
A Transition to

Advanced Mathematics

Darrin Doud and Pace P. Nielsen



Darrin Doud
Department of Mathematics
Brigham Young University
Provo, UT 84602
doud@math.byu.edu

Pace P. Nielsen
Department of Mathematics
Brigham Young University
Provo, UT 84602
pace@math.byu.edu

Copyright © 2019, 2022

Version: 1.03
Date: October 21, 2022



Contents

Preface vii

I Set Theory 1
1 Sets, subsets, and set operations . . . . . . . . . . . . . . . . . . . 2

1.A What is a set? . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.B Naming sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.C Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.D Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.E Power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.F Unions and intersections . . . . . . . . . . . . . . . . . . . . 9
1.G Complements and differences . . . . . . . . . . . . . . . . . 10
1.H Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Products of sets and indexed sets . . . . . . . . . . . . . . . . . . . 13
2.A Cartesian products . . . . . . . . . . . . . . . . . . . . . . . 13
2.B Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.C Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II Logic 21
3 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.A What is a statement? . . . . . . . . . . . . . . . . . . . . . 22
3.B Compound statements . . . . . . . . . . . . . . . . . . . . . 22
3.C Logical equivalences . . . . . . . . . . . . . . . . . . . . . . 28
3.D Tautologies and contradictions . . . . . . . . . . . . . . . . 30
3.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Open sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.A Open sentences . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.B Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.C Implication and open sentences . . . . . . . . . . . . . . . . 37
4.D The meaning of implication . . . . . . . . . . . . . . . . . . 39
4.E Translating between English and symbolic logic . . . . . . . 40
4.F Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Multiple quantifiers and negating sentences . . . . . . . . . . . . . 42
5.A Statements with multiple quantifiers . . . . . . . . . . . . . 42
5.B Negating statements . . . . . . . . . . . . . . . . . . . . . . 44
5.C Greatest and least elements . . . . . . . . . . . . . . . . . . 46

i



ii CONTENTS

5.D Chart of negation rules . . . . . . . . . . . . . . . . . . . . 48
5.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

III Basic Proof Techniques 51
6 Direct proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.A Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.B Trivial proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.C Vacuous proofs . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.D Outline of a direct proof . . . . . . . . . . . . . . . . . . . . 55
6.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Contrapositive proof . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.A What is the contrapositive? . . . . . . . . . . . . . . . . . . 58
7.B Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.C More terminology for implications . . . . . . . . . . . . . . 62
7.D Biconditional . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Proof by cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.A Introductory examples . . . . . . . . . . . . . . . . . . . . . 64
8.B Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.C Absolute values . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9 Proof by contradiction . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.A Basic technique and examples . . . . . . . . . . . . . . . . . 72
9.B Proof by contradiction for implications . . . . . . . . . . . . 72
9.C Irrationality proofs . . . . . . . . . . . . . . . . . . . . . . . 74
9.D Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

10 Proofs in set theory . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.A Proving set membership . . . . . . . . . . . . . . . . . . . . 76
10.B Proving inclusion of sets . . . . . . . . . . . . . . . . . . . . 76
10.C Proving equality . . . . . . . . . . . . . . . . . . . . . . . . 77
10.D Laws for sets . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11 Existence proofs and counterexamples . . . . . . . . . . . . . . . . 81
11.A Constructive existence proofs . . . . . . . . . . . . . . . . . 81
11.B Nonconstructive existence proofs . . . . . . . . . . . . . . . 82
11.C Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
11.D Counterexamples and disproof . . . . . . . . . . . . . . . . 84
11.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

12 Set proofs in logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12.A Implications involving set statements . . . . . . . . . . . . . 87
12.B Do we always work directly? . . . . . . . . . . . . . . . . . . 88
12.C Set proofs with Cartesian products . . . . . . . . . . . . . . 89
12.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS iii

IV Proof by Induction 91
13 Mathematical induction . . . . . . . . . . . . . . . . . . . . . . . . 92

13.A The principle of mathematical induction . . . . . . . . . . . 92
13.B Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

14 More examples of induction . . . . . . . . . . . . . . . . . . . . . . 101
14.A Starting induction somewhere else . . . . . . . . . . . . . . 101
14.B Many base cases . . . . . . . . . . . . . . . . . . . . . . . . 105
14.C Proof of generalized induction . . . . . . . . . . . . . . . . . 105
14.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

15 Strong induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
15.A The definition of strong induction . . . . . . . . . . . . . . . 108
15.B Strong induction by example . . . . . . . . . . . . . . . . . 108
15.C More examples of strong induction . . . . . . . . . . . . . . 111
15.D Formalizing strong induction . . . . . . . . . . . . . . . . . 112
15.E Where to start? . . . . . . . . . . . . . . . . . . . . . . . . . 113
15.F Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

16 The Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . 118
16.A Binomial coefficients and Pascal’s triangle . . . . . . . . . . 118
16.B Proof of the Binomial Theorem . . . . . . . . . . . . . . . . 121
16.C Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

V Theory of the Integers 125
17 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

17.A Divisibility and common divisors . . . . . . . . . . . . . . . 126
17.B The division algorithm . . . . . . . . . . . . . . . . . . . . . 127
17.C Computing the GCD . . . . . . . . . . . . . . . . . . . . . . 129
17.D The Euclidean algorithm . . . . . . . . . . . . . . . . . . . . 130
17.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

18 The extended Euclidean algorithm . . . . . . . . . . . . . . . . . . 133
18.A The GCD as a linear combination . . . . . . . . . . . . . . . 133
18.B Calculating the GCD as a linear combination . . . . . . . . 134
18.C Relative primality . . . . . . . . . . . . . . . . . . . . . . . 137
18.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

19 Prime numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
19.A Definition of prime numbers . . . . . . . . . . . . . . . . . . 140
19.B Divisibility by primes . . . . . . . . . . . . . . . . . . . . . 141
19.C The infinitude of primes . . . . . . . . . . . . . . . . . . . . 144
19.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

VI Relations 147
20 Properties of relations . . . . . . . . . . . . . . . . . . . . . . . . . 148

20.A What is a relation? . . . . . . . . . . . . . . . . . . . . . . . 148
20.B Properties of relations on a set A . . . . . . . . . . . . . . . 150
20.C Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



iv CONTENTS

21 Equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . 155
21.A Definition and examples . . . . . . . . . . . . . . . . . . . . 155
21.B Equivalence classes . . . . . . . . . . . . . . . . . . . . . . . 157
21.C Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

22 Equivalence classes and partitions . . . . . . . . . . . . . . . . . . 160
22.A Properties of equivalence classes . . . . . . . . . . . . . . . 160
22.B Partitions and equivalence classes . . . . . . . . . . . . . . . 161
22.C Transversals of equivalence relations . . . . . . . . . . . . . 164
22.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

23 Integers modulo n . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
23.A Review of integer congruence . . . . . . . . . . . . . . . . . 168
23.B Congruence classes modulo n . . . . . . . . . . . . . . . . . 168
23.C Operations on Zn . . . . . . . . . . . . . . . . . . . . . . . . 170
23.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

VII Functions 175
24 Defining functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

24.A What is a function? . . . . