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Abstract. The rings for which any polynomial with a nonzero right annihilator must have
a nonzero constant right annihilator are called the right McCoy rings. This class of rings
includes the duo, reversible, polynomially semicommutative, and Armendariz rings, among
others. In this paper we introduce a new condition, strictly generalizing the reversible
property, which still implies the McCoy condition. We call this new condition the outer
McCoy property; it arises from guaranteeing annihilators in unexpected places.

This outer McCoy condition is further motivated by a property of 2-primal rings, which
we call the Camillo property, first noticed by Victor Camillo and the fourth author. We
study the relationships between the outer McCoy property, the Camillo property, and other
standard ring-theoretic conditions, with many examples delimiting their connections. For
instance, we show that any ring whose set of nilpotents is closed under multiplication must
satisfy the Camillo property when restricted to linear polynomials.

1. Introduction

For a commutative ring R, McCoy [14, Theorem 2] proved:

(1.1)
If f, g ∈ R[x] and fg = 0 but g 6= 0, then there is some nonzero element
r ∈ R such that fr = 0.

This result may fail without the commutativity condition on R, in particular when R is a
nonzero 2× 2 matrix ring, as shown by Weiner [19]. Following [17], the rings which satisfy
(1.1) are called the right McCoy rings. The left McCoy rings are defined in a left-right
symmetric fashion, and rings which are both left and right McCoy are simply called McCoy
rings.

There are multiple ways in which McCoy’s theorem can be generalized by weakening the
commutativity condition. For instance, all reversible rings are McCoy rings by [16, Theorem
2]. The reversible rings are those rings R where ab = 0 entails ba = 0 for any a, b ∈ R.

To describe another class of examples, recall that a ring is right duo if every right ideal is
also a left ideal. The left duo rings are defined symmetrically, and rings with both conditions
are called duo rings. By [3, Theorem 8.2], right duo rings are right McCoy, but it remains
an open question whether right duo rings are left McCoy.

Encompassing both the reversible and one-sided duo rings are the semicommutative rings,
also called zero insertive rings (ZI), the (S I) rings, and rings satisfying the insertion-of-
factors-principle (IFP). They are defined by the following property:

If a, b ∈ R and ab = 0, then aRb = 0.
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Surprisingly, some semicommutative rings are not McCoy, by [16, Section 3]. However, if
R[x] is semicommutative, then R is a McCoy ring, which is an easy corollary of another
result of McCoy found in [15].

There are other natural conditions that imply the McCoy property, not related directly to
commutativity. For instance, if R has no nonzero nilpotent elements (that is, R is a reduced
ring), then R is reversible and R[x] is semicommutative, hence R is a McCoy ring. Reduced
rings satisfy the even stronger Armendariz condition on polynomials introduced by Rege and
Chhawchharia [17]; namely, given

f =
m∑
i=0

aix
i, g =

n∑
j=0

bjx
j ∈ R[x],

then

fg = 0 implies aibj = 0 for all i, j ≥ 0.

Armendariz rings are clearly McCoy. It is also interesting to note that if R is semicommu-
tative and Armendariz, then R[x] is semicommutative; see [17, Proposition 4.6].

In this paper we study a new sufficient condition for the McCoy property, based on the
placement of zero-divisors, which we call the outer McCoy condition. We introduce the
definition in Section 2, and provide a number of examples showing its relationship to the
properties discussed above. Then in Section 3 we study a weakening of the McCoy property,
which we call the Camillo property, that—unlike the McCoy property—is satisfied by the
semicommutative rings. In retrospect, it provides additional impetus for studying the outer
McCoy rings.

All rings in this paper are associative, and they are unital unless we specify otherwise.
However, many of our results hold for nonunital rings as well. Given any polynomial f ∈ R[x]
and any integer i ∈ Z, we let f [i] be the degree i coefficient (which is zero both for i < 0
and for i > deg(f)). The terminology in this paper primarily follows that given in [10]. In
particular, the definitions and basic facts for the types of rings discussed above, and others
to be introduced later, can mostly be found in [10] or in [3]. By a left zero-divisor of R, we
mean an element r ∈ R such that rs = 0 for some nonzero element s ∈ R; this differs from
the definition given in [10] in that we allow 0 to be a zero-divisor (except in the zero ring).

Many of our results and examples have a left-right symmetric analog, by passing to the
opposite ring. For instance, the fact mentioned above that right duo rings are right McCoy
automatically implies that left duo rings are left McCoy, and also that duo rings are McCoy.
We leave such trivial observations unstated but implicitly understood.

2. Outer McCoy Rings

Let R be a ring, and let f, g ∈ R[x] with fg = 0 and g 6= 0. The McCoy condition says
that f is annihilated on the right by a nonzero constant polynomial. In a commutative ring,
this further means that f is annihilated by a nonzero constant on the left.

Without the commutativity condition one may suspect that it is unlikely that f has any
left annihilators, let alone a constant one. However, as we’ll see in this and the next section,
there are some very natural (noncommutative) situations where the placement of constant
annihilators happens unexpectedly. Thus, it is worthwhile exploring the consequences of
such placement.
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We say that R is a left outer McCoy ring if the following condition holds:

(2.1)
If f, g ∈ R[x] and fg = 0 but g 6= 0, then there is some nonzero element
r ∈ R such that rf = 0.

