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Abstract. A clean decomposition a = e + u in a ring R (with idempotent e and unit
u) is said to be special if aR ∩ eR = 0. We show that this is a left-right symmetric
condition. Special clean elements (with such decompositions) exist in abundance, and are
generally quite accessible to computations. Besides being both clean and unit-regular, they
have many remarkable properties with respect to element-wise operations in rings. Several
characterizations of special clean elements are obtained in terms of exchange equations,
Bott-Duffin invertibility, and unit-regular factorizations. Such characterizations lead to
some interesting constructions of families of special clean elements. Decompositions that
are both special clean and strongly clean are precisely spectral decompositions of the group
invertible elements. The paper also introduces a natural involution structure on the set of
special clean decompositions, and describes the fixed point set of this involution.

1. Introduction

For any unital ring R, the definition of the set of special clean elements in R is motivated
by the earlier introduction of the following three well known sets:

sreg (R) ⊆ ureg (R) ⊆ reg (R).

To recall the definition of these sets, let

I (a) = {r ∈ R : a = ara}
denote the set of “inner inverses” for a (as in [28]). Using this notation, the set of regular
elements reg (R) consists of a ∈ R for which I (a) is nonempty, the set of unit-regular
elements ureg (R) consists of a ∈ R for which I (a) contains a unit, and the set of strongly
regular elements sreg (R) consists of a ∈ R for which I (a) contains an element commuting
with a. The alternative characterization of sreg (a) as the set

{a ∈ R : a ∈ a2R ∩Ra2}
(as well as the aforementioned inclusion relation sreg (R) ⊆ ureg (R)) will be assumed in
this paper; see [33, p. 3583] for additional characterizations. By definition, R is a regular
ring (resp. unit-regular ring, strongly regular ring) if R = reg (R) (resp. R = ureg (R),
R = sreg (R)).

In connection with the study of Warfield’s exchange rings in [40], Nicholson introduced a
new class of clean rings in [31]. An element a ∈ R is said to be clean if a = e + u where
e ∈ idem (R) (the set of idempotents in R ), and u ∈ U (R) (the group of units in R ).
The set of clean elements in R is denoted by cn (R), and R is said to be a clean ring if
R = cn (R). In [31] and [8], Nicholson and Camillo-Yu showed that clean rings constitute a
proper subclass of exchange rings.
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While the existence of a canonical spectral decomposition of every strongly regular element
shows that sreg (R) ⊆ cn (R), it is well known (after [19]) that there is in general no inclusion
relation between the two sets ureg (R) and cn (R). On the other hand, Camillo and Khurana
have shown earlier in [7] (correcting an oversight in [8]) that unit-regular rings are clean.
More significantly, they showed that a ring R is unit-regular iff every element a ∈ R has a
clean decomposition a = e+ u such that aR ∩ eR = 0. This result brings us to the concept
that will play a central role in this paper:

Definition 1.1. An element a ∈ R is special clean, which we will write as a ∈ sp-cn (R),
if a = e+ u for some idempotent e ∈ idem (R) and unit u ∈ U (R) such that aR ∩ eR = 0.
A ring R is special clean if R = sp-cn (R).

We will often refer to the decomposition a = e + u in this definition as a special clean
decomposition.

The definition above is originally due to Abrams and Rangaswamy [1]; a more detailed
account on the early history of the introduction of the set sp-cn (R) can be found in §2.

Special clean elements are a remarkable “common refinement” of both clean elements and
unit-regular elements. They exist in abundance; they are quite well behaved, and they have
very nice properties. In this paper, we lay the foundations for a systematic study of the set
sp-cn (R) in any ring R. Some highlights in this study are as follows.

(1.2) The definition for membership in the set sp-cn (R) is left-right symmetric. This is
proved early in §2 via a general study of any pair a, b ∈ R satisfying u := a− b ∈ U (R), for
which we show that aR ∩ bR = 0 iff Ra ∩ Rb = 0, iff au−1b = 0, iff au−1a = a. Applying
these facts to the case b ∈ idem (R) gives us a number of simple characterizations for a
clean decomposition a = e + u to be special clean, showing in particular that sp-cn (R) ⊆
ureg (R)∩ cn (R); see Theorem 2.3. An example in §4 shows, however, that this inclusion is
in general not an equality.

(1.3) In §2, we also characterize special clean elements via strongly regular elements and
Bott-Duffin invertible elements, as defined in (2.12). Recall that a “reflexive inverse” for an
element a ∈ R is an element b ∈ I (a) such that a ∈ I (b). The main result in this direction
is that a ∈ sp-cn (R) iff it has a reflexive inverse that is strongly regular, iff some element
in I (a) is a Bott-Duffin inverse of a relative to some idempotent in R; see Theorem 2.13.
These characterizations for a ∈ sp-cn (R) point to the interesting fact that the notion of a
special clean element can be defined using only the structure of the multiplicative semigroup
(R, × ), and that, as such, this notion would have made sense in the context of the theory
of semigroups.

(1.4) While there is in general no inclusion relation between ureg (R) and cn (R), we can
still think of the set sp-cn (R) as a suitable kind of “common refinement” of ureg (R) and
cn (R). In §3, we define an element a ∈ R to be special unit-regular if a = fu for some
f ∈ idem (R) and u ∈ U (R) such that −u ∈ I (1−f). In Theorem 3.5, we show that, in any
ring, special unit-regular elements are precisely the special clean elements. This result enables
us to reinterpret the Camillo-Khurana theorem in [7] as saying that a ring is unit-regular iff
all its elements are special unit-regular.
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(1.5) Specializing the exchange equations approach in [20], Theorem 3.1 shows that a ∈
sp-cn (R) iff there exist x ∈ U (R) and f ∈ idem (R) such that af = 0 and xa− fx = 1.
Following the lead of Zhang and Camillo [43, Lemma 8], we also use the exchange equations
method in [20] to give an expanded description (Theorem 3.2) of the special clean elements,
in a way that is similar to Nicholson’s definition of “suitable elements” in [31, 32].

(1.6) In §4, examples are constructed to show that the set sp-cn (R) does not satisfy “Ja-
cobson’s Lemma”, in the sense that ab ∈ sp-cn (R) does not imply ba ∈ sp-cn (R), and also,
1− ab ∈ sp-cn (R) does not imply 1− ba ∈ sp-cn (R).

(1.7) In §5, various sufficient conditions are given for membership in the set sp-cn (R).
For instance, Theorem 5.1 shows that a ∈ sreg (R) iff a has a special clean decomposition
a = e + u such that eu = ue. (The latter property defines a strongly clean decomposition
in the sense of [33].) The second half of §5 also offers an ad hoc proof for the fact that any
square-zero regular element is special clean.

(1.8) Another testimony to the rich structure of the set of special clean decompositions
is that it comes with a natural duality (in Theorem 3.7), which sends a = e + u to its
“dual” (1− e)u−1 = (−eu−1) + u−1. (Note that this duality is undefined on the set of clean
decompositions, since in general e ∈ idem (R) does not entail −eu−1 ∈ idem (R) .) With
respect to this duality, the “self-dual” decompositions a = e + u are analyzed in Theorem
5.3, where it is shown that a must be a tripotent (that is, a3 = a ).

(1.9) The paper concludes with a relatively detailed study in §6 on the behavior of special
clean elements under the passage to corner rings. A somewhat surprising result here is that,
for any ring S, a ∈ reg (S) iff diag (a, 0, . . . , 0) is special clean in the matrix ring Mn(S)
for any fixed integer n ≥ 2.

The terminology and notations introduced so far in this section will be used freely through-
out the paper. Other standard facts in ring theory needed for our proofs can largely be found
in the references [31], [15], [24], and [26].

2. Special Clean Elements: Examples and Characterizations

The main goal of this section is to introduce the idea of special clean decompositions and
special clean elements in rings, and to give a number of basic characterizations for these
notions. To make this relatively new theory easier to understand, various explicit examples
and properties of special clean decompositions and special clean elements will be given in
the text.

Instead of working with an equation a = e+u with e ∈ idem (R) and u ∈ U (R), we start
more generally with an equation a = b + u with a, b ∈ R and u ∈ U (R), and first prove
the following result which gives several explicit computations for the right ideal intersection
aR ∩ bR. The fact that this intersection is a principal right ideal does not seem to be well
known as we have not been able to find an easy reference for it in the ring theory literature.

Proposition 2.1. Given any equation a = b+ u where a, b ∈ R and u ∈ U (R), we have

(2.2) aR ∩ bR = au−1bR = (b+ bu−1b)R = (a− au−1a)R = bu−1aR.



SPECIAL CLEAN ELEMENTS IN RINGS 4

Proof. The second equality in (2.2) holds already on the generator level, since

au−1b = (u+ b)u−1b = b+ bu−1b.

