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Abstract. We investigate the integer solutions of Diophantine equations related to perfect
numbers. These solutions generalize the example, found by Descartes in 1638, of an odd,
“spoof” perfect factorization 32 ·72 ·112 ·132 ·220211. More recently, Voight found the spoof
perfect factorization 34 · 72 · 112 · 192 · (−127)1. No other examples appear in the literature.
We compute all nontrivial, odd, primitive spoof perfect factorizations with fewer than seven
bases—there are twenty-one in total.

We show that the structure of odd, spoof perfect factorizations is extremely rich, and
there are multiple infinite families of them. This implies that certain approaches to the
odd perfect number problem that use only the multiplicative nature of the sum-of-divisors
function are unworkable. On the other hand, we prove that there are only finitely many
nontrivial, odd, primitive spoof perfect factorizations with a fixed number of bases; this
generalizes previous results, which presupposed positivity of the bases.

1. Introduction

Let σ denote the sum-of-divisors function. A positive integer n is said to be perfect if
σ(n) = 2n; in other words, the sum of the proper divisors of n equals n. At present there
are fifty-one perfect numbers known, all of the form 2p−1(2p − 1) where both p and 2p − 1
are prime. The smallest example is when p = 2, and the current largest example is when
p = 82589933.

Euclid, in his Elements, defined the perfect numbers and proved that if 2p − 1 is prime
(which necessitates p being prime), then 2p−1(2p−1) is perfect. Euler proved, conversely, that
every even perfect number is of this form. Two of the oldest open problems in mathematics
are whether there are infinitely many perfect numbers, and whether any of them are odd.
This paper focuses on the second problem.

Many of the methods employed in the study of odd perfect numbers (hereafter denoted
OPNs) apply to a much broader class of structures. To motivate this generalization, we
consider the (nonprime) factorization n = 32 · 72 · 112 · 132 · 220211 discovered by Descartes.
Recall that σ is multiplicative, and for any prime p and any positive integer a we have
σ(pa) = 1 + p+ · · ·+ pa. Thus, we might (falsely) compute

σ(n) = σ(32 · 72 · 112 · 132 · 220211)
= (1 + 3 + 32)(1 + 7 + 72)(1 + 11 + 112)(1 + 13 + 132)(1 + 22021) = 2n.

The problem is that 22021 = 192 · 61, so 22021 is not prime and the second equality above is
false. However, the given factorization of n satisfies the condition for an OPN if we pretend
that 22021 is prime and apply the usual rules for σ. This motivates the following definitions.
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Definition 1.1. Let n ∈ Z. We call an expression of the form n =
∏k

i=1 x
ai
i , where each

xi ∈ Z and each ai ∈ Z≥1, a factorization of n. We call each xi a base of the factorization,
and we call ai the corresponding exponent of the ith base. If, moreover, each xi ∈ Z≥1, then
the factorization is positive. A factorization is odd when n is odd; otherwise it is even.
We define a function σ̃, to be evaluated on the collection of ordered pairs that describes

such a factorization, by the rule

σ̃
(
{(xi, ai) : 1 ≤ i ≤ k}

)
:=

k∏
i=1

(
ai∑
j=0

xj
i

)
.

As an abuse of notation, we will write σ̃(
∏k

i=1 x
ai
i ) instead of σ̃({(xi, ai) : 1 ≤ i ≤ k}). We

see that σ̃(
∏k

i=1 x
ai
i ) agrees with σ(n) when the bases are distinct, positive primes.

A factorization as above is spoof perfect if σ̃(
∏k

i=1 x
ai
i ) = 2

∏k
i=1 x

ai
i . (Note that the prime

factorizations of actual perfect numbers are being treated as spoof perfect factorizations. We
use the word “spoof” rather than something like “generalized” for historical reasons.)

Example 1.2. Descartes’s example is a positive, odd, spoof perfect factorization. Banks,
Güloğlu, Nevans, and Saidak [1] searched for other positive, odd, spoof perfect factorizations
of a form similar to Descartes’s example, and Dittmer [2] searched for an even more general
class of positive, odd, spoof perfect factorizations. Neither was successful in finding any
additional examples.

Example 1.3. For each positive integer a ∈ Z≥1, the factorization 2a−1 · (2a − 1)1 is even
and spoof perfect. Dittmer found other infinite families of even, spoof perfect factorizations
in [2].

Example 1.4. Voight in [5] found the odd, spoof perfect factorization 34 · 72 · 112 · 192 ·
(−127)1, which is not positive, but every base is prime. Previous to this paper, Voight’s and
Descartes’s examples were the only odd, spoof perfect factorizations to have been published.