The “left” in “left outer McCoy” comes from the fact that the annihilator r occurs to the
left of f . Similarly, the word “outer” comes from the fact that r is placed on the opposite
side from g. We follow the usual left-right symmetry conventions in defining (right) outer
McCoy rings.

Our first couple of results connect the outer McCoy conditions to some other standard
conditions.

Proposition 2.2. Reversible rings are outer McCoy. In particular, commutative and reduced
rings are outer McCoy.

Proof. By symmetry, it suffices to show that a reversible ring R is left outer McCoy. Let
f, g ∈ R[x] with fg = 0 and g 6= 0. As noted previously, reversible rings are McCoy by
[16, Theorem 2], so we can fix some nonzero r ∈ R such that fr = 0. In other words, r
annihilates each coefficient of f from the right. The reversibility condition then entails that
rf = 0. �

Proposition 2.3. Outer McCoy rings are McCoy.

Proof. By symmetry (once again), it suffices to show that an outer McCoy ring R is right
McCoy. Let f, g ∈ R[x] with fg = 0 and g 6= 0. By the left outer McCoy condition, there
exists some nonzero constant polynomial h ∈ R ⊆ R[x] such that hf = 0. Now, applying
the right outer McCoy condition to this new zero-product, there exists some nonzero r ∈ R
such that fr = 0. �

Generalizing the terminology of [5], call R a left eversible ring if every left zero-divisor is
a right zero-divisor. (These rings are also called right regular-duo in [9].) In other words, if
an element r ∈ R can be annihilated by a nonzero element from the right, then it can also
be similarly annihilated nontrivially from the left.

Proposition 2.4. Left outer McCoy rings are left eversible. Also, left eversible rings are
Dedekind-finite, that is, every one-sided unit is a two-sided unit.

Proof. The first sentence follows tautologically, by considering the left outer McCoy condition
relative to constant polynomials.

The second sentence is proved in [9, Proposition 2.1(4)]; also see [5, Proposition 2.13]. We
include the easy argument for completeness. Let R be a left eversible ring, and let u, v ∈ R
with uv = 1. Note that u cannot be a right zero-divisor since xu = 0 implies x = xuv = 0.
Thus, u cannot be a left zero-divisor, by the contrapositive of the left eversible property. On
the other hand u(1− vu) = 0, and hence 1− vu = 0. Therefore, 1 = vu. Thus, u and v are
two-sided inverses of each other. �

The remainder of this section will be devoted to showing non-implications between the
outer McCoy properties and other standard conditions in rings. We will pay special interest
to semicommutative examples. By Proposition 2.2, we know that reversible rings are outer
McCoy. The next example shows that many of the other conditions which imply the McCoy
property do not imply the outer McCoy property.
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Example 2.5. There exists a duo, Armendariz ring that is right outer McCoy (and whose
polynomial ring is semicommutative), but the ring is not left eversible, and hence not left
outer McCoy.

Construction and proof. Our example is the ring R constructed in [20, Section 2]. We will
assume the reader is familiar with that paper and its notations, which we quickly review here
(the exact details take about three pages of work in [20], which we will not fully repeat).

Let G be the free abelian group, written multiplicatively, generated by the set {xi : i ∈ Z}
and let ψ be the endomorphism of G sending xi 7→ xi+1. Further, define an order � on G
by the rule that g1 � g2 exactly when the largest subscript k ∈ Z such that xk appears with
a nonzero exponent in g−11 g2 must appear with a positive exponent (if such a k exists).

Next, let T ⊆ Z × G be the subset of ordered pairs (m, g) with either m ≥ 1, or m = 0
and 1 � g. We make T a monoid, with multiplication given by

(m1, g1)(m2, g2) = (m1 +m2, ψ
m2(g1)g2).

This monoid is ordered by ≤, where

(m1, g1) ≤ (m2, g2) if and only if either m1 < m2, or m1 = m2 and g1 � g2.

With D a division ring, and R = DJT K the generalized power series ring over T with
coefficients from D, then for f ∈ R let π(f) be the unique minimal element in the support
of f . Finally, let

I = {0} ∪ {f ∈ R \ {0} : π(f) > (1, xi1x
j
2x3) for any i, j ∈ Z}

be the ideal of R given in the paper, and put R = R/I.
The fact that R is a duo chain ring was proved directly in that paper. Chain rings

are right distributive, and by [13] (or even by [12, Corollary 6.3]) we know such rings are
Armendariz. The parenthetical statement, that R[x] is semicommutative, now follows from
the fact that duo rings are semicommutative, and Armendariz semicommutative rings have
semicommutative polynomial rings by [17, Proposition 4.6].

Next, we find
(0, x2)(1, x3) = (0 + 1, ψ1(x2)x3) = (1, x23) ∈ I

so (0, x2) is a left zero-divisor in R, since (1, x3) /∈ I. However, for any m ∈ Z and g ∈ G
with (m, g) /∈ I, then either m = 0 or g � xi1x

j
2x3 for some i, j ∈ Z. Hence

(m, g)(0, x2) = (m+ 0, ψ0(g)x2) = (m, gx2) /∈ I

because either m = 0 or gx2 � xi1x
j+1
2 x3. Thus, (0, x2) is not a right zero-divisor in R. This

proves that R is not left eversible, and hence not left outer McCoy.
Finally, we prove that R is right outer McCoy. Fix a, b ∈ R[x] \ {0} with ab ∈ I[x] and

a /∈ I[x]. Fix some integer ` ≥ 0 so that a[`] /∈ I. From the Armendariz property, we know
π(a[`])b ∈ I[x]. Let (m, g) ∈ T be the �-smallest element in the support of any coefficient
of b. Then π(a[`])(m, g) ∈ I.