This implies, in particular, that au−1bR ⊆ aR∩ bR. To prove the reverse inclusion, consider
any element ar ∈ bR. From ur = (a − b) r ∈ bR, we get ar = au−1ur ∈ au−1bR. This
proves the first equality in (2.2). Applying all this information to b = a+ (−u) , we also get

bR ∩ aR = bu−1aR = (a− au−1a)R,

with in fact −bu−1a = a− au−1a. This completes the proof of (2.2). �

Of course, the left ideal analogue of (2.2) for Ra ∩ R b also holds. Using this and (2.2),
we shall now prove our first main result in this paper, a part of which (especially in the form
of Corollary 2.4) was noted earlier in Cǎlugǎreanu’s work [6]. In the conditions (3) and (4)
below, we’ll use for the first time the notation I (r) (introduced in [28]) for the set of inner
inverses for an element r in a given ring R.

Theorem 2.3. For any equation a = b + u ∈ R where u ∈ U (R), the following six
statements are equivalent:

(1) aR ∩ bR = 0 (“right zero-intersection condition”).
(2) au−1b = 0 (“right zero-product condition”).
(3) au−1a = a (“inner inverse condition” u−1 ∈ I (a)).
(4) b (−u−1) b = b (“inner inverse condition” −u−1 ∈ I (b)).
(5) bu−1a = 0 (“left zero-product condition”).
(6) Ra ∩Rb = 0 (“left zero-intersection condition”).

Each of these statements implies that R = aR⊕ bR = Ra⊕Rb. In the case where ab = ba
(or equivalently, ub = bu ), the six statements above are equivalent to ab = 0.

Proof. The equivalence of the statements (1)–(5) follows directly from the crucial equations
in (2.2). Since (3) and (4) are left-right symmetric, it follows that they are also equivalent to
(6). If (1) holds, then aR+bR is a direct sum which contains the unit u. Thus, R = aR⊕bR,
and similarly, R = Ra ⊕ Rb. In the case where ab = ba (or equivalently, ub = bu), the
condition (2) can be rewritten as abu−1 = 0, which boils down to ab = 0. �

As an easy consequence of Theorem 2.3, we get the following additive characterization
result for unit-regular elements in any ring R.

Corollary 2.4. An element a ∈ R is unit-regular iff a ∈ b + U (R) for some b ∈ R such
that aR ∩ bR = 0.

Proof. If u := a − b ∈ U (R) for some b ∈ R such that aR ∩ bR = 0, Theorem 2.3 implies
that a = au−1a so a is unit-regular. Conversely, if a is unit-regular, writing a = au−1a
for some u ∈ U (R) leads to an element b := a− u. Invoking Theorem 2.3 again yields the
equation aR ∩ bR = 0. �

A second consequence of Theorem 2.3 is the following special case of a result of Koliha
and Rakočević [23, Theorem 3.2] for a difference of two idempotents a, b in a ring. The
relationship between (a− b)−1 and (a+ b)−1 is, however, new.

Corollary 2.5. Let a, b ∈ idem (R) be such that u := a−b ∈ U (R). Then u−1(1−b)u = a,
and R = aR ⊕ bR = Ra⊕ R b. Also, we have v := a + b ∈ U (R), with v−1 = u−1vu−1; or
equivalently, (u−1v)2 = 1.
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Proof. Keeping in mind that (1− b) b = 0 = (1− a) a, we have

u−1(1− b)u = u−1(1− b) a = u−1(1− a+ u) a = a.

Right multiplication by u−1b gives au−1b = 0. Applying Theorem 2.3, we see that R =
aR⊕ bR = Ra⊕R b. Also, the equations (2), (3), (4), (6) in Theorem 2.3 all hold, so upon
writing v = a+ b we have

u = a− b = au−1a+ bu−1b+ au−1b+ bu−1a = v u−1v ∈ U (R).

This implies that v ∈ U (R) too, with v−1 = u−1vu−1; or equivalently, (u−1v)2 = 1. �

In the rest of this paper, Theorem 2.3 will be applied to the case where b is an idempotent
e ∈ idem (R). In this case, a = e+u (with u ∈ U (R)) would be a typical clean decomposition
(and it would be a strongly clean decomposition if eu = ue). With Theorem 2.3 at our
disposal, we say that a clean decomposition a = e+u is special if it satisfies the equivalent
conditions in Theorem 2.3 for b = e. If such a decomposition exists for a ∈ R, we say
that the element a is special clean (in R). By Theorem 2.3, these are left-right symmetric
notions. The set of special clean elements in R will henceforth be denoted by sp-cn (R).
In view of the inner inverse condition a = au−1a in Theorem 2.3, we have the fundamental
inclusion relations

(2.6) sp-cn (R) ⊆ cn (R) ∩ ureg (R) ⊆ cn (R) ∩ reg (R),

where (as in the introductory section) cn (R), reg (R) and ureg (R) denote, respectively,
the sets of clean, regular and unit-regular elements in R. It also follows from Theorem 2.3
that, if a = e+ u is a special clean decomposition in R, then so is ϕ (a) = ϕ (e) + ϕ (u) in
S for any ring homomorphism ϕ : R → S. This shows that ϕ

(
sp-cn (R)

)
⊆ sp-cn (S). In

fact, this inclusion relation holds even for a nonunital ring homomorphism ϕ, if we use the
semigroup characterization of the sets sp-cn (R) and sp-cn (S) in Theorem 2.13.

Historical Note. The significance of the extra condition aR ∩ eR = 0 imposed on a
clean decomposition a = e + u first surfaced in the work of Camillo and Khurana in [7],
where it was shown that a ring R is unit-regular iff every element a ∈ R is special clean.
The term “special clean” was coined by Abrams and Rangaswamy in their work [1] on
regularity conditions for Leavitt path algebras, although they invoked this notion only when
all elements of a ring satisfy the special clean condition (just as in [7]). This practice was
followed by Akalan and Vaš in [2], while Chen [11, 12], Zhang-Camillo [43], Nielsen-Šter
[34] and Altun-Özcan [3] later studied special cleanness as an element-wise notion. In all
of these references, however, element-wise special cleanness was discussed only as a right-
side condition. In May, 2016, we pointed out at the 33rd Ohio State-Denison Ring Theory
Conference that the left-right symmetry of element-wise special cleanness can be deduced
as a consequence of a general result in the paper [18] of Jain and Prasad.1 To make §2
more self-contained, we have chosen to give a quicker and more direct proof of Theorem
2.3, which not only recaptures the left-right symmetry result (even in the more general case
a = b+u for any a, b ∈ R and u ∈ U (R)), but also offers several computations of aR∩ bR
in Proposition 2.1. In retrospect, in the case where b = e ∈ idem (R), it was these explicit
computations that have provided us the new tools for the more extensive investigation of
special clean elements in this paper.

1In fact, the same remark also applies to the element-wise notion of special almost cleanness studied by
Akalan and Vǎs in [2], where “almost clean” means “idempotent + (non-0-divisor)”.
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For better motivation, some easy examples of special clean elements are given below.

Examples 2.7. (A) In any ring R, every u ∈ U (R) is special clean, with a unique special
clean decomposition 0 + u. More precisely, if the right annihilator of a ∈ R is zero, then
a ∈ sp-cn (R) iff a ∈ U (R). (Indeed, a unit-regular element is a unit as long as it is not
a left 0-divisor.) To give an explicit example in the ring R = M2

(
Z
)
, the non-0-divisor

A = diag (1, 2) ∈ R has infinitely many clean decompositions (including
(

0 n
0 1

)
+

(
1 −n
0 1

)
for any n ∈ Z ). But A /∈ reg (R), so A /∈ sp-cn (R).
(B) Every f ∈ idem (R) is special clean, with a special clean decomposition

(†) f = ( 1− f ) + ( 2f − 1 ).

However, this special clean decomposition for f is in general not unique. In fact, for any
e ∈ idem (R) such that f − e ∈ U (R), Corollary 2.5 implies that R = fR ⊕ eR. This
means that any clean decomposition of f is automatically a special clean decomposition. By
a result of Wang-Chen [38, Theorem 2.9] and independently Lee-Zhou [30, Lemma 2.4], f
is central iff (†) is its only clean decomposition. From what we said above, it follows that f
is central iff (†) is its only special clean decomposition.
(C) For any f ∈ idem (R), we have −f ∈ sp-cn (R) too, via the special clean decomposition
−f = (1 − f) + (−1). However, although in general f + 1 ∈ cn (R), we may have f + 1 /∈
sp-cn (R), as is shown by the case f = 1 over the ring R = Z.
(D) One major way in which sp-cn (R) differs from cn (R) is that cn (R) is closed under
the “Jacobson map” a 7→ 1 − a, while sp-cn (R) is (sometimes) not. For instance, −1 ∈
sp-cn

(
Z4

)
, but 1− (−1) = 2 /∈ sp-cn

(
Z4

)
. More generally, we observe that, while cn (R) ⊇

rad (R) (the Jacobson radical of R), we have always

sp-cn (R) ∩ rad (R) ⊆ ureg (R) ∩ rad (R) = 0.