We find many similar examples with multiple negative bases, but two are of particular
note. First, 32 · 72 · 72 · 131 · (−19)2 is the only odd, spoof perfect factorization we could find
where all of the bases are prime and the product is positive. Note that the base 7 is repeated.
Second, one can modify Descartes’s example to create the new spoof perfect factorization
32 · 72 · 112 · 132 · 220212 · (−484946463)1. We show that this process is quite general; any
odd, spoof perfect factorization gives rise to a new factorization.

These examples suggest a natural dichotomy between the spoof perfect factorizations that
are odd and those that are even. We are able to prove that this dichotomy holds quite
generally. Our first main result appears as Theorem 6.2, which says that after restricting
ourselves to what we will call nontrivial, primitive spoof perfect factorizations, there are only
finitely many odd factorizations with a fixed number of bases. (Similar results have appeared
in the literature, but always subject to a positivity hypothesis.) Our second main result is
a complete list of all twenty-one factorizations of this type that have less than seven bases.
This computation took about three years, distributed over many computing cores. The new
examples we found not only complement the examples of Descartes and Voight, but they
motivated additional results in this paper and provide natural barriers to proof strategies
for nonexistence of OPNs.

An outline of the paper follows. In Section 2 we characterize the spoof perfect factoriza-
tions with a single base, and also those with 0 or −1 as a base. The latter factorizations are
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called trivial, and throughout the rest of the paper only nontrivial factorizations are consid-
ered. In Section 3 we apply the classical notions of abundant and deficient numbers to spoof
perfect factorizations. Using these concepts, we characterize the spoof perfect factorizations
with two bases.

Next, in Section 4 we describe two additional tools that have been used in the study of
OPNs, and apply them to this broader context of spoof perfect factorizations. With these
tools in hand, we give a (possibly complete) list of spoof perfect factorizations with three
bases in Section 5. Finally, in Section 6, we characterize the odd, primitive spoof perfect
factorizations with six or fewer bases, as well as prove our main theorem.

Along the way we discover a rich structure inherent in the odd, spoof perfect factorizations,
including the fact that there are multiple infinite (nontrivial) families of such factorizations.
These infinite families necessarily have an increasing number of bases. We discuss one final
class of examples in Section 7, where we also pose some additional open problems.

2. Preliminaries and trivialities

One of the primary goals of this paper is to characterize many of the spoof perfect fac-
torizations, in the hope that this information will be useful in the study of actual perfect
numbers. The spoof perfect factorizations with one base are easy to characterize.

Proposition 2.1. The only spoof perfect factorization with one base is 11.

Proof. By inspection, σ̃(11) = 2 · 11.
Suppose we have a general solution σ̃(xa) = 2xa. We then have

1 + x+ x2 + · · ·+ xa−1 = xa.

Clearly x ̸= 0. If x ̸= ±1, then looking at this equation modulo x we see there are no
solutions. When x = −1, if a is even the equation becomes 0 = 1, while if a is odd the
equation becomes 1 = −1. Thus, the only possible solution is when x = 1, which implies
a = 1. □

Before moving on to more bases, we first handle some trivialities.

Proposition 2.2. Given a factorization
∏k

i=1 x
ai
i , we have σ̃(

∏k
i=1 x

ai
i ) = 0 if and only if at

least one of the bases is −1 and the corresponding exponent is odd.

Proof. If σ̃(xa) = 0, then x ̸= 1 and the geometric sum formula yields

0 =
a∑

j=0

xj =
xa+1 − 1

x− 1
.

Hence xa+1 = 1, and thus x = −1 and a is odd.
The converse is easy to verify. □

Corollary 2.3. A factorization where one of the bases equals 0 is spoof perfect if and only
if at least one other factor has base −1 with an odd exponent.

We note that if a is even, then σ̃((−1)a) = 1. Thus, if we have a spoof perfect factorization,
we can obtain a new spoof perfect factorization by adjoining (or, when possible, removing) a
factor whose base is −1 and whose exponent is even. In light of Corollary 2.3 and this fact,
we say that a factorization is trivial if some base is 0 or −1, otherwise it is nontrivial. For
the remainder of the paper we will implicitly assume all factorizations are nontrivial.
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3. Abundant and deficient factorizations

Recall that the function σ−1(n) =
∑

d|n
1
d
is, just like σ, multiplicative. In analogy to σ̃,

we define (for nontrivial factorizations)

σ̃−1

(
{(xi, ai) : 1 ≤ i ≤ k}

)
= σ̃−1

(
k∏

i=1

xai
i

)
:=

k∏
i=1

(
ai∑
j=0

1

xj
i

)
.