It suffices to prove that there exists some t ∈ T \ I with (m, g)t ∈ I, for then bt ∈ I[x].
In other words, we have reduced to showing that R is right eversible. This follows from the
proof of [20, Claim 2.5], where it is shown (by replacing the words “neither right nor” with
“not a” in the first sentence) that any element which is not a left zero-divisor of R is not a
right zero-divisor. �

To capitalize further on Example 2.5, we need the following easy result.
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Lemma 2.6. Let R =
∏

i∈I Ri be a direct product of rings. Then R is left outer McCoy if
and only if Rj is left outer McCoy for each j ∈ I.

Proof. (⇒): Fix j ∈ I and suppose fj, gj ∈ Rj[x] with gj 6= 0 and fjgj = 0. Taking
f := (fi)i∈I where fi = 1 if i 6= j, and taking g := (gi)i∈I with gi = 0 if i 6= j, then fg = 0
and g 6= 0. By the left outer McCoy property, there exists some nonzero r = (ri)i∈I ∈ R
with rf = 0. However, for i 6= j, we find

ri = ri · 1 = rifi = 0,

and hence rj 6= 0. Further rjfj = 0, showing that Rj is left outer McCoy.
(⇐): Let f = (fi)i∈I , g = (gi)i∈I ∈ R with fg = 0 and g 6= 0. Fix an index j ∈ I with

gj 6= 0. Then fjgj = 0 and so the left outer McCoy condition, applied in the jth coordinate
ring, guarantees the existence of some nonzero rj ∈ Rj such that rjfj = 0. Taking r = (ri)i∈I
where ri = 0 when i 6= j, then rf = 0, showing that R is left outer McCoy. �

Remark 2.7. The previous lemma is true after replacing “left outer McCoy” with “left
McCoy” by [3, Lemma 4.1].

Corollary 2.8. There exists a duo, Armendariz ring that is neither left nor right outer
McCoy.

Proof. Let R be the ring from Example 2.5, and let R
op

be its opposite ring. We claim that
R × Rop

will give us the example we need. By Lemma 2.6, it is neither left nor right outer
McCoy. The “Armendariz” and “duo” properties pass to finite direct products, so they both
hold in R×Rop

. �

Our next example shows that one can get a strange mixing between the left and right
McCoy and outer McCoy properties, where all guaranteed constant annihilators are with
respect to the “right” polynomial g in a zero product fg = 0. This example will be a key
step to proving, in Theorem 2.10, that there are essentially no implications between the
one-sided McCoy and outer McCoy properties, except as implied by Proposition 2.3.

Example 2.9. There exists a semicommutative ring that is left McCoy and right outer
McCoy, but it is neither right McCoy nor left outer McCoy.

Construction and proof. Our example is based on a remark in [3, p. 612–613]. Let S be the
free unital F2-algebra generated by the six noncommuting variables a0, a1, a2, a3, b0, and b1,
subject to the following relations:

• a0b0 = 0, a0b1 = a1b0, a1b1 = a2b0, a3b0 = a2b1, and a3b1 = 0. In other words, taking
f := a0 + a1x+ a2x

2 + a3x
3 and g := b0 + b1x, then fg = 0.

• bkmb` = 0 for any k, ` ∈ {0, 1} and any monomial m ∈ S. In other words, any
monomial containing two of the b-variables is zero.
• a0aimbj = 0 and a3aimbj = 0 for any i ∈ {0, 1, 2, 3}, any j ∈ {0, 1}, and any

monomial m ∈ S.
• a1aimbj = a2aimbj for any i ∈ {0, 1, 2, 3}, any j ∈ {0, 1}, and any monomial m ∈ S.

We note that all the relations are homogeneous, which allows us to talk about grades of
monomials in S (where a monomial is graded by the total number of variables it contains).
As all the relations have grade two or greater, we see that f and g are nonzero polynomials.
Also, every relation involves only monomials ending (on the right) in some b-variable. Thus
f has no nonzero left annihilators in S, and so S is not left outer McCoy.
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Let I be the ideal of S generated by b0 and b1, and note that

S := S/I ∼= F2〈a0, a1, a2, a3〉 =: S ′ ⊆ S,

which is a domain. Thus if p, q ∈ S[x] \ {0} satisfy pq = 0, then either p = 0 or q = 0.
Suppose, by way of contradiction, that q 6= 0. Let j ≥ 0 be the minimal index such
that q[j] 6= 0. Write q[j] = q1 + q2 where q1 6= 0 consists of monomials containing no b-
variables while every monomial in q2 has some b-variable (which are properties respected by
all relations). Let i ≥ 0 be the minimal index such that p[i] 6= 0. We then have that

0 = (pq)[i+ j] = p[i]q[j] +
∑

m∈Z>0

p[i+m]q[j −m] = p[i]q1

since every coefficient of p belongs to I, as do the coefficients of q with index less than j, and
I2 = 0. But q1 is not a right zero-divisor in S, as it contains no b-variables, giving us the
needed contradiction. Thus q = 0, and hence b0q = qb0 = 0. As q was an arbitrary nonzero
right zero-divisor in S[x], this shows that S must be left McCoy and right outer McCoy.

Next, we claim that S is not right McCoy by showing that f is not annihilated on the
right by a nonzero constant polynomial. It suffices to show that a2 is not a left zero-divisor
in S. Treating the relations in the bullet points above as a reduction system, by repeating
replacing any instance of a monomial on the left side of an equality with the monomial on
the right side, then Bergman’s Diamond Lemma [2] applies, as a quick computation verifies
that the hypotheses of his lemma are satisfied. Therefore, we see that multiplying by a2 on
the left of a nonzero reduced element merely appends a2 to the left of every monomial in its
support, which cannot be zero.

Finally we prove that S is semicommutative. Let r, s ∈ S with rs = 0, and let t ∈ S. We
need to show that rts = 0. It suffices to consider the case when t is one of the six variables.
The claim is clear when r = 0 or s = 0, so we assume r, s 6= 0. By the argument from two
paragraphs above, we know that s ∈ I, and thus each monomial in its support has exactly
one b-variable. In other words, each such monomial is of the form mbjm

′ for some j ∈ {0, 1}
and monomials m,m′ ∈ S ′, so write

s =
∑

j,m,m′ :mbjm′∈supp(s)

mbjm
′.

From rs = 0, we get
∑

m′

(∑
j,m :mbjm′∈supp(s) rmbj

)
m′ = 0. Since none of the relations

involve a-variables on the right, for each fixed m′ we have
∑

j,m :mbjm′∈supp(s) rmbj = 0.

Thus, without loss of generality, we may assume s ∈ S ′b0 +S ′b1. We may also assume t = ai
since bjs = 0.

We now find it convenient to replace the reduction a3b0 7→ a2b1 with the reversed reduction
a2b1 7→ a3b0. This allows us to assume that no monomial involving b1 has an a-variable to
its left. Thus, additionally using the relations in the third and fourth bullet points, we may
write

s = α0b0 + α1b1 + g1a1b0 + g2a2b0 + g3a3b0

for some constants α0, α1 ∈ F2 and polynomials g1, g2, g3 ∈ F2[a2].
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Note that 1 cannot belong to the support of r (by considering the product of the terms of
minimal grade in rs = 0). Write

r =
3∑

i=0

fi(a0, a1, a2, a3)ai

where each fi ∈ S ′ is a noncommutative polynomial. Let f ′i := fi(0, a2, a2, 0) be the polyno-
mial in the variable a2 that we get by replacing each instance of a0 and a3 by 0, and each
instance of a1 by a2. Computing the reduced form for rs, we find:

(α1f
′
0 + α0f

′
1 + f ′1a2g1 + f ′2a2g1)a1b0

+(α1f
′
1 + f ′1a2g2 + α0f

′
2 + f ′2a2g2)a2b0

+(f ′1a2g3 + α1f
′
2 + f ′2a2g3 + α0f

′
3)a3b0 = 0.

The rest of the proof is a simple case analysis.
Case 1: Suppose α0 = α1 = 0. Either g1 = g2 = g3 = 0 or f ′1 + f ′2 = 0. The first option is

impossible as s 6= 0, and under the second option we compute rts = (f ′1 + f ′2)a2ais = 0.
Case 2: Suppose α0 = 1 and α1 = 0. The first line of the displayed equation gives

f ′1 = (f ′1 +f ′2)a2g1 while the second line gives f ′2 = (f ′1 +f ′2)a2g2. Adding the respective sides,
we have f ′1 + f ′2 = (f ′1 + f ′2)a2(g1 + g2). First, if f ′1 + f ′2 6= 0, then we have 1 = a2(g1 + g2),
which is clearly impossible (by considering grades). Thus, f ′1 + f ′2 = 0. Looking at the three
lines of the displayed equations again, we then must have f ′1 = f ′2 = f ′3 = 0. Then, we find
rts = f ′0a0ais = 0.

Case 3: Suppose α0 = 0 and α1 = 1. This case is similar to Case 2, and we get f ′0 = f ′1 =
f ′2 = 0 and rts = f ′3a3ais = 0.

Case 4: Suppose α0 = α1 = 1. The middle line of the displayed equation says that
f ′1 + f ′2 = (f ′1 + f ′2)a2g2. As in Case 2, we must have f ′1 + f ′2 = 0, or in other words f ′1 = f ′2.
The first and third lines of the displayed equation then say that f ′0 = f ′1 = f ′2 = f ′3. We find,
using the relations in the third and fourth bullet points, that

rts = f ′0(a0 + a1 + a2 + a3)ais = f ′0(0 + a2 + a2 + 0)ais = 0. �

Theorem 2.10. Semicommutative rings can have, or fail to have, any combination of the
left or right outer McCoy and left or right McCoy properties, except that if the ring is outer
McCoy then it is also McCoy.

Proof. Any commutative ring has all four of the McCoy and outer McCoy properties. The
ring from Example 2.5, which we will call R (by a change of notation), and its opposite ring
Rop, give examples for all the possibilities where exactly one of the four properties fails, as
limited by Proposition 2.3.