(E) Let R be the ring of 2× 2 upper triangular matrices over a ring S. For any a ∈ U (S)

and any b ∈ S, the matrix A =
(
a b
0 0

)
∈ R has a clean decomposition E + U where

E =
(

0 0
0 1

)
and U =

(
a b
0 −1

)
. We can check easily that EU−1E = −E, so Theorem 2.3

implies that A ∈ sp-cn (R).

(F) Let R = M2(Z). According to [22, §1], the unit-regular matrix A =
(

5 3
0 0

)
∈ R has

exactly the following three clean decompositions:

(∗) A =

(
2 1
−2 −1

)
+

(
3 2
2 1

)
=

(
0 0
2 1

)
+

(
5 3
−2 −1

)
=

(
3 2
−3 −2

)
+

(
2 1
3 2

)
.

Again, an easy direct computation checking any of the conditions in Theorem 2.3 shows that
each of the three clean decompositions above is special clean.
(G) If a ∈ sp-cn (R), it need not follow that every clean decomposition of a is a special clean
decomposition. For instance, in any division ring other than F2, any element a /∈ {0, 1}
has a special clean decomposition a = 0 + a, but also a nonspecial clean decomposition
a = 1 + (a− 1). More nontrivially, taking R = M2(Z) again, the matrix B ∈ R below has
(at least) two clean decompositions:

(∗∗) B =

(
2 1
0 0

)
=

(
1 0
1 0

)
+

(
1 1
−1 0

)
=

(
1 0
0 1

)
+

(
1 1
0 −1

)
,
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the first one of which is a special clean decomposition, but the second one is not.
(H) Let a = e + u be a special clean decomposition in R. For any w ∈ U (R) ∩ I (e),
we have aw, wa ∈ sp-cn (R). Indeed, aw = ew + uw is a special clean decomposition
since ew ∈ idem (R), uw ∈ U (R), and awR ∩ ewR = aR ∩ eR = 0. This shows that
aw ∈ sp-cn (R), and wa ∈ sp-cn (R) can be seen similarly. Applying these remarks to
w = 2 e − 1 ∈ U (R) ∩ I (e) (for instance), we get a (2 e − 1), (2 e − 1) a ∈ sp-cn (R). For
an explicit example, if we take the second special clean decomposition in (∗) under (F), left
multiplication by 2 e− 1 leads to a new one:(

−5 −3
20 12

)
=

(
0 0
2 1

)
+

(
−5 −3
18 11

)
∈ sp-cn

(
M2(Z)

)
.

(I) If (R, ∗ ) is a ring with involution, then every special clean decomposition a = e+u ∈ R
induces another special clean decomposition a∗ = e∗ + u∗, since u−1 ∈ I (a) implies that
(u∗)−1 ∈ I (a∗). In particular, the set sp-cn (R) is automatically ∗ -invariant.

In general, the set sp-cn (R) seems to have considerably richer properties than the set
of clean elements cn (R). For instance, while cn (R) is usually not closed with respect to
the “negation map” a 7→ −a, the new set sp-cn (R) (for any ring R ) has the remarkable
property that it is closed with respect to multiplication by central units, in a rather strong
sense described in the following result.

Theorem 2.8. Let a = e+ u ∈ R be a special clean decomposition, and let w ∈ U (R).

(1) If aw = wa, we have a special clean decomposition aw = e+ (aw − e).
(2) If ew = we, we have a special clean decomposition aw = e + (aw − e), and also a

special clean decomposition wa = e+ (wa− e).

Thus, aw, wa ∈ sp-cn (R) if w ∈ U (R) commutes with a or with e. In particular,
sp-cn (R) is closed with respect to multiplication by any central unit of R.

Proof. To begin with, we note that this result is rather different from that in Example 2.7(H)
above. In both statement (1) and statement (2) here, the unit w is subject to different
assumptions, and the conclusions are also different.
(1) Given that aw = wa, it suffices to check that aw − e ∈ U (R), since awR ∩ eR =
aR ∩ eR = 0. Thinking of aw− e as an endomorphism on RR (by its left action), we need
to check that ker (aw − e) = 0 and im (aw − e) = R. For the former, note that

(aw − e) (r) = 0 ⇒ aw(r) = er ∈ aR ∩ eR = 0.

Since aw = wa and w ∈ U (R), this gives ar = 0 too. Therefore, r = 0 (as a − e = u ∈
U (R)). Next, we note that im (aw − e) contains (wa − e) (u−1e) = e (by (2) and (4) in
Theorem 2.3), and hence aw. Thus, it contains eR + awR = R, as desired.
(2) Assume now that ew = we. Here we may not have aw = wa, so the proof method
used in (1) no longer applies. Proceeding differently, we first check by a straightforward
calculation (using ew = we) that

(†) 1− e (1− w−1) ∈ U (R), with inverse 1− e (1− w).

To show that aw = e+(aw−e) is a special clean decomposition, it suffices (as in (1) above)
to check that aw − e = (e + u)w − e = uw + e (w − 1) is a unit. Right multiplying by
w−1u−1 (and using now w−1e = ew−1), this amounts to checking that

1 + e (1− w−1)u−1 = 1 + e (1− w−1) eu−1 ∈ U (R).
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By Jacobson’s Lemma, this further reduces to checking that 1 + eu−1e (1 − w−1) ∈ U (R),
which follows from (†) above since eu−1e = −e. This completes the proof that aw =
e + (aw − e) is a special clean decomposition. In a similar way (or just using left-right
symmetry), we can show that wa = e+ (wa− e) is also a special clean decomposition. �

Remark 2.9. By a relatively routine modification of the proof above, we see that the
conclusion in Theorem 2.8(1) remains valid if we only assume that w ∈ U (R) is such that
aw = w′a for some w′ ∈ U (R). For any such w, Theorem 2.8(1) would still yield the
conclusion that aw − e ∈ U (R), which may not have been true if a = e + u is merely a
clean decomposition. For instance, taking w = −1, the conclusion a + e ∈ U (R) holds for
the first clean decomposition of B in (∗∗) under Example 2.7(G), but it does not hold for
the second.

Example 2.10. While (2.7)(C) provides a quick example of the closure of sp-cn (R) with
respect to multiplication by central units, it is of interest to double-check the conclusion of
Theorem 2.8 in some less trivial cases. Take, for instance, the special clean decomposition

for A =
(
−5 −3
20 12

)
= E + U in R = M2(Z) obtained in Example 2.7(H). If we multiply

A by −I2 (and keep the same idempotent E), we do get a special clean decomposition

−A =
(

5 3
−20 −12

)
=

(
0 0
2 1

)
+
(

5 3
−22 −13

)
, with the last matrix having determinant 1 (and

hence in U (R)). If we enlarge the ring R to R′ = M2

(
Z [i]

)
where i =

√
−1, then

multiplying A by i I2 (and again keeping the same idempotent E) leads to the following
special clean decomposition:

i A =

(
−5 i −3 i
20 i 12 i

)
=

(
0 0
2 1

)
+

(
−5 i −3 i

20 i− 2 12 i− 1

)
,

where the last matrix is in U (R′) since it has determinant −i. On the other hand, if
A1 ∈ sp-cn (R) but W1 ∈ U (R) fails to commute with A1, we may have A1W1 /∈ sp-cn (R).
For instance, the idempotent matrix unit A1 := E11 is special clean by (2.7)(B). However,

for W1 =
(

12 5
5 2

)
∈ U (R), the product A1W1 =

(
12 5
0 0

)
is not even a clean matrix according

to [19, Example 4.5].

As another consequence of Theorem 2.3, we record below a necessary condition on special
clean decompositions in terms of the unit group U (R). In this result, the notation x ◦ y
denotes “Jacobson’s circle product” x+y−xy, as defined in Jacobson’s book [17, p. 8]. The
result shows that there are certain units of R that arise naturally from any special clean
decomposition a = e+ u in R.

Proposition 2.11. If a = e+ u ∈ R is a special clean decomposition, then

a ◦ e = u ◦ e = u+ e− ue ∈ U (R), and e ◦ a = e ◦ u = u+ e− eu ∈ U (R),

but not conversely in general. In this case, we have

(u ◦ e)−1 = u−1 ◦ (−eu−1), and (e ◦ u)−1 = (−u−1e) ◦ u−1.

Proof. To begin with, a ◦ e = (e+ u) + e− (e+ u) e = u+ e− ue = u ◦ e. Letting v = u−1,
we have u+ e− ue = u (1 + ve− e), so it suffices to show that t := 1− e+ ve ∈ U (R). This
is the case since the equation eve = eu−1e = −e in (2.3)(4) implies that

t2 = (1− e+ ve) (1− e+ ve) = (1− e) + (1− e) ve+ ve (1− e) + v(eve) = 1.
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Using this, we see that (u ◦ e)−1 = (ut)−1 = tu−1 = v − ev + vev = v ◦ (−ev). The
conclusions about e ◦ u and (e ◦ u)−1 can be proved similarly. (Here, we use the parallel
fact that s := 1 − e + ev satisfies s2 = 1.) To see that these conclusions have no converse
(in general), we simply let u = 1. In this case, u ◦ e = e ◦ u = 1 ∈ U (R), but using (2.3)(4)
again, a = e+ 1 is not a special clean decomposition if −e 6= e. �

Our next characterization result for special clean elements is best expressed in terms of
the notion of Bott-Duffin invertibility (first introduced in [5]).

Definition 2.12. For any f ∈ idem (R), an element a ∈ R is said to be Bott-Duffin
invertible relative to f if faf ∈ U (fRf). In this case, the inverse b of faf in the group
U (fRf) is called the Bott-Duffin inverse of a relative to f . (The defining equations for b
are thus fb = b = bf and fab = f = baf .)

The following basic result gives three new characterizations for an element a ∈ R to
be special clean. Here, (1) ⇔ (2) and (1) ⇔ (4) may be called the BD-criteria for
special cleanness, while (1) ⇔ (3) may be called the reflexive inverse criterion for special
cleanness, where reflexive inverses were defined in (1.3). Remarkably, all three criteria here
are expressed solely in terms of the multiplicative structure of the ring R.

Theorem 2.13. For any a ∈ R, the following statements are equivalent:

(1) a ∈ sp-cn (R).
(2) a has a reflexive inverse b that is a Bott-Duffin inverse of a relative to some f ∈

idem (R).
(3) a has a reflexive inverse b ∈ sreg (R) (the set of strongly regular elements).
(4) There exists some b ∈ I (a) that is a Bott-Duffin inverse of a relative to some

f ∈ idem (R).

In statement (4), we have a special clean decomposition a = (1− f) + (a− 1 + f).

Proof. (1) ⇒ (2). Assume that a has a special clean decomposition a = e + u, and let
f = 1 − e, v = u−1. Then v ∈ I (a) by Theorem 2.3. By a standard argument of von
Neumann (see, e.g. [26, Theorem 2.15]), b := vav is a reflexive inverse of a. Theorem 2.3
also gives eb = evav = 0, so we have b ∈ fR. It follows similarly that b ∈ Rf , and hence
b ∈ fRf . Finally,

fab = favav = fav = f (e+ u) v = f,

and similarly baf = f . Thus, a has Bott-Duffin inverse b relative to f .
(2) ⇒ (3). For b, f as in (2), we have b ∈ U (fRf), say with inverse x in the corner ring.
Then b2x = xb2 = b, so b ∈ sreg (R).
(3)⇒ (4). Given b as in (3), write it in the form fu = uf ∈ fRf for some f ∈ idem (R)
and some u ∈ U (R). (See [33, p. 3584], or [26, Theorem 3.12].) Then fu = (fu) a (fu) ⇒
f = fuaf = b (faf), and we get similarly f = (faf) b. Thus, faf ∈ U (fRf), with inverse
b ∈ I (a) in the ring fRf . This proves (4).
(4) ⇒ (1). Given b, f ∈ R as in (4), let e := 1 − f , and v := b − (1 − ba) (1 − ab). Left
multiplying the latter equation by a gives av = ab, so ava = aba = a. Also, since b ∈ fRf ,
we have eb = 0, so left multiplying v = b− (1− ba) (1− ab) by e gives ev = −e (1− ab).
Therefore,

av − ev = ab+ e (1− ab) = e+ (1− e) ab = e+ fab = e+ f = 1,
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and we can similarly show that va − ve = 1. Thus, v ∈ U (R), with inverse a − e. Since
ava = a, Theorem 2.3 shows that a has the special clean decomposition a = e + v−1 =
(1− f) + (a− 1 + f). �

Remark 2.14. By the work of Azumaya [4], any a ∈ sreg (R) satisfies the statement (3)
above by taking b to be the “group inverse” of a (which means the unique reflexive inverse
of a satisfying ab = ba). Thus, Theorem 2.13 implies that

(2.15) sreg (R) ⊆ sp-cn (R)

for any ring R. Moreover, this inclusion will also follow from Theorem 5.1 in §5. However,
if a ∈ R has a reflexive inverse b ∈ sp-cn (R), it need not follow that a ∈ sp-cn (R). For

instance, A =
(

12 5
0 0

)
∈M2

(
Z
)

has reflexive inverse B =
(
−2 0
5 0

)
, which has a special clean

decomposition
(

3 1
−6 −2

)
+

(
−5 −1
11 2

)
. But the matrix A is not even clean in M2

(
Z
)
, again

according to [19, Example 4.5].

Remark 2.16. Let a = e+u ∈ R be a special clean decomposition. Since a is Bott-Duffin
invertible relative to the idempotent f = 1−e (by the proof of (1)⇒ (2) in Theorem 2.13),
we know from the general theory of Bott-Duffin invertibility that 1 − f + af ∈ U (R); see
[26, Theorem 10.21]. Since 1 − f + af = e + a (1 − e) = a ◦ e, we have retrieved the fact
that a ◦ e ∈ U (R) that was proved in Proposition 2.11. In fact, this was how we were led
to the result in (2.11) in the first place.

We conclude this section by applying Theorem 2.13 to prove the following characterization
result for unit-regular rings in terms of the notion of reflexive inverses.

Theorem 2.17. For any ring R, the following four statements are equivalent:

(1) R is a unit-regular ring.
(2) Every element in R has an inner inverse in ureg (R).
(3) Every element in R has a reflexive inverse in ureg (R).
(4) Every element in R has a reflexive inverse in sreg (R).

Proof. The implications (4) ⇒ (3) ⇒ (2) are trivial. On the other hand, (2) ⇒ (1) follows
from the fact (proved in [26, Theorem 2.15(3)]) that, in any ring , an element is unit-regular
as long as it has a unit-regular inner inverse. For the final implication (1) ⇒ (4), let
R be a unit-regular ring. By the main theorem of Camillo and Khurana in [7], we have
R = sp-cn (R). Thus, by (1) ⇒ (3) in Theorem 2.13, every element in R has a reflexive
inverse in sreg (R). �

3. Special Clean Through Three Other Specializations

In this section, we shall demonstrate the universal nature of the set sp-cn (R) by showing
that it can be reached not only (by definition) as a specialization of cn (R) (the set of clean
elements), but also as a specialization of suit (R) (the set of suitable elements in the sense
of Nicholson’s papers [31, 32]), or ureg (R) (the set of unit-regular elements), or the set
of elements satisfying an “exchange equation” in the sense of [20]. We will start with a
discussion on the last specialization in this list.

In the recent paper [20], three of the present authors gave characterizations for suitable,
clean, and strongly clean elements in rings in terms of the theory of exchange equations ;
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namely, linear equations of the form xa − fx = 1 where a is a given element in a ring
R and f is an idempotent in R. It is natural to ask if special clean elements in R
can be characterized as elements satisfying a special type of exchange equation. Recalling
from [20] that the exchange polynomial associated with a ∈ R is the quadratic polynomial
Pa(x) := (1− xa) (1 + (1− a)x), our result in this direction is as follows.

Theorem 3.1. For any a ∈ R, the following statements are equivalent:

(1) a ∈ sp-cn (R).
(2) There exist f ∈ idem (R) and x ∈ U (R) such that af = 0 and xa− fx = 1.
(3) The equation Pa(x) = 0 has a root x ∈ U (R) ∩ I (a).

Proof. (1)⇒ (2). Assume that a has a special clean decomposition a = e+ u. Letting x =
u−1 and f = xex−1 ∈ idem (R), left multiplying a = e+u by x gives xa = xe+1 = fx+1,
so xa− fx = 1. By Theorem 2.3(2), we have axe = 0. Therefore, af = a (xex−1) = 0.
(2) ⇒ (3). Let x and f be as in (2). Left multiplying xa − fx = 1 by a gives axa = a,
so x ∈ U (R) ∩ I (a). By [20, Proposition 3.3(D)], we have Pa(x) = 0.
(3) ⇒ (1). For x ∈ R as in (3), the final sentence of [20, Theorem 3.4] asserts that x is a
suitabilizer for a, i.e. there is some f ∈ idem (R) satisfying xa− fx = 1. Solving for a gives
a = x−1fx + x−1. Since a = axa, the implication (3) ⇒ (1) in Theorem 2.3(3) shows that
a ∈ sp-cn (R). �

The next natural goal in this section is to try to characterize special clean elements in a
ring R as a special type of the suitable elements in R . (According to Nicholson [32], an
element a ∈ R is suitable if there exists an idempotent e ∈ Ra such that 1 − e ∈ R(1 − a).
This is well known to be a left-right symmetric notion for elements.) This goal was first
accomplished by Zhang and Camillo in [43, Lemma 8], where they proved the equivalence
of (1) and (2) in the theorem below. Here we give an alternative simpler approach to the
Zhang-Camillo result by adding a slightly varied third condition (3) to the equivalence list,
while fully exploiting the method of exchange equations in formulating our different proof.

Theorem 3.2. For any a ∈ R, the following statements are equivalent:

(1) a ∈ sp-cn (R).
(2) There exist e ∈ idem (R) and v ∈ U (R) such that

ae = a, e = eva, and 1− e = (1− e) v (1− a).

(3) There exist e ∈ idem (R) and x ∈ U (R) such that

ae = a, e = exa, and 1− e = −(1− e)x (1− a).

Proof. For any e ∈ idem (R), one can quickly check that (2e − 1)2 = 1. The equivalence of
(2) and (3) is easily seen by noting that the “unit change” v = (2e−1)x (with v, x ∈ U (R)
and e ∈ idem (R)) entails ev = ex and (1− e) v = −(1− e)x. Thus, we may complete the
proof of the theorem by showing the equivalence of (1) and (3), independently of the proof
of [43, Lemma 8].
(1) ⇒ (3). Assuming (1), we have by Theorem 3.1 an exchange equation xa − fx = 1 for
some x ∈ U (R) and some f ∈ idem (R) such that af = 0. Letting e := 1− f ∈ idem (R),
we have ae = a, and left multiplying xa − fx = 1 by e gives e = exa. Also, rewriting
xa− fx = 1 in the form 1 = ex− x (1− a), left multiplying by f gives f = −fx (1− a).
This proves (3).
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(3) ⇒ (1). Given e, x as in (3), the idempotent f := 1 − e has the property that af = 0,
and the last equation in (3) can be written in the form

1− e = −fx+ (1− e)xa = −fx+ xa− e.
Thus, xa− fx = 1 (with x ∈ U (R) and af = 0), so Theorem 3.1 gives (1). �

Remark 3.3. No understanding of the result above can be complete without citing some
of its precedents in the earlier literature. The condition (3) in Theorem 3.2 without the
requirement ae = a has been investigated before by Chen-Cui in [13, Theorem 3.7] and by
H. Zhang in [42, Proposition 2]. Indeed, such a modified version of (3) was shown to be
equivalent to a ∈ cn (R), and if the requirement x ∈ U (R) is relaxed to just x ∈ R, then
the further weakened version of (3) was shown to be equivalent to a ∈ suit (R).

Having proved Theorem 3.2, the remaining goal of this section is now the description
of sp-cn (R) as a “special subset” of the set ureg (R) of the unit-regular elements of R.
Such a description turns out to be quite useful since it leads directly to a variety of new
information on the structure of the set sp-cn (R). As is well known [25, (4.14B)], we have
a ∈ ureg (R) iff a has a (multiplicative) “ureg-factorization” a = gu where g ∈ idem (R)
and u ∈ U (R). Given this characterization, unit-regular elements may be thought of as
multiplicative analogues of clean elements (which are elements of the form e + u where
e ∈ idem (R) and u ∈ U (R)). Considering that idem (R) ⊆ sp-cn (R) ⊆ ureg (R), we thus
have

ureg (R) = idem (R) · U (R) = sp-cn (R) · U (R).

Since we have at our disposal the useful notion of special clean decompositions, it would
be natural to ask if there is also a comparable notion of special ureg-factorizations. In the
following proposition, we shall introduce such a notion, where we may think of the defining
property (1) as largely inspired by the property (4) in Theorem 2.3.

Proposition 3.4. For any ureg-factorization a = gu where g ∈ idem (R) and u ∈ U (R),
and for h := 1− g, the following conditions are equivalent:

(1) −u ∈ I (h) (that is, −u is an inner inverse of h ).
(2) −hu ∈ idem (R).
(3) a− u ∈ idem (R).

If these conditions hold, we’ll say that a = gu is a special ureg-factorization. If such a
factorization exists, we’ll say that a is a special unit-regular element of R.

Proof. Since (2) means (hu) (hu) = −hu (where u is a unit), (2) is equivalent to (1). On
the other hand, since −hu = (g − 1)u = a− u, (2) is also equivalent to (3). �

Strictly speaking, the two notions introduced in Proposition 3.4 should have been called
right special ureg-factorization and right special unit-regular element (with the unit factor
u sitting on the right). Similarly, a left ureg-factorization should mean ug ′ with u ∈ U (R)
and g ′ ∈ idem (R), and we should use the term left special ureg-factorization if additionally
−u ∈ I (1 − g ′). However, if a = gu is a right ureg-factorization, then a = u (u−1gu) is a
left ureg-factorization, and it is easy to show that the former one is special iff the latter one
is special. Because of the existence of such a one-one correspondence, it will be sufficient for
us to work only with the right ureg-factorizations and their “special” versions, conveniently
omitting the adjective “right” in referring to them. Quite pleasantly, we have the following
theorem relating special ureg-factorizations of a ∈ R to the special clean decompositions
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of the same element a introduced in the last section. The last part of the theorem shows
that, although it is not clear at all how to directly relate cn (R) to ureg (R) in general, the
“special subsets” of these two sets turn out to be the same!

Theorem 3.5. For any a ∈ R, there is a bijective map from the set of special clean decom-
positions of a to the set of special ureg-factorizations of a. In particular, a is special clean
iff a is special unit-regular.

Proof. From any special clean decomposition a = e + u, we may construct a special ureg-
factorization of a as follows. Invoking the property (3) in Theorem 2.3, we have a =
au−1a, so g := au−1 ∈ idem (R), and a = gu is a ureg-factorization. As a − u = e ∈
idem (R), Proposition 3.4 shows that we have arrived at a special ureg-factorization a = gu.
Conversely, starting with a special ureg-factorization a = gu, let h = 1 − g ∈ idem (R).
Proposition 3.4 shows that e := −hu ∈ idem (R). Subtraction gives a − e = (g + h)u = u,
so a = e+ u. As aR∩ eR = gR∩ hR = 0, we have arrived at a special clean decomposition
a = e+ u.

By easy inspection, we can check that the two “mappings” between special clean decom-
positions and special ureg-factorizations of the given element a defined in the last paragraph
are inverse maps of each other, as desired. From this, it follows of course that an element
a ∈ R is special clean iff it is special unit-regular. �

In summary of what we have done so far, we state the following corollary in three parts,
the first two of which follow, respectively, by using special clean decompositions and special
ureg-factorizations. The last part follows from the last statement of (3.5) and the Camillo-
Khurana theorem (from [7]) that unit-regular rings are special clean.

Corollary 3.6. (1) The set sp-cn (R) consists of all sums e + u where e ∈ idem (R),
u ∈ U (R), and −u−1 ∈ I (e).

(2) The set sp-cn (R) also consists of all products gu where g ∈ idem (R), u ∈ U (R)
and −u ∈ I (1− g).

(3) A ring R is unit-regular iff every element in R is special unit-regular.

Another interesting application of Theorem 3.5 is that it induces a kind of involutive
structure on the set of all special clean decompositions in any ring R.

Theorem 3.7. If a = e+ u ∈ R is a special clean decomposition, so is its “dual”:

(∗) (1− e)u−1 = (−eu−1) + u−1.

If we apply this dual construction procedure to the special clean decomposition (∗), we get
back the original special clean decomposition a = e+ u.

Proof. First of all, the equation (∗) trivially holds. By Theorem 2.3(4), we have e (−u−1) e =
e, so e0 := −eu−1 ∈ idem (R). This checks that (∗) is a clean decomposition of (1− e)u−1.
Finally, since

e0ue0 = (−eu−1)u (−eu−1) = e (eu−1) = eu−1 = −e0,
Theorem 2.3 implies that (∗) is a special clean decomposition of (1− e)u−1.

If we apply the dual construction procedure to (∗), we’ll get a special clean decomposition
whose “unit term” is u, and whose “idempotent term” is −(−eu−1)u = e. This means that
we get back precisely the original decomposition a = e+ u. �
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With the involution defined above on the set of all special clean decompositions, it is of
interest to describe the set of fixed points of this involution. This study will be undertaken
a little bit later in Theorem 5.3.

Remark 3.8. The idea of defining an involutive structure on certain sets of two-term additive
decompositions can also be utilized as follows. Let us say that a = b + u is a preclean
decomposition of a ∈ R if b ∈ ureg (R) and u ∈ U (R). Then the passage from a = b+u
to (1 − b)u−1 = (−bu−1) + u−1 can be easily checked to be an involution on the set of all
preclean decompositions, upon noting that

b ∈ ureg (R) ⇒ −bu−1 ∈ ureg (R).

By restricting this involution to the set of all special clean decompositions, we get back the
main conclusions of Theorem 3.7. However, this involution in general does not induce a
self-map on the set of clean decompositions (since b ∈ idem (R) need not imply −bu−1 ∈
idem (R)). Indeed, in view of the criterion in Theorem 2.3(4), the set of special clean
decompositions is exactly the maximal subset of clean decompositions that is preserved by
the involution on the set of all preclean decompositions.