Note that a factorization
∏k

i=1 x
ai
i is spoof perfect if and only if σ̃−1(

∏k
i=1 x

ai
i ) = 2.

There are a few benefits to working with σ̃−1 instead of σ̃. First, when x ∈ Z \ {−1, 0, 1}
we may set σ̃−1(x

∞) := x
x−1

because

lim
a→∞

σ̃−1(x
a) =

∞∑
j=0

1

xj
=

x

x− 1
,

thus allowing us to consider what happens to exponents “at infinity.” When x = 1 we put
σ̃−1(1

∞) = ∞, and we continue to use the formula x/(x − 1) by treating 1/0 as ∞. Note
that if we were to allow infinite exponents, there would be another spoof perfect factorization
with one base, namely 2∞.

More generally, note that since σ̃−1(x
∞) = σ̃−1((x− 1)1) when x ∈ Z \ {−1, 0, 1}, we can

always replace infinite exponents with finite exponents in factorizations. Thus, in our results
characterizing spoof perfect factorizations with a given number of bases we will only list
those factorizations involving finite exponents, leaving the reader to figure out the possible
factorizations with infinite exponents, if they so desire.

Generalizing the literature, let us say that a factorization is deficient if σ̃−1 applied to the
factorization yields an output that is less than 2, and abundant when the output is greater
than 2. A quick calculation shows that an abundant factorization remains abundant if we
adjoin an additional factor with positive base. More generally, we have the following growth
conditions.

Proposition 3.1. (1) If x ∈ Z≥1 and a, b ∈ Z≥1 ∪ {∞} with a < b, then

1 <
x+ 1

x
≤ σ̃−1(x

a) < σ̃−1(x
b) ≤ x

x− 1
.

Thus, for a fixed positive base, σ̃−1 is strictly increasing as the exponent increases. Moreover,
the base determines the interval

[
x+1
x
, x
x−1

]
in which σ̃−1 takes values.

(2) If 1 ≤ x < y are integers, and a, b ∈ Z≥1 ∪ {∞}, then
σ̃−1(x

a) ≥ σ̃−1(y
b)

with equality only if y = x+ 1, a = 1, and b = ∞. Thus, on positive bases the function σ̃−1

decreases as bases increase.
(3) If x ∈ Z<−1, then

1

2
≤ x+ 1

x
= σ̃−1(x

1) < σ̃−1(x
3) < . . . <

x

x− 1
< . . . < σ̃−1(x

4) < σ̃−1(x
2) < 1.

Thus, the values of σ̃−1(x
a) oscillate around the limiting value σ̃−1(x

∞) = x
x−1

when the base
is negative.

(4) If y < x < −1 are integers, and a, b ∈ Z≥1 ∪ {∞}, then
σ̃−1(x

a) < σ̃−1(y
b)
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apart from four cases. For x ∈ Z<−1 and n ∈ Z≥1, those four cases are given by

σ̃−1(x
2n) > σ̃−1((x− 1)1), σ̃−1(x

∞) = σ̃−1((x− 1)1),
σ̃−1((−2)2) > σ̃−1((−3)2n−1), σ̃−1((−2)2) = σ̃−1((−4)1).

Proof. All of these are straightforward computations, left to the reader. □

We will now demonstrate the usefulness of these notions by characterizing the perfect
factorizations with two bases.

Proposition 3.2. If xa · yb is a nontrivial, spoof perfect factorization with x ≤ y, then it is
of the form 2a · (2a+1− 1)1 or it is one of the two sporadic solutions (−2)1 · 13 and (−3)1 · 12.

Proof. If x and y are both negative then by part (3) of Proposition 3.1, σ̃−1(x
a · yb) < 1, so

the factorization isn’t spoof perfect.
Next consider the case when x and y are both positive. If x = 1, then part (1) of

Proposition 3.1 yields

σ̃−1(x
a · yb) > σ̃−1(1

1) = 2

so the factorization is abundant. If x = 2, then

σ̃−1(y
b) =

2

σ̃−1(xa)
= σ̃−1((2

a+1 − 1)1).

By part (2) of Proposition 3.1 we must have y = 2a+1−1, and then by part (1) we get b = 1.
This gives us the infinite family of solutions given in the statement of the proposition.