Let S be the ring from Example 2.9. Let T be the graded semicommutative ring con-
structed in [16, Section 3], which was shown there to be left McCoy but not right McCoy.
By an easy grading argument (as used previously), any coefficient of any left zero-divisor in
T [x] does not have 1 in its support, and is thus annihilated on the left by b0 ∈ T (using the
relations defining T ). Thus the ring T is left outer McCoy. It is not right outer McCoy by
Proposition 2.3.

The rings R × Rop, S, Sop, T , and T op give all the needed examples where exactly two
of the properties fail. The rings S × T , S × T op, Sop × T , and Sop × T op give the needed
examples where exactly three of the properties fail. Finally, S × Sop × T × T op has all four
of the properties fail. In each case the ring is semicommutative. �
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It is well known that the set of nilpotents in a semicommutative (and hence reversible)
ring is an ideal. In general, any ring where the set of nilpotents is an ideal is called an NI
ring. Our next example shows that the outer McCoy rings do not need to be NI, and hence
neither semicommutative nor reversible.

Example 2.11. There exists an Armendariz, outer McCoy ring which is not an NI ring.

Construction and proof. Let F be a field. The ring S := F 〈a, b : b4 = 0〉 is Armendariz by
[1, Theorem 4.7]. Let R be the unital subring of S generated by b and bab. Any subring of
an Armendariz ring is still Armendariz. However, R is not NI since b is nilpotent but b(bab)
is not nilpotent. Note that S is a graded ring (with monomials graded by the total number
of letters they contain).

Finally, we will show that R is left outer McCoy (and hence right outer McCoy, by sym-
metry). Let f, g ∈ R[x] with fg = 0 and g 6= 0. Suppose, by way of contradiction, that
some coefficient of f has 1 in its support. Let f0 be the grade 0 component of f , and let gi
be the grade i component of g, with i ≥ 0 chosen minimally so that gi 6= 0. From fg = 0
we get f0gi = 0. But this contradicts the fact that the leading term of f0 is just a nonzero
element of F , which is not a zero-divisor.

Thus, 1 does not belong the support of any coefficient of f , or in other words f ∈ bS[x],
and hence b3f = 0. This shows that R is left outer McCoy. �

For von Neumann regular rings, there is a long list of conditions which are equivalent
to being reduced. The property of being left McCoy was recently added to this list, in [8,
Theorem 20]. Here we show that left outer McCoy rings can also be added to the list. Note
that eversibility cannot be added to this list, since any nontrivial matrix ring over a division
ring is von Neumann regular, and eversible, but not reduced.

Proposition 2.12. A von Neumann regular ring R is reduced if and only if it is left outer
McCoy.

Proof. The forward direction is clear, so we only deal with the reverse direction. Suppose,
by way of contradiction, that a2 = 0 for some a ∈ R \ {0}. By von Neumann regularity,
there exists some b ∈ R such that aba = a, and hence (1− ab)a = 0.

Take f := a + (1 − ab)x, g := a ∈ R[x]. Clearly fg = 0 and g 6= 0. Thus, by the
left outer McCoy property, there exists some nonzero r ∈ R with rf = 0. Hence ra = 0
and r(1 − ab) = 0. Taken together, these equalities imply that r = rab = 0, yielding a
contradiction. �

3. Camillo Rings

A ring in which the prime radical is exactly the set of nilpotents elements is called 2-
primal, and it is known that semicommutative rings are 2-primal (see, for instance, [11,
Comment to Exercise 12.18]). The 2-primal rings are clearly NI. Surprisingly, 2-primal (and
thus, semicommutative) rings have a property closely related to the McCoy and outer McCoy
properties by [3, Theorem 9.2], namely:

(3.1)
If f, g ∈ R[x] \ {0} and fg = 0, then there is some nonzero element
r ∈ R such that rf = 0 or rg = 0.

What makes this condition especially interesting is that, a priori, we don’t know that f has
any nonzero left annihilators.
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We call any ring satisfying (3.1) a left Camillo ring. The right Camillo rings are defined
symmetrically, and rings which are both left and right Camillo will be called Camillo rings.
Moreover, if we restrict the polynomials f and g in (3.1) to not have degree bigger than 1,
we call that the left linearly Camillo condition.

Remark 3.2. As we mentioned above, the 2-primal rings are Camillo. It is also obvious
that left McCoy and left outer McCoy rings are left Camillo. By Theorem 2.10, there exists
a Camillo ring which is neither left nor right McCoy, and also neither left nor right outer
McCoy.

The Camillo property does not pass to corner rings. However, it behaves well enough that
we can classify exactly when a direct product of rings is left Camillo.

Proposition 3.3. A direct product R =
∏

i∈I Ri of rings is left Camillo if and only if either
Ri = 0 for every i ∈ I, or Rj 6= 0 is left Camillo for some j ∈ I. In particular, a direct
product of left Camillo rings is left Camillo. Moreover, those facts continue to hold if we
replace “left Camillo” with “left linearly Camillo” everywhere.

Proof. (⇒): Working contrapositively, assume, for each i ∈ I where Ri 6= 0, that Ri is not
left Camillo, and further assume that there is at least one such index. For those i ∈ I
where Ri 6= 0, let fi, gi ∈ Rj[x] \ {0} be chosen so that figi = 0 but neither fi nor gi is
annihilated from the left by a nonzero element of Ri. For those i ∈ I where Ri = 0, take
fi = gi = 0. Taking f := (fi)i∈I , g := (gi)i∈I ∈ R[x] \ {0} we have fg = 0, but neither f nor
g is annihilated on the left by a nonzero element of R.