Remark 3.9. As the reader might have noticed, there is in fact a second involutive structure
on the set of special clean decompositions in R, which can be gotten by repeating the work
above by using left ureg-factorizations. This second involution simply takes a special clean
decomposition e + u to u−1(1 − e) = (−u−1e) + u−1. If we compose the two involutions
one way or the other, we’ll get two mutually inverse permutations on the set of special clean
decompositions, one taking e + u to ueu−1 + u, and the other taking e + u to u−1eu + u.
In particular, the n -th power of the first permutation (for any n ∈ Z) would take a special
clean decomposition e+u to uneu−n +u. In retrospect, the fact that uneu−n +u is a special
clean decomposition (for all n ) can be easily checked using the criterion (4) in Theorem 2.3.

Example 3.10. In illustration of Theorem 3.5, take again the matrix A =
(

5 3
0 0

)
∈ R =

M2(Z). Assuming what we said in Example 2.7(F), we may conclude from Theorem 3.5
that there are precisely three special ureg-factorizations for A in R. A routine computation
(using the proof of (3.5)) shows that they are as follows:

(3.11) A =

(
1 1
0 0

)(
3 2
2 1

)
=

(
1 0
0 0

)(
5 3
−2 −1

)
=

(
1 1
0 0

)(
2 1
3 2

)
.

On the other hand, while A has exactly three clean decompositions (as claimed in (2.7)(F)
and [22]), it has infinitely many ureg-factorizations, including for instance:

(3.12) A =

(
1 n
0 0

)(
5− n (3 + 5m) 3− n (2 + 3m)

3 + 5m 2 + 3m

)
(for any n, m ∈ Z ),

where the second matrix on the right-hand side has visibly determinant 1. As for the matrix

B =
(

12 5
0 0

)
, it certainly also has many ureg-factorizations; for instance B =

(
1 1
0 0

)(
7 3
5 2

)
.

But none of them can be special, since otherwise B would be special clean by Theorem 3.5,
while according to [19, (4.5)] B is not even clean in R.
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4. Insufficient Conditions for Special Clean Elements

The first basic issue pertinent to the caption of this section is obviously the following.
Since we know from (2.6) that special clean elements (in any ring) are always unit-regular
and clean, it is natural to ask whether the converse of this statement also holds; that is,
whether unit-regular clean elements are always special clean. A “yes” answer to this question
would have given a relatively simple description of the set sp-cn (R) in any ring R. However,
in the following, we shall give an example to show that such a naive description of the set
sp-cn (R) is, in general, not possible.

Example 4.1. Let R =
(

Z 3Z
3Z Z

)
, and let A =

(
2 3
0 0

)
∈ ureg (R) (with unit inner inverse(

5 −3
−3 2

)
). Since V := A − I2 =

(
1 3
0 −1

)
∈ U (R), we have A ∈ cn (R). We claim that A

is uniquely clean in R, which will show that A /∈ sp-cn (R) since A = I2 + V is obviously
not a special clean decomposition. To prove our claim, assume instead that there is a clean

decomposition A = E +U in R with E 6= I2. Clearly, E 6= 0 too, so we have E =
(
x y
z w

)
with x+ w = tr (E) = 1 and xw − yz = det (E) = 0. Moreover, the invertibility of A−E
yields

(4.2) det (A− E) = −(2− x)w + z (3− y) ∈ {±1}.
Reading these equations modulo 9 and recalling that y, z ∈ 3Z, we have

(4.3) xw = 0, x+ w = 1, and (2− x)w ∈ {±1}.
The third equation implies that w is invertible, so the first equation gives x = 0 and the
second one gives w = 1, which contradicts the third equation. This proves our claim that A
is uniquely clean in R. In hindsight, we note that if we work in the larger ring R ′ = M2(Z),
A will no longer be uniquely clean as it has another clean decomposition F + W where

F =
(

0 0
1 1

)
and W =

(
2 3
−1 −1

)
. A quick calculation shows that FW−1F = −F , so A turns

out to be special clean in R ′.

As for the above type of examples, there is also the finer problem of finding a clean ring
R which would contain a unit-regular element that is not special clean. This can be done
as follows, by mainly reiterating the idea of construction in Example 4.1 above.

Example 4.4. Let S = Endk (M) where M is a right vector space over a field k with

a countably infinite basis {e1, e2, ... }. By a theorem of Ó Searcóid [35], S is a clean ring.
Let J be the ideal of S consisting of all k-endomorphisms of finite rank. In the spirit of

Example 4.1, we’ll work with the ring R =
(
S J
J S

)
⊆M2(S). For the two idempotents given

by the matrix units E11 and E22 (with sum I2), the corner rings E11RE11 and E11RE11

are both isomorphic to the clean ring S, so by the Han-Nicholson theorem in [16], R is
itself a clean ring. Now let A = diag (a, 0) ∈ R where a ∈ S is the “left shift operator”,
with a (e1) = 0 and a (ei) = ei−1 for i ≥ 2. If b ∈ S is the “right shift operator”
with b (ei) = ei+1 for all i ≥ 1, we have ab = 1 and im (1 − ba) = e1k. In particular,

1 − ba ∈ J , so V :=
(

a 0
1− ba b

)
∈ R. It is easy to check that V ∈ U (R), with inverse

given by
(
b 1− ba
0 a

)
∈ R. Thus, A has a ureg-factorization

(
1 0
0 0

)
V , so A ∈ ureg (R).
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We claim that A /∈ sp-cn (R). To prove this, assume instead that A has a special clean

decomposition E + U in R ; say E =
(
x y
z w

)
. For any s ∈ S, we denote its image in

S = S/J by s. Since E = diag
(
x, w

)
= E

2
, we have w ∈ idem

(
S
)
. Moreover, the

invertibility of U = A−E = diag
(
a− x, −w

)
implies that a−x, w ∈ U

(
S
)
; in particular,

w = 1. Now, applying the special clean condition AU−1E = 0, we get a
(
a − x

)−1
x = 0,

and hence x = 0 (since a − x ∈ U
(
S
)
, and a ∈ U

(
S
)

too, with inverse b ). Therefore,

U = A − E = diag
(
a, −1

)
. This is a contradiction, since U cannot be invertible even in

the bigger ring M2(S) since it is not injective as an endomorphism of M2. This completes
the proof for our claim that A /∈ sp-cn (R).

Remark 4.5. About Example 4.4, two more observations are in order. First, although the
matrix A = diag (a, 0) is not special clean in R, it does become special clean in the full
matrix ring M2(S). This fact can be deduced from our forthcoming result Corollary 6.6.
Second, we note that the ring R is not only clean, but also regular. Indeed, R contains a
regular ideal2 Ĵ = M2(J) such that R/Ĵ ∼= (S/J) × (S/J) is regular, so the regularity of
R follows from a well known classical result [15, Lemma 1.3].

With any element-wise property P in ring theory, it is always of interest to determine
whether such a property would “satisfy Jacobson’s Lemma”; that is, for any pair of elements
a, b in any ring, whether 1 − ab having the property P would imply the same for 1 − ba.
If P1 is the property of being unit-regular, it is known from [10] and [28] that P1 satisfies
Jacobson’s Lemma. However, if P2 is the property of being clean, it was shown in [29,
Proposition 4.2] that P2 does not satisfy Jacobson’s Lemma. Since the property P of being
special clean refines each of the properties P1 and P2, the two facts above do not give any
quick way to tell if P itself would satisfy Jacobson’s Lemma. Fortunately, a known result
in [19] can be exploited to answer this question (negatively), as follows.

Example 4.6. For the two matrices A =
(

2 3
0 1

)
and B =

(
−1 −2
−3 0

)
in the ring R = M2(Z),

we have an obvious clean decomposition

(4.7) I2 − AB =

(
12 4
3 1

)
=

(
1 0
0 0

)
+

(
11 4
3 1

)
,

which can be shown to be a special clean decomposition by a simple checking of the inner
inverse condition (4) in Theorem 2.3. Thus, we have I2 − AB ∈ sp-cn (R). As for the

matrix X := I2 − BA =
(

3 5
6 10

)
, letting U =

(
1 0
−2 1

)
∈ U (R) leads to the conjugated

matrix UXU−1 =
(

13 5
0 0

)
. This matrix is not clean in R, as was explicitly pointed out in

Example 4.5 of [19]. From this, it follows in particular that X = I2 − BA /∈ sp-cn (R).
This means that, over a general ring R, the element-wise property of being special clean
need not satisfy Jacobson’s Lemma. Nevertheless, over a clean ring R′, there “may be” a
better chance for Jacobson’s Lemma to hold. For instance, a brute-force computer check
using Mathematica shows that, for the clean ring R′ = M2

(
Z/4Z

)
, I2 − AB ∈ sp-cn (R′)

does imply that I2 −BA ∈ sp-cn (R′) !