Next, if x ≥ 3 and y ≥ 4, then we compute

σ̃−1(x
a · yb) < σ̃−1(3

∞ · 4∞) =
3

2
· 4
3
= 2,

so the factorization is deficient. Thus the only other possible case with both x and y positive
is x = y = 3. If a = 1 or b = 1, then the factorization is not perfect due to 2-adic
considerations. (We look at general p-adic restrictions in the next section.) Thus a, b ≥ 2.
We then compute

σ̃−1(x
a · yb) ≥ σ̃−1(3

2 · 32) = 169

81
> 2,

so the factorization is abundant.
Finally, consider the case when x ≤ −2 and y is positive. By part (3) of Proposition 3.1,

σ̃−1(x
a) < 1. If y ≥ 2, then σ̃−1(y

b) ≤ 2 and so σ̃−1(x
a · yb) < 2, hence the factorization is

deficient. So we reduce to the case when y = 1. If b = 1, the factorization is deficient. If
b ≥ 4, then we find

σ̃−1(x
a · yb) ≥ 1

2
σ̃−1(1

4) =
5

2
> 2,

so the factorization is abundant. It is straightforward to check, using part (4) of Proposition
3.1, that the remaining two cases give the sporadic solutions. □

4. 2-adic valuation considerations

Given that we want to solve σ̃−1(
∏k

i=1 x
ai
i ) = 2, it is natural to look at the 2-adic conditions

necessary for this equality to hold. These conditions are especially nice in the case where all
the bases are odd.
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Proposition 4.1. In any odd, spoof perfect factorization, exactly one of the exponents in
the factorization is odd. If that odd exponent is a and its corresponding base is x, then

x ≡ a ≡ 1 (mod 4).

Proof. Let v2 denote the 2-adic valuation on Q×. If x is any odd base, then v2(σ̃−1(x
a)) ≥ 0.

The valuation is strictly positive if and only if a is odd. As we want the 2-adic valuation
on the entire factorization to equal 1, we see that exactly one base has an odd exponent.
A direct computation through the cases mod 4 shows that v2(σ̃−1(x

a)) = 1 if and only if
x ≡ a ≡ 1 (mod 4). □

This proposition restricts the class of potential spoof perfect factorizations, as it rules out
many possible exponents on bases. Euler was the first to prove and use this restriction,
in the case of actual OPNs. Thus, in any odd, spoof perfect factorization we will call the
unique odd exponent the Eulerian exponent, its base the Eulerian base, and that base to
that exponent the Eulerian factor.

There is another result in the literature that applies to spoof perfect factorizations as well
as actual perfect numbers; however, it applies only for positive, odd factorizations.

Proposition 4.2. If n =
∏k

i=1 x
ai
i is any positive, odd, spoof perfect factorization, then

n < 22
2k
.

Proof sketch. Follow the argument in [4], but now for spoof perfect factorizations. □

Corollary 4.3. There are finitely many positive, odd, spoof perfect factorizations with a
fixed number of bases.

While the previous proposition gives an effective bound on the size of any positive, odd,
spoof perfect factorization in terms of the number of factors, it is often possible to further
restrict cases by applying abundance and deficiency arguments. Using such ideas, Dittmer
[2] showed that other than the spoof perfect factorization 11 and Descartes’s example, there
are no other positive, odd, spoof perfect factorizations with fewer than seven bases. In the
remainder of this paper, we explore what happens if we weaken the positivity and parity
conditions. Surprisingly, many (but not all) of the finiteness conditions disappear, and a
much richer structural pattern emerges.

5. Three bases—more infinite families and complicated behavior

If we remove the restriction that bases are odd, there are many more spoof perfect factor-
izations. We list below some spoof perfect factorizations having exactly three bases. (Exactly
one of the given factorizations is odd.) We found fifteen sporadic solutions.

• (−10)1 · (−3)3 · 12 • (−5)1 · (−2)3 · 13 • (−2)2 · 11 · 31
• (−9)1 · (−4)1 · 12 • (−4)1 · (−3)1 · 13 • 31 · 41 · 51
• (−7)1 · (−3)2 · 12 • (−3)1 · (−2)1 · 15 • 31 · 42 · 71
• (−6)1 · (−5)1 · 12 • (−3)1 · (−2)2 · 13 • 33 · 42 · 351
• (−5)1 · (−2)1 · 14 • (−2)1 · (−2)1 · 17 • 33 · 51 · 81

Letting n ∈ Z>0 serve as an index, there are also six infinite families.