(⇐): If Ri = 0 for each i ∈ I, then R is the zero ring, which is vacuously Camillo. On the
other hand, suppose there exists some index j ∈ I such that Rj 6= 0 and Rj is left Camillo.
Let f, g ∈ R[x] \ {0} with fg = 0. If fj = 0 or gj = 0, take rj = 1 and let r ∈ R be the zero
extension of rj (so it is zero in all other coordinates). Either rf = 0 or rg = 0, and clearly
r 6= 0.

On the other hand, if fj and gj are both nonzero, then fix some nonzero rj ∈ Rj such that
either rjfj = 0 or rjgj = 0. Letting r ∈ R \{0} again be the zero extension of rj, then either
rf = 0 or rg = 0, as wanted.

The penultimate sentence of the Proposition is clear since 0 rings are Camillo. To prove
the last sentence, just restrict the degrees of the polynomials in the proof above. �

Proposition 3.3 makes it very easy to construct Camillo rings that fail to have other
nice properties. For instance, the direct product of a nonzero commutative ring with a
non-Dedekind-finite ring will fail to be Dedekind-finite, but it will be Camillo. Similarly,
this proposition tells us that Proposition 2.12 cannot be improved by replacing the (outer)
McCoy property with any of the Camillo properties; take the direct product of a field and
any non-reduced von Neumann regular ring.

We’ll see shortly that there exists a ring R which is left Camillo but not right Camillo.
Thus, by Proposition 3.3, R × Rop is a finite direct product of non-Camillo rings which is
Camillo. Similarly, (central) corner rings, subrings, and factor rings of left Camillo rings
do not need to be left Camillo. Now, on to the construction of an example of the left-right
asymmetry of the Camillo property.

Example 3.4. There exists a ring that is both left McCoy and left outer McCoy, but it is not
right linearly Camillo. In particular, Dedekind-finite rings need not be right linearly Camillo.
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Construction and proof. Let R be the free unital F2-algebra generated by the five noncom-
muting variables a0, a1, b0, b1, and c, subject to the following relations:

• a0b0 = 0, a0b1 = a1b0, and a1b1 = 0. In other words, defining the polynomials
f := a0 + a1x, g := b0 + b1x ∈ R[x], then fg = 0.
• cm = 0 where m can be any of the five letters.

After checking that “overlaps resolve,” Bergman’s Diamond Lemma [2] tells us that we can
put elements of R into reduced forms by repeatedly replacing monomials that appear on the
left side of an equality (in the relations above) with the term on the right side.

Moreover, the relations are homogeneous (since each word that occurs has exactly two
letters), so we can talk about grades of elements in R. Given p, q ∈ R[x] \ {0} with pq = 0,
by looking at the product of terms of minimal grade, we see that 1 cannot belong to the
support of any coefficient in either p or q. Therefore cp = cq = 0. Hence R is left McCoy
and left outer McCoy.

On the other hand, fg = 0 and f, g 6= 0. Note that g has no nonzero right annihilators
since b0 is not a left zero-divisor—it does not appear on the left in any reductions. Thus, to
finish this example we will show that f does not have any nonzero constant right annihilators.
Given any r ∈ R we can write r = r1 + r2c with r1, r2 in the subring generated by the a-
variables and b-variables. If fr = 0 then fr1 = 0 and fr2 = 0, since c is not involved in
any relations from the right (except c2 = 0, which isn’t relevant here). Thus, if f has a
nonzero right annihilator in R, we may assume it contains no c’s. But this would contradict
[3, Proposition 6.5]. �

Having dealt with direct products, the next natural question is whether the (non-linearly)
Camillo and outer McCoy properties pass to polynomial rings. The answer is yes. This is
a straightforward exercise, which is probably more enlightening for readers to work out on
their own.

The next few results will be devoted to studying how the Camillo property behaves under
matrix ring extensions.

Theorem 3.5. Any nontrivial matrix ring fails to be Camillo.

Proof. We will show that such a ring is never left Camillo, the other case being similar. Let
Ei,j, for i, j ∈ {1, . . . , n} with n ≥ 2, be the usual matrix unit with 1 in the (i, j)-entry and
zeros elsewhere. Set

A := E1,n and B := E2,1 + E3,2 + · · ·+ En,n−1.

For later use, we note that BiA = Ei+1,n and BiAB = Ei+1,n−1, for any integer 0 ≤ i ≤ n−1,
which is established recursively.

Now, A2 = 0 and Bn = 0. Putting F := (I − Bx)−1A(I − Bx), then F 2 = 0 also. Thus,
it suffices to show that F has no nontrivial constant left zero-divisor. We find:

F = (I +Bx+ · · ·+Bn−1xn−1)A(I −Bx)

= A+ (BA− AB)x+ · · ·+ (Bn−1A−Bn−2AB)xn−1 + (−Bn−1AB)xn

= E1,n + (E2,n − E1,n−1)x+ · · ·+ (En,n − En−1,n−1)x
n−1 + (−En,n−1)x

n.