2An ideal in a ring is called regular if it is regular as a (possibly nonunital) ring.
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In Example 2.7(D), we have pointed out that the set sp-cn (R) is usually not closed with
respect to the map r 7→ 1 − r. Therefore, Example 4.6 above is not sufficient to settle the
question whether xy ∈ sp-cn (R) would imply that yx ∈ sp-cn (R). However, using a result
from [29] also leads to a negative answer to this question, as follows.

Example 4.8. We work with the same ring R = M2(Z) as in (4.6) above. Following the
proof of [29, (4.2)], we consider the matrices C = E11 and D = nE11 + E12 in R, where
n /∈ {−1, 0, 1, 2}. As in [29, (4.4)], we have the following clean decomposition

(4.9) CD = D =

(
n 1
0 0

)
=

(
0 0

n− 1 1

)
+

(
n 1

1− n −1

)
∈ R,

which can be shown to be again a special clean decomposition by an application of Theorem
2.3. Thus, CD ∈ sp-cn (R). However, DC = nE11 /∈ sp-cn (R); in fact, it was shown in
[29, p. 193] that nE11 is not even a “suitable element” in R in the sense of Nicholson [31].
Here, R is not a clean ring. If one prefers a clean ring example, one can work in the ring

R′ = M2

(
Z/4Z

)
mentioned in Example 4.6, and take instead C =

(
2 0
1 0

)
, D = diag (1, 0).

For these choices, CD = C has a special clean decomposition
(

0 1
0 1

)
+

(
2 −1
1 −1

)
, but

DC = diag (2, 0) lies in the Jacobson radical of R′, so it is not even a regular element in R′.

5. Sufficient Conditions for Special Clean Elements

The goal of this section is to demonstrate the ubiquity of special clean elements in rings by
constructing various families of such elements. Roughly speaking, if a unit-regular element
(or a clean element) a ∈ R happens to have some extra properties beyond what is implied
by unit-regularity (or cleanness), there seems to be generally a reasonable chance that a
would be special clean. A number of examples of this nature will be given.

To state our first main result in this section, we first recall some basic terminology in the
study of strongly π-regular (or Drazin invertible) elements in a ring R. Following Drazin
[14], these are the elements a ∈ R for which there exists an element a′ called the Drazin
inverse of a, satisfying

aa′ = a′a, a′aa′ = a′, and ak+1a′ = ak for some integer k ≥ 0.

The element aa′ = a′a is called the associated idempotent of a, while e := 1 − a′a is
called the spectral idempotent of a. It is well known (from work in [33, page 3589]) that
u := a− e ∈ U (R), so that a = e+ u is a strongly clean decomposition of a, which is called
the spectral decomposition of a.

If an element is strongly regular then it is trivially Drazin invertible, with the Drazin
inverse exactly its “group inverse” as defined in Remark 2.14. The following theorem gen-
eralizes some results on abelian rings from [2], [11], and [3]. The “iff” statement in the first
sentence of this theorem was also proved in [44].

Theorem 5.1. For any ring R, a ∈ sreg (R) iff a has a decomposition e + u in R
that is both special clean and strongly clean. In this case, e + u is precisely the spectral
decomposition of a. (In particular, sreg (R) ⊆ sp-cn (R).) The special ureg-factorization
corresponding to the spectral decomposition of a (in the sense of Theorem 3.5) is a = fu
where f := 1− e is the associated idempotent of a.
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Proof. If a ∈ sreg (R), then a is strongly π-regular, and it has a spectral decomposition
a = e + u with e = 1 − a′a. We have then ea = (1 − a′a) a = a − aa′a = 0 (since a′

is the group inverse of a), so by the last sentence of Theorem 2.3, a = e + u is a special
clean decomposition (as well as a strongly clean one). In particular, we have a ∈ sp-cn (R).
Conversely, suppose a has a decomposition a = e + u in R that is both special clean and
strongly clean. Then ea = 0 by Theorem 2.3, so

a2 = (e+ u) a = ua = au.

Since u ∈ U (R), this shows that a ∈ sreg (R). To show that a = e + u must be the
spectral decomposition of a, we think of a and e as endomorphisms of RR (acting by
left multiplication). Letting I = ker (e) and K = im (e), it is clear that a acts as the
automorphism u on I, and acts as zero on K (since ae = 0). Thus, R = I ⊕K is exactly
the Fitting decomposition of the action of a ∈ sreg (R) on RR. In particular, e must be
the spectral idempotent of a.

To prove the last statement in Theorem 5.1, we recall from the proof of Theorem 3.5 that
the special ureg-factorization of a corresponding to the spectral decomposition a = e + u
is a = (au−1)u where the idempotent factor in parentheses is

au−1 = (u+ e)u−1 = 1 + eu−1 = 1 + eu−1e = 1− e,
in view of Theorem 2.3(4). This is exactly the associated idempotent of a. �

Remark 5.2. Note that the success of the proof of the “if” part of Theorem 5.1 depends
crucially on working with a decomposition a = e + u that is simultaneously strongly clean
and special clean. In general, if an element a ∈ R is strongly clean and special clean (with
respect to two different decompositions), it need not follow that a ∈ sreg (R). For instance,

in the ring R = M2

(
Z
)
, the matrix A =

(
2 3
0 0

)
has a trivial strongly clean decomposition

A = I2 + (A − I2) and a separate special clean decomposition A =
(

2 2
−1 −1

)
+

(
0 1
1 1

)
.

However, A /∈ sreg (R) since otherwise A ∈ A2R ⊆ 2R, which is not the case.

In Theorem 3.7, we have constructed an involution on the set of all special clean decompo-
sitions over a ring R, so that every special clean decomposition gives rise to a certain “dual”
special clean decomposition. The following result closely related to Theorem 5.1 clarifies the
formation of this dual on the spectral decompositions of the strongly regular elements of R,
and also describes the set F of “fixed points” of this involution.

Theorem 5.3. (1) If a = e + u is the spectral decomposition of an element a ∈ sreg (R),
then its dual in the sense of Theorem 3.7 is the spectral decomposition of the group inverse
of a.
(2) Under the involution on the set of all special clean decompositions in R, the fixed point
set F consists of (automatically special clean) decompositions of the form e + u where
u2 = 1, e2 = e, and eu = −e. Alternatively, F also consists of decompositions of the form
e+ (a− e) where e2 = e, ea = 0, and (1− a) e = 1− a2.
(3) In the description of the set F in (2), the element a is necessarily a tripotent; that is,
a3 = a. Any tripotent a ∈ R always gives rise to a fixed point in F through its spectral
decomposition a = (1− a2) + (a2 + a− 1).

Proof. (1) By definition, the dual of the spectral decomposition a = e + u ∈ sreg (R) is
given by b := (1 − e)u−1 = (−eu−1) + u−1 = e + u−1. From these equations (and the fact
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that eu = ue = −e), we check easily that ab = ba, aba = a, and bab = b, so b is the group
inverse of a. Since the idempotent term e in the decomposition b = e + u−1 is also the
spectral idempotent of b, it follows that b = e + u−1 is exactly the spectral decomposition
of b ∈ sreg (R).

(2) Again from the definition of the construction of the dual, the condition for a special clean
decomposition e + u to be in the fixed point set F is u−1 = u together with −eu−1 = e;
or equivalently, u2 = 1 together with eu = −e. (Note that these conditions imply that
eu−1e = eue = −e2 = −e, so the decomposition e+ u would be automatically special clean
by Theorem 2.3.) Next, we may transform the conditions above by introducing a := e + u
and eliminating u. Under this transformation, eu = −e transforms into ea = e (e + u) =
e+ eu = 0, and u2 = 1 transforms into

1 = (a− e)2 = a2 + e− ae ; or equivalently, 1− a2 = (1− a) e.

(3) For any decomposition a = e + u in F , the relations shown in (2) imply that a2 =
(e + u) a = ua, and so a3 = aua = au−1a = a, as claimed. This means that a is its own
group inverse, so the spectral idempotent of a is 1 − a2, which gives rise to its spectral
decomposition a = (1− a2) + (a2 + a− 1) in the fixed point set F . �

Recall that an idempotent e ∈ R is said to be left semicentral if (1− e)Re = 0, and right
semicentral if eR (1 − e) = 0. Given this terminology, a ring R is said to be semiabelian
if every e ∈ idem (R) is either left semicentral or right semicentral. For such rings, as well
as for rings of stable range one (see [37]), it turns out that special clean elements are none
other than the regular elements.

Theorem 5.4. (1) For any ring R of stable range one, the following holds:

sp-cn (R) = ureg (R) = reg (R).

(2) For any semiabelian ring R, the three sets above are all equal to sreg (R).
(3) A ring R is abelian iff every a ∈ reg (R) has a unique special clean decomposition, iff
every f ∈ idem (R) has a unique special clean decomposition.

Proof. (1) In view of (2.6), it is enough to check that reg (R) ⊆ sp-cn (R) for any ring R of
stable range one. This was proved in [39, Theorem 3.3].