• (−22n+2 + 2n+2 − 2)1 · 2n · (2n+1 − 1)3 • (−2)2n−1 · 12 · (22n − 1)1

• (−22n+2 + 2n+1 − 1)1 · 2n · (2n+1 − 1)2 • (−n− 1)1 · 11 · n1

• (−22n+1 − 1)1 · (−2)2n · 12 • 31 · 3n · (3n+1 − 1)1
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Further, there are two infinite families with multiple parameters.

• 2n · (2n+1)m · (2(n+1)(m+1) − 1)1, with m ∈ Z>0

• 2n · (2n+1 − 1 + a)1 · (2n+1 − 1 + b)
1
, with ab = 2n+1(2n+1 − 1)

and a, b ∈ Z (possibly negative)

(There is some overlap among the infinite families.)
These examples can be found by employing abundance and deficiency computations and

a case-by-case analysis. Many cases can be eliminated by considering p-adic information,
applying the following two useful results. In the following, Φn denotes the nth cyclotomic
polynomial, vq(x) denotes the q-adic valuation of x for an arbitrary prime q, and oq(x)
denotes the order of x modulo q.

Proposition 5.1 ([3, Theorems 94 and 95]). Let q ≥ 2 be a prime and let n ≥ 1 be an
integer. Setting k := vq(n), write n = qkm. The equation

Φn(x) ≡ 0 (mod q)

is solvable for some x ∈ Z if and only if q ≡ 1 (mod m), and the solutions are exactly those
integers x with oq(x) = m. Moreover, if x is such a solution, then

vq(Φn(x)) =


vq(x

n − 1) if k = 0,

1 if k ≥ 2, or k = 1 and n > 2,

v2(x+ 1) if k = 1 and n = 2 (so q = 2).

Corollary 5.2. If q ≥ 3 is a prime, x ∈ Z \ {0}, and a ∈ Z>0, then

vq(σ̃−1(x
a)) =


−avq(x) if q|x,
vq(x

oq(x) − 1) + vq(a+ 1) if oq(x)|(a+ 1) and oq(x) ̸= 1,

vq(a+ 1) if oq(x) = 1,

0 otherwise.

When q = 2, then instead

vq(σ̃−1(x
a)) =


−av2(x) if 2|x,
v2(x+ 1) + v2(a+ 1)− 1 if 2 ∤ x and 2|(a+ 1),

0 otherwise.

Proof. Write

σ̃−1(x
a) =

xa+1 − 1

xa(x− 1)
=

∏
n|(a+1), n>1Φn(x)

xa

and use the previous proposition. □

Here is one example of how these results can eliminate candidate spoof perfect factoriza-
tions. Consider a (supposed) spoof perfect factorization of the form (−3)a · (−2)b · 13 with
a ≥ 2 and b ≥ 4. Since it is spoof perfect we must have

v3(σ̃−1((−2)b)) = −v3(σ̃−1((−3)a · 13)) = a ≥ 2.

Corollary 5.2 then implies that 32|(b+ 1). Now, since o19(−2) = 9 and 9|b+ 1, by the same
corollary this forces v19(σ̃−1((−2)b)) ≥ 1, so the 19-adic valuation of the factorization is
positive, yielding the needed contradiction.
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We conjecture that our twenty-three bullet points above provide a complete list of the
nontrivial, spoof perfect factorizations with three bases. However, we are currently unable
to rule out two additional cases. First, writing the factorization as xa ·yb ·zc with x ≤ y ≤ z,
we can’t rule out the possibility that x is negative, y = 2 < z < 2b+1 − 1, and one of a or c
is not 1. The other case is similar, and occurs when x = 2, 2a+1 < y ≤ z, and one of b or c
is not 1.

6. Infinitely many nontrivial, odd, spoof perfect factorizations

The three nontrivial, odd, spoof perfect factorizations with three or fewer bases are

11,
12 · (−3)1,
12 · (−3)2 · (−7)1.

There is a pattern to these factorizations that continues indefinitely. We can increase the
exponent on the Eulerian base by one and then adjoin a new negative base, according to the
formula

(6.1)

σ̃−1(x
a) =

xa + xa−1 + · · ·+ 1

xa
=

xa+1 + xa + · · ·+ 1

xa+1
· x

a+1 + xa + · · ·+ x

xa+1 + xa + · · ·+ 1

= σ̃−1

xa+1 ·

(
−

a+1∑
j=0

xj

)1
.