Let C be an arbitrary matrix. If CF = 0, then the constant term of this product is CE1,n = 0.
Therefore,

CE1,n−1 = CE1,nEn,n−1 = 0.
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Looking at the linear term of CF = 0, we then have CE2,n = 0. Continuing in this fashion,
we have CEi,n for all integers 0 ≤ i ≤ n. Thus

C = CE1,1 + · · ·+ CEn,n

= CE1,nEn,1 + CE2,nEn,2 + · · ·+ CEn−1,nEn,n−1 + CEn,n = 0

showing that F has no nonzero constant left annihilators. �

Notice that an easy consequence of the previous theorem is that eversible rings do not
need to be Camillo. One might observe that when n = 2, the polynomial F constructed
above had degree 2, which leaves open the possibility that some 2 × 2 matrix ring could
“squeeze by” and be linearly Camillo. Surprisingly, this is the case. To prove it, we first
need the following lemma, clarifying the relationship between eversibility and the linearly
Camillo property.

Proposition 3.6. Every left eversible ring is left linearly Camillo.

Proof. Let f, g ∈ R[x] \ {0} be linear polynomials with fg = 0. Write f = a0 + a1x and
g = b0 + b1x. If b1 = 0 then a0g = 0 and a1g = 0, with at least one of a0 or a1 nonzero. So
we may assume b1 6= 0.

Now, a1 is a left zero-divisor, hence it must be a right zero-divisor. Fix c ∈ R \ {0} such
that ca1 = 0. If ca0 = 0, then cf = 0, and we are done. So suppose ca0 6= 0. We then have
ca0g = cfg = 0. �

Corollary 3.7. Any matrix ring over a division ring is linearly Camillo.

Proof. Any such ring is eversible. �

By [3, Proposition 10.2], nonzero matrix rings are neither left nor right linearly McCoy, so
Corollary 3.7 comes as even more of a surprise. The same result also says that nonzero upper
triangular matrix rings are neither left nor right linearly McCoy. The situation completely
reverses for the Camillo property.

Theorem 3.8. Given a nonzero ring R and any integer n ≥ 1, the ring of n × n upper
triangular matrices, Tn(R), is left (linearly) Camillo if and only if R has the same property.

Proof. (⇒): Let f, g ∈ R[x] \ {0} with fg = 0. Let F = diag(f) and G = diag(g), the
matrices whose diagonal entries are f and g respectively, with zeros off the main diagonal.
Then FG = 0, so there exists some nonzero matrix A such that AF = 0 or AG = 0. Letting
a be any nonzero entry of A, we then have af = 0 or ag = 0.

(⇐): Let F = (fi,j), G = (gi,j) ∈ Tn(R)[x] \ {0} with FG = 0. If fn,n = 0 then En,nF = 0
and En,n 6= 0 since R is nonzero. Similarly, if gn,n = 0 then En,nG = 0. Thus, we may
assume fn,n, gn,n 6= 0. As FG = 0 we get fn,ngn,n = 0. From the Camillo property for R,
there exists some nonzero r ∈ R with rfn,n = 0 or rgn,n = 0. Taking A := rEn,n then
AF = 0 or AG = 0.

The proof for the linearly Camillo property is similar. �

For the final few results in this paper, we will partially extend [3, Theorem 9.2], which
says that every 2-primal ring is Camillo. The 2-primal rings are exactly those rings where
all the nilpotents belong to the prime radical. Nearly the same proof works for the larger
class of rings whose nilpotents belong to the Levitzki radical, as follows.
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Theorem 3.9. If the set of nilpotents in a ring is a locally nilpotent ideal, then the ring is
Camillo.

Proof. As usual, we only need to show that such a ring is left Camillo. Let f, g ∈ R[x] \ {0}
with fg = 0. Let A be the set of coefficients of f and let B be the set of coefficients of g.
By [1, Proposition 2.1], we know that AB is a set of nilpotent elements. From the locally
nilpotent hypothesis, there exists some integer k ≥ 1 such that (AB)k = 0 6= (AB)k−1. Fix
some nonzero r ∈ (AB)k−1, where if k = 1 we take r = 1.

If rA = 0, then rf = 0 and we are done. Otherwise, fix some a ∈ A such that ra 6= 0.
Then raB ⊆ (AB)k = 0, hence rag = 0. �

A natural question is whether this theorem generalizes further. We could weaken the
hypotheses in two different ways, either by not assuming the nilpotents form an ideal, or
by removing the locally nilpotent condition. Neither generalization works. In the paper [4],
a ring R is constructed with its set of nilpotents, Nil(R), forming a nonunital subring of
R satisfying Nil(R)2 = 0, and there exists a polynomial f ∈ R[x] \ Nil(R)[x] with f 2 = 0.
Moreover, some of the coefficients of f are neither left nor right zero-divisors. Thus, R is
not Camillo, even though the set of nilpotents is itself nilpotent of index 2, which is much
stronger than being locally nilpotent.

Next, we will show that NI rings do not need to be Camillo. First, we need a combinatorial
lemma.

Lemma 3.10. The power series f := (1−8x+15x2 +x3 +x4 +x5 + · · · )−1 has only positive
coefficients.

Proof. Let a be the smallest positive real solution of a3 − 15a2 + 71a − 106 = 0. Also let
b := −a2 + 8a− 15. Thus

a = 3.13919 . . . and b = 0.25901 . . . .

