and n = 0,

f(n+ 1) if f(0) = 0 and n ̸= 0,

0 if f(0) = 1.

Note that A2
2A

2
1(F0) is the constant function 0.

Now, given any constructed function f , we claim that we can prepend any natural number.
Clearly, A1(f) = 0⌢f gives us our base case. Supposing, inductively, that m⌢f has been
constructed, then A2A1(m

⌢f) = (m+1)⌢f is also constructible. When plugging a function
into A2, we will treat the first entry as a code which tells us how to proceed.

Let f = (a0, a1, . . .) be an arbitrary function. For any c ≥ 2, we define A2(c
⌢f) =

(b0, b1, . . . , ) as follows. First, fix

m =

⌊
c− 2

7

⌋
+ 2.

The “−2” comes from the fact that A2 has special cases when c = 0, 1. The “+2” comes from
the fact that we want our modulus to satisfy m ≥ 2. The “7” comes from the fact that we
have seven operations to encode. Thus, there are multiple cases to consider according to the
value of c; the cases will naturally correspond to the operations discussed in the paragraphs
preceding the statement of Theorem 3.1.

Case 1: c ≡ 0 (mod 7). In this case, set

bn =

{
an+m−1 if n ≡ 0 (mod m),

an−1 otherwise.
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In other words, after dropping the initial coding number c from c⌢f , we treat f as anm-tuple
of functions, and apply the right shift operation.

Case 2: c ≡ 1 (mod 7). Set

bn =


an+1 if n ≡ 0 (mod m),

an−1 if n ≡ 1 (mod m),

an otherwise.

Case 3: c ≡ 2 (mod 7). Set

bn =

{
F1(n/m) if n ≡ 0 (mod m),

an otherwise.

Case 4: c ≡ 3 (mod 7). Do exactly as in the previous case, except replacing F1 with F2.
Case 5: c ≡ 4 (mod 7). Set

bn =

{
g□(n/m) if n ≡ 0 (mod m),

an otherwise,

where g is the function defined by the rule g(n) = amn. (In other words, g is the function
currently residing in the 0 (mod m) entries of f .)
Case 6: c ≡ 5 (mod 7). Set

bn =

{
am·an+1 if n ≡ 0 (mod m),

an otherwise.

Case 7: c ≡ 6 (mod 7). Set
bn = amn.

We have now completely defined A2, on an arbitrary input, and it is primitive recursive
in its input. Starting with the zero sequence, then by repeatedly prepending the proper
number c, we can pass through these cases and simulate the formation of any expression
in the symbols {F1, F2,

□, ◦}. Thus, we can form every unary primitive recursive function.
Furthermore, since A1 is primitive recursive in its input, as is A2, then starting with a
primitive recursive function, F0, we can only construct primitive recursive functions this
way. □

This theorem applies to many other classes, C, of unary computable functions, besides the
primitive recursive functions. Indeed, as long as (1) the operation f 7→ 0⌢f is C-computable
in its input, (2) the class C allows for case analysis, (3) standard arithmetic operations are
allowed, to handle passage in and out of congruence classes, and (4) the class C has some
finite definitional scheme (using operations of any arity), then minor modifications of the
proof above gives us a definitional scheme for C using two unary operations. In particular,
adding a µ-minimization operation to the list of cases defining A2, we have:

Corollary 3.2. There exist two unary operations, A1 and A2, the first is primitive recursive
in its input, the second is partial computable in its input, and the closure under these oper-
ators using any single unary partial computable function, F0, is the set of all unary partial
computable functions.

Not surprisingly, replacing the two unary operations with a single binary operation is
extremely easy.
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Proposition 3.3. There is a binary operation, A, primitive recursive in its inputs, such
that the closure under this operator using any unary primitive recursive initial function, F0,
is the set of all unary primitive recursive functions.

Proof sketch. Define A(f, g) by the rule

A(f, g)(n) =



g(n) + 1 if f(0) ≤ g(0),

F1(n) if f(0) = g(0) + 1,

F2(n) if f(0) = g(0) + 2,

g□(n) if f(0) = g(0) + 3,

max(f(g(n))− g(0)− 4, 0) otherwise.

The remaining details are left to the reader. □

Some care has to be taken when generalizing this proposition to the unary partial com-
putable functions. An arbitrary initial function no longer suffices, due to issues with the
output ∞. In particular, to currently evaluate A(F0, F0) we must be able to compute F0(0).
One workaround is to take F0 = 0 and redefine A by the rule

A(f, g)(n) =



g(0) + 1 if f(0) = 0 and n = 0,

g(n) if f(0) = 0 and n ̸= 0,

(0⌢g)(n) if f(0) = 1,

F1(n) if f(0) = 2,

F2(n) if f(0) = 3,

g□(n) if f(0) = 4,

minimum m ∈ N such that g(m) = n if f(0) = 5,

f(g(n) + 1) if f(0) = 6,

∞ otherwise.

The “+1” in the next-to-last case lets us avoid noncomputability issues when defining com-
positions, as follows. First, we can construct the function 1⌢0 = A(0, 0). Thus, from any
constructed function g we can construct 0⌢g = A(1⌢0, g), and then we can define m⌢g for
each m ∈ N, using the recursive formula (m + 1)⌢g = A(0,m⌢g). Thus, given a pair of
constructed functions f and g, we can form f ◦g = A(6⌢f, g). Note that this equality works
even if f is undefined at 0.
(A more general collection of initial functions can be made to work in this case, by

modifying A accordingly. Essentially, any function F0—except the empty partial function
(∞,∞, . . .)—will work, together with an appropriate binary operation, but that operation
may now depend on F0.)

While the arity-complexity for unary partial computable functions is now fully understood,
the case for unary primitive recursive functions is not quite settled. In particular, one cannot
use the special properties of partial functions, as was done in Theorem 2.1. Thus, we ask:

Question 3.4. Is there a definitional scheme for the unary primitive recursive functions that
has only a single unary operation?

Another avenue for future research would be to see if the definitional schemes of J. Robin-
son or Severin could be simplified by adjoining the unary operation f 7→ 0⌢f , as this
operation proved very useful in the arguments of this paper.
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