Notice that the new base −
∑a+1

j=0 x
j is odd exactly when a is odd, so this process gives

a new odd, spoof perfect factorization that changes the Eulerian base. Thus, the three
factorizations above are part of an infinite family that continues

12 · (−3)2 · (−7)2 · (−43)1,
12 · (−3)2 · (−7)2 · (−43)2 · (−1807)1,

and so forth.
The two spoof perfect factorizations found by Descartes and Voight, respectively, do not

lie in the infinite family generated by applying this process to 11, but each generates its own
infinite family of odd, spoof perfect factorizations.

The “base expansion trick” encapsulated in (6.1) can be applied to any of the factors in
an even spoof perfect factorization to give another such factorization. Thus, in particular,
each even infinite family with three bases gives rise to three new infinite families with four
bases.

There are other (nontrivial) ways to get new spoof perfect factorizations from old ones.
Noting that σ̃−1((−3)2 · 72 · 72 · (−19)2) = 1, we can adjoin this product to any given spoof
perfect factorization and obtain a new spoof perfect factorization with exactly four more
bases. To avoid this type of extension, we say that a spoof perfect factorization

∏k
i=1 x

ai
i is

primitive if for each proper subset S ⊊ {1, 2, . . . , k} the factorization
∏

i∈S x
ai
i is not spoof

perfect. Requiring primitivity, and bounding the number of bases, strongly limits the number
of spoof perfect factorizations, at least among odd factorizations.

Theorem 6.2. For each integer k ≥ 1, there are finitely many nontrivial, odd, primitive
spoof perfect factorizations with k bases.
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Proof. We follow the ideas of [2] and describe a finite process to construct all possible odd,
primitive spoof perfect factorizations with at most k bases. Hereafter, k is fixed and all spoof
perfect factorizations we will consider have ≤ k bases and are odd.
First, define a partial factorization to be an ordered set of triples of the form (xi, bi, ci)

where:

• xi ̸= −1 is an odd integer, which we think of as one of the bases in the factorization,
• bi is a positive integer, which we think of as a lower bound on the exponent of the
base xi,

• ci equals either bi or ∞, which we think of as an upper bound on the exponent, and
• at most one of the ci is odd, and in that case xi ≡ ci ≡ 1 (mod 4); note that we are
implicitly using Proposition 4.1.

Thus, for instance, the set {(3, 2,∞), (5, 4, 4), (−3, 8,∞)} is a partial factorization which
tells us that one of the bases is 3 and the corresponding exponent is at least 2, another base
is 5 and the corresponding exponent is exactly 4, and a third base is −3 with corresponding
exponent at least 8. Our ultimate goal is to recursively build up all complete factorizations
from partial factorizations, for odd, primitive spoof perfect factorizations.
Next, we define a strict partial ordering on partial factorizations, which will give us a

notion of improving a partial factorization. We put {(xi, bi, ci)}mi=1 < {(yi, di, ei)}ni=1 exactly
when the following three conditions hold:

(1) We have m ≤ n. This guarantees that the factorization cannot become shorter.
(2) For each i ≤ m, we have xi = yi, bi ≤ di, and ci ≥ ei. Thus, the bases we have

already chosen do not change, and the ranges on the previously chosen exponents
can only tighten up.

(3) If m = n, then there exists some i ≤ m with ci = ∞ and ei ̸= ∞. This is to prevent
the possibility of endlessly tightening the range of an exponent, such as

{(3, 2,∞)} → {(3, 4,∞)} → {3, 6,∞)} → · · · .

When improving a partial factorization we see that the new partial factorization always
either contains an additional base, or the range on one of the exponents that was previously
infinite will now be limited to a single positive integer. Thus, any chain of improvements will
have length at most 2k, as we can only add at most k bases, and we can fix each exponent
exactly once. Hence, we just need a way to limit choices on exponents and to limit choices
of bases to be adjoined.

Let S = {(xi, bi, ci)}mi=1 be a partial factorization. If P =
∏k

i=1 x
ai
i is any odd, primitive

spoof perfect factorization that is compatible with S (meaning S ≤ {(xi, ai, ai)}ki=1, and in
particular m ≤ k), then Proposition 3.1 gives upper and lower bounds on σ̃−1(

∏m
i=1 x

ai
i )

using only the information in S. Namely, the lower bound is

L(S) := σ̃−1

(
m∏
i=1

x
b′i
i

)
,

where

b′i =

{
bi if xi > 0, or bi is odd, or bi = ci,

bi + 1 otherwise.
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The upper bound U(S) is defined similarly by setting

U(S) := σ̃−1

(
m∏
i=1

x
c′i
i

)
,

where

c′i =


ci if xi > 0 or bi = ci,

bi if xi < 0 and bi is even,

bi + 1 otherwise.