One may check directly that these constants satisfy the equalities

(3.11) a =
15 + b

8− a
and b =

b+ 1

8− a
.

Indeed, noting a 6= 8, we may replace b by −a2 + 8a− 15 in both equations, and simplify.
Now, write f = c0 + c1x + c2x

2 + · · · . These coefficients satisfy c0 = 1, c1 = 8, and the
recursion

cn = 8cn−1 − 15cn−2 −
n−3∑
i=0

ci, for n ≥ 2.

We claim that

(3.12) cn > acn−1 + b

n−2∑
i=0

ci

for each n ≥ 1. When n = 1, this is immediate. Inductively, assume that (3.12) holds for
some integer k ≥ 1. Then using (3.11) we have

ck >
15 + b

8− a
ck−1 +

b+ 1

8− a

k−2∑
i=0

ci.
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Clearing denominators, and then rearranging terms, we have

8ck − 15ck−1 −
k−2∑
i=0

ci > ack + b

k−1∑
i=0

ci.

The left side is exactly ck+1, by the recursive definition of the coefficients, which finishes our
inductive argument.

Using (3.12), another easy induction proves that cn > 0 for every n ≥ 0. �

Theorem 3.13. There exists an NI ring which is neither left nor right Camillo.

Proof. Let F be a countable field, and let R0 := F{a0, . . . , a7} be the free nonunital F -
algebra generated by eight noncommuting variables. This is a graded algebra in the usual
way. We may enumerate the nonzero elements of R0 as {rn}n≥1.

Let f :=
∑7

i=0 aix
i ∈ R0[x]. There are fifteen coefficients of f 2, each of them is homoge-

neous of grade 2. Let I0 be the ideal generated by these coefficients.
Next, let e1 := 3 and recursively define en := en−1 ·grade(rn−1)+1. For each integer n ≥ 1,

let In be the ideal generated by the homogeneous components of renn . These homogeneous
components all live in grades between en and en+1 − 1, and there is at most one such
component in each grade.

Let I :=
∑

n≥0 In, and let R1 := R0/I. By [6, Lemma 1], proven in [7], along with our
combinatorial result Lemma 3.10, we know that R1 is an infinite dimensional F -algebra. It
is also clearly nil, since renn ∈ I for each n ≥ 1. As R1 is finitely generated, it is not locally
nilpotent. Letting P (R1) be the prime radical of R1, we thus have that R2 := R1/P (R1) is
nonzero, nil, and prime.

Any constant left (or right) annihilators of f := (f + I[x]) + P (R1)[x] ∈ R2[x] must
annihilate each of the generators of R2, and thus annihilate all of R2. In a prime ring, the

only element that can do this is 0. But f 2 ∈ I. Thus, f
2

= 0, but it has no nonzero constant
annihilators. Thus R2 is not Camillo. If the reader prefers a unital example, one can now
take the Dorroh extension of R2 by F . �

While NI rings are not Camillo, it turns out that they are linearly Camillo. The same is
true for a much larger class of ring; namely, those rings where the set of nilpotents is closed
under multiplication. (For more information on this class of rings the reader is directed to
[18].) The proof is as follows.

Theorem 3.14. Every ring whose set of nilpotents is closed under multiplication is linearly
Camillo.

Proof. We will only show the left linearly Camillo property. Let

f := a0 + a1x, g := b0 + b1x ∈ R[x] \ {0}

with fg = 0. Thus a0b0 = 0, a1b0 + a0b1 = 0, and a1b1 = 0. Notice that b0a0 and b1a1 are
nilpotent, of index ≤ 2. Therefore, our assumption on R tells us that b0a0b1a1 is nilpotent,
say with index k ≥ 1. We claim that a1b0 = −a0b1 is also nilpotent. Indeed,

(a1b0)
2k+1 = a1(b0a1b0a1)

kb0 = (−1)ka1(b0a0b1a1)
kb0 = 0.

Letting A := {a0, a1} and B := {b0, b1} then AB = {0, a1b0,−a1b0}, which is locally
nilpotent. The same argument used to prove Theorem 3.9 now works here. �
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4. Final Remarks

The following diagram describes some of the implications among the properties studied in
this paper. We avoided using the quantifiers “left” and “right” to keep the diagram simpler.
All proven implications are drawn with a double lined arrow, and they follow from work in
this paper or from the diagram at the end of [3].

There is one unknown implication; namely, whether duo rings must have semicommutative
polynomial rings. This is marked with a single dashed arrow and a question mark. We state
this question formally as:

Question 4.1. If R is a duo ring, is R[x] semicommutative?

No other implications are possible (besides those that follow from transitivity) using known
non-implications from [3] or using the examples constructed in this paper.

duo

$,
?
��

��

commutative

��

2:

+3 poly. s.c. +3

�$

semicomm. +3 2-primal +3

��

NI

��

"*

reversible

/7

+3 outer McCoy +3

$,

eversible +3

'/

D.-finite

reduced

KS

+3

9A

Armendariz +3 McCoy +3

/7

Camillo +3 lin. Camillo

Acknowledgements

We thank David Cardon for comments which improved the paper. The second named
author was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (NRF-2019R1F1A1057940).

References

1. Ramon Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128–3140.
MR 2408310

2. George M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178–218.
MR 506890

3. Victor Camillo and Pace P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008),
no. 3, 599–615. MR 2365335
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