(2) For any ring R, (2.6) and Theorem 5.1 combine to give

sreg (R) ⊆ sp-cn (R) ⊆ ureg (R) ⊆ reg (R).

If R is semiabelian, we have reg (R) = sreg (R) by [27]. This proves (2).
(3) If R is abelian, every a ∈ reg (R) = sreg (R) has a unique special clean decomposition by
Theorem 5.1. Conversely, if every f ∈ idem (R) has a unique special clean decomposition,
the last statement in Example 2.7(B) implies that f must be central, so R is an abelian
ring. �

Corollary 5.5. Let A ∈ R = Mn(S) be a block matrix
(
B
0

)
where B ∈ Mr,n(S) and S

is a ring of stable range one. If B is “regular” in the sense that BCB = B for some
C ∈Mn,r(S), then A ∈ sp-cn (R).
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Proof. Since A (C,0)A =
(
BC 0
0 0

)(
B
0

)
=

(
BCB
0

)
= A, we have A ∈ reg (R). According

to a result of Vaserstein [37], the fact that S has stable range one implies that the matrix
ring R = Mn(S) also has stable range one. Invoking part (1) of Theorem 5.4, we see that
A ∈ sp-cn (R). �

Remark 5.6. A special case of Corollary 5.5 is that, if BC = Ir for some C ∈ Mn,r(S)
where S has stable range one, then A ∈ sp-cn (R). Even in this special case, the conclusion
of Corollary 5.5 is not known in the literature. However, if S is a commutative ring of stable

range one and r = 1, n = 2, the fact that xS + yS = S implies that A =
(
x y
0 0

)
is a clean

matrix in M2(S) was first proved in [19, (3.8)]. Corollary 5.5 above may be regarded as a
rather strong generalization of this fact.

In [34], a ring element a ∈ R is defined to be doubly unit-regular if there exists r ∈ R
such that a = ara, and for e = ra ∈ idem (R), the element eae is unit-regular in the corner
ring eR e. In [34, Theorem 3.14], it is proved that

Every doubly unit-regular element is special clean.(5.7)

One of the easiest examples of a doubly unit-regular element is a regular element a in any
ring R with a2 = 0. (If a = ara, letting e = ra gives eae = ra2e = 0 ∈ eRe.) In this
case, (5.7) implies that a ∈ sp-cn (R). An independent proof for this (using only the results
of this paper) can be given as follows. Fixing a reflexive inverse r for a, let s = (1− ar) r.
Then s2 = (1 − ar) r (1 − ar) r = 0, and asa = a (1 − ar) ra = ara = a. Similar short
calculations show that b := s (1 + a) is an idempotent reflexive inverse of a. By (3) ⇒ (1)
in Theorem 2.13, we have a ∈ sp-cn (R). Indeed, it turns out that a is even a “superspecial
clean element” in the sense of the forthcoming work [21].

In [34, Theorem 3.14], it was also shown that the double unit-regularity of an element
a ∈ R amounts to the existence of a special clean decomposition a = e+ u together with a
second condition a2R ∩ aeR = 0. Our normal expectation from such a statement would be
that the class of special clean elements is in general larger than that of doubly unit-regular
elements. Indeed, it is not difficult to produce an example of a special clean element that
fails to be doubly unit-regular. To do this, we exploit a construction idea of Patŕıcio-Hartwig
[36] and [41], as follows.

Example 5.8. Let R = M2(S) where S = Z/4Z, and let A =
(

0 0
1 2

)
∈ R, with A3 = 0.

We see easily that ±A ∈ sp-cn (R) for both signs, on account of the following (more or less
obvious) special clean decompositions:

(5.9) A =

(
0 1
0 1

)
+

(
0 −1
1 1

)
, and −A =

(
0 1
0 1

)
+

(
0 −1
−1 1

)
.

On the other hand, A2 = 2A shows that A2 /∈ reg (R), since (2A)X (2A) = 0 6= 2A for any
matrix X ∈ R. This implies that A is not doubly unit-regular, according to [34, Theorem
3.14]. (Just to “reinforce” this conclusion, if we take A = E + U to be the first special
clean decomposition in (5.9), an easy computation shows that the two right ideals A2R and

AER in R are both given by
(

0 0
2S 2S

)
, so the “second condition” A2R∩AER = 0 alluded

to in the last paragraph is indeed not satisfied here. A similar remark applies to the special
clean decomposition for −A in (5.9).)
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6. Corner Ring Results

Since special clean rings are exactly the same as unit-regular rings, it goes without saying
that Peirce corner rings of special clean rings are special clean; see [15, (4.7)]. However, this
remark does not give any useful information about the nature of special clean elements in
corner rings. One result we can prove in this direction is the following.

Theorem 6.1. For any idempotent e0 in a ring R, we have

(6.2) sp-cn (e0Re0) ⊆ e0Re0 ∩ sp-cn (R).

Equality holds if e0 is a left or right semicentral idempotent. In this case, we also have

(6.3) sp-cn (e0Re0) = e0 sp-cn (R) e0.

Proof. Let S = e0Re0. To prove (6.2), consider any a ∈ sp-cn (S), with a special clean
decomposition e+u in S. Then ava = a where v is the inverse of u in S. For f0 := 1−e0,
a = (e+ f0) + (u− f0) is surely a clean decomposition of a in R. As (u− f0)−1 = v − f0
in R, it follows that

(6.4) a (u− f0)−1a = a (v − f0) a = ava− (ae0) f0a = a,

so Theorem 2.3 implies that a ∈ sp-cn (R).
Next, consider any a ∈ S ∩ sp-cn (R), with a special clean decomposition e + u in R.

If e0 is a left or right semicentral idempotent in R, a theorem of Chase [9, (2.1)] implies
that the map ϕ : r 7→ e0re0 is a ring homomorphism from R to S. By our earlier
observation in the text following (2.6), the fact that a ∈ S ∩ sp-cn (R) would imply that
ϕ(a) = e0ae0 = a ∈ sp-cn (S). This proves that equality holds in (6.2).

Finally, continuing to assume that e0 is a left or right semicentral idempotent, the fact
that ϕ is a ring homomorphism implies that e0 sp-cn (R) e0 ⊆ sp-cn (S). Since we also have
sp-cn (S) ⊆ sp-cn (R) by (6.2), the equality in (6.3) follows. �

We conclude this paper by proving the following corner ring result which is another nice
application of Theorem 2.13.

Theorem 6.5. Let a ∈ S = e0Re0 where e0 ∈ idem (R), and let ϕ : R → S be the map
defined by r 7→ e0re0. If ϕ (idem (R)) = S, then the following statements are equivalent:

(1) a ∈ reg (S); (2) a ∈ reg (R); (3) a ∈ ureg (R); (4) a ∈ sp-cn (R).

Proof. To begin with, the implications (4) ⇒ (3) ⇒ (2) hold for any ring R. Next, (2) ⇒
(1) holds upon writing a = ara for some r ∈ R and observing that a = (ae0) r (e0a) = ar0a
where r0 := e0re0 ∈ S. For (1) ⇒ (4), say a = asa (for some s ∈ S), and write s = ϕ(e)
for some e ∈ idem (R). Then a = a (e0ee0) a = aea, so e ∈ I (a) (in the ring R). This
implies that b := eae is a reflexive inverse of a, with b2 = (eae) (eae) = e (aea) e = b, and
so b ∈ sreg (R). Applying Theorem 2.13 then shows that a ∈ sp-cn (R). �

Corollary 6.6. Let R = Mn(S), where S is any ring and n ≥ 2. For any a ∈ S and
A = diag (a, 0, . . . , 0) ∈ R, the following statements are equivalent:

(1) a ∈ reg (S); (2) A ∈ reg (R); (3) A ∈ ureg (R); (4) A ∈ sp-cn (R).

Proof. To apply Theorem 6.5, we take e0 to be the matrix unit E11 in R, and identify S
with the corner ring e0Re0. The equivalence of (1)–(4) will follow if we can show that the
map ϕ : idem (R) → S defined by r 7→ e0re0 is surjective. This is clear, since for every
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s ∈ S, the diagonal block sum
(
s 1− s
s 1− s

)
⊕0n−2 is an idempotent in R, and obviously ϕ

maps this idempotent matrix to the given element s ∈ S. �

Remark 6.7. Using the Corollary above, we can see retrospectively that, in the setting of
Theorem 6.1, the inclusion relation in (6.2) may be strict if e0 ∈ R is an arbitrary idempotent
in R. Indeed, if S is any ring with an element a ∈ reg (S)\ cn (S), Corollary 6.6 shows that
A = diag (a, 0) is special clean in the matrix ring R = M2(S). However, a is not clean (let
alone special clean) in its corner ring e0Re0 ∼= S if we take e0 to be the matrix unit E11.
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[34] Pace P. Nielsen and Janez Šter. Connections between unit-regularity, regularity, cleanness, and strong

cleanness of elements and rings. Trans. Amer. Math. Soc., 370(3):1759–1782, 2018.
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