There are three cases we need to consider.
Case 1: L(S) > 2. In this case we say that S is abundant, since any factorization

compatible with S with the same number of factors is abundant. To correct this defect, at
least one of the remaining bases in P must be negative. Let y be the largest (under the usual
ordering on Z) remaining negative base in P . By Proposition 3.1, parts (3) and (4), we have

2 = σ̃−1(P ) ≥ L(S)
k∏

i=m+1

σ̃−1(y
1) = L(S)

(
1 +

1

y

)k−m

,

and solving the inequality for y we reach

(6.3) 0 > y ≥ 1(
2

L(S)

)1/(k−m)

− 1

.

In particular, we see that the next base in an extension of S is forced to belong to a finite
interval. Putting it another way, if we extend S to a new partial factorization with exactly
one new base, we may do so in only a finite number of ways, as limited by (6.3).

Case 2: U(S) < 2. In this case we say that the partial factorization is deficient. To
correct this defect, at least one of the remaining bases in P must be positive. Let y be the
smallest remaining positive base in P . Applying Proposition 3.1, parts (1) and (2), we have

2 = σ̃−1(P ) ≤ U(S)
k∏

i=m+1

σ̃−1(y
∞) = U(S)

(
y

y − 1

)k−m

and solving for y we reach

0 < y ≤ 1

1−
(

U(S)
2

)1/(k−m)
.

Once again, this limits the next base to a finite interval.
Case 3: L(S) ≤ 2 ≤ U(S). If L(S) = U(S) = 2, we have a spoof perfect factorization,

and any further extension will not be primitive. Thus, we may reduce to considering the
case when L(S) < U(S), and in particular at least one of the elements of S has ∞ as a third
coordinate (else, from the definitions we gave for L(S) and U(S), their values would match).
Let Sb be the partial factorization obtained from S by replacing any triple (xi, bi, ci) where

ci = ∞ with the new triple (xi, b, b). Note that S < Sb as long as

b ≥ max
{1≤i≤m : ci=∞}

bi.

Further,
lim
b→∞

L(Sb) = lim
b→∞

U(Sb);
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call this common value n′.
Note that σ̃−1(x

∞) = x
x−1

has negative 2-adic valuation for any odd x. Thus, in the limit
as b → ∞, at least one factor of Sb contributes a negative 2-adic valuation; yet, by the fourth
defining condition on partial factorizations, there is at most one factor of Sb contributing a
strictly positive 2-adic valuation (since at most one of the ci is odd), and it would contribute
at most 1 to the valuation (since xi ≡ ci ≡ 1 (mod 4) in that case). This implies that n′ ̸= 2.
Thus, there exists some (computable) positive integer b such that S < Sb and either

L(Sb) > 2 or U(Sb) < 2.
Now, if P is any odd, primitive spoof perfect factorization compatible with S, then one of

two situations holds. Either

• P is also compatible with S ′, where S ′ is obtained from S by replacing one of the
triples (xi, bi,∞) with (xi, b

′
i, b

′
i), for one of the finitely many integers b′i ∈ [bi, b], or

• P is compatible with Sb, so we may reduce to either Case 1 or Case 2 (after replacing
S with Sb) and adjoin one of finitely many new bases.

In every case, there are only finitely many improvements. Further, as mentioned previ-
ously, the longest possible chain of improvements is 2k, so there are only finitely many partial
factorizations compatible with odd, spoof perfect factorizations. □

The process described in the proof of Theorem 6.2 can be turned into a program for
finding all odd, primitive spoof perfect factorizations with a given number of bases. We
implemented such a program in Mathematica, also including a subroutine incorporating
the 2-adic valuation conditions expressed in Proposition 4.1. The k = 5 case terminated after
about 30 minutes, yielding a complete list of the corresponding odd, primitive spoof perfect
factorizations. The k = 6 case took considerably longer. For about three years we distributed
the computation over multiple processes (ranging from between 20 to 80 processors at any
given time), totaling over 30 processor years.

The corresponding computation for positive factorizations, as done in [2], takes around
13.3 hours on a single processor. A large majority of the extra time used in our computation
was spent considering the cases where the first three bases are 3, 5, and 15. It may be
possible to eliminate some of these cases without the need for a brute-force search.

We found a total of twenty-one nontrivial, odd, primitive spoof perfect factorizations with
six or fewer bases. Ten of these factorizations are listed below. The other eleven can be
constructed from those ten by (repeatedly) applying the formula (6.1) to Eulerian factors,
thus increasing the number of bases by one.

(1) 11

(2) 12 · (−3)2 · (−5)2 · 491
(3) 12 · (−3)2 · (−3)2 · 72 · (−19)1

(4) 32 · 72 · 72 · 131 · (−19)2

(5) 32 · 72 · 112 · 132 · 220211
(6) 34 · 72 · 112 · 192 · (−127)1

(7) 12 · (−3)2 · (−3)2 · 74 · (−17)2 · 364131
(8) 12 · (−3)2 · (−5)2 · 72 · (−7)2 · (−2451)1

(9) 34 · 72 · 72 · (−19)1 · 112 · (−19)2

(10) 34 · 72 · 72 · (−19)2 · 252 · (−3751)1

While each of these factorizations is primitive, and none arises from any other by repeated
use of the base expansion trick in (6.1), it is still sometimes possible to generate one from
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another. To see this, first apply the base expansion trick to the Eulerian factor of 12 · (−3)2 ·
(−5)2 ·491 to get the new “derived” spoof perfect factorization 12 ·(−3)2 ·(−5)2 ·492 ·(−2451)1.
For any base x ̸= 0, it happens that

(6.4) σ̃−1((x
2)2) = σ̃−1(x

2 · (−x)2),

so we can replace 492 with 72 · (−7)2, and thus the eighth listed spoof perfect factorization
arises in a natural way from the second.

We can use the same squared-square trick given in (6.4) to get another primitive spoof
perfect factorization as follows. Starting with 11 as a seed, applying (6.1) to the Eulerian
factor three times in succession we have the spoof perfect factorization 12 · (−3)2 · (−7)2 ·
(−43)1. Multiplying by (−3)2 · 72 · 72 · (−19)2, and then replacing (−7)2 · 72 with 492, we
have the seven-base, primitive spoof perfect factorization

12 · (−3)2 · (−3)2 · 72 · (−19)2 · (−43)1 · 492.

Doing a partial search with k = 7, our program found an additional seven-base, odd, spoof
perfect factorization:

12 · (−5)2 · (−5)2 · (−9)2 · 72 · (−9)2 · (−101251)1.

A significant portion of our partial search was focused on positive factorizations, but we
failed to find any new examples.

7. Additional results and open questions

There are three main properties that can prevent an odd, spoof perfect factorization from
corresponding to an actual OPN.

• The bases are allowed to be nonprimes.
• The bases are allowed to share prime factors.
• The bases are allowed to be negative (and possibly zero if one allows trivial factor-
izations).

Thus, if any result on OPNs similarly does not use primality, relative primality, or posi-
tivity of the bases, then that result necessarily applies to the corresponding spoof perfect
factorizations as well.

Consequently, Voight’s spoof perfect factorization, which has prime bases that are pairwise
relatively prime, shows us that any purported proof of the nonexistence of OPNs must
necessarily use the positivity of the bases in the factorization. Similarly, Descartes’s example
shows that one must necessarily use the primality of the bases. We were unable to find any
example with only positive, prime bases (allowing for repetitions of bases).

This work raises the question of whether or not there is additional structure inherent in all
spoof perfect factorizations, which in turn would limit the structure of OPNs. For instance,
for each of the spoof perfect factorizations listed above, the Eulerian exponent is always 1.
Is this true in general?

It turns out that, no, the Eulerian exponent can be arbitrarily large for odd, spoof perfect
factorizations. For instance, consider the following 74-base factorization, where we use [xa]b

to mean that the factor xa is being repeated b times:

[(−619)2]4 · [(−31)2]7 · [(−19)2]2 · [(−11)2]6 · [(−7)4]14 · [72]8

·112 · [372]6 · [672]5 · [1632]4 · [1912]7 · [2112]2 · [22232]8.
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If P is this factorization, then σ̃−1(P ) = 1/3. Therefore, in the odd, spoof perfect factoriza-
tion 15 ·P , the Eulerian exponent is 5. The odd, spoof perfect factorization 117 · [P ]2, where
we have repeated the factors in P twice, has an even larger Eulerian exponent. Repeating
this process, we can make the Eulerian exponent arbitrarily large.

Other questions that we are currently unable to answer include:

• Are there only finitely many nontrivial, odd, (not necessarily primitive) spoof perfect
factorizations with a given number of bases? If so, can Proposition 4.2 be modified
to give an effective upper bound on the number of such factorizations?

• Are there infinitely many nontrivial, odd, primitive spoof perfect factorizations that
do not use 1 as a base, and that do not arise from simpler factorizations using (6.1)?
If so, can we additionally guarantee that the bases are pairwise relatively prime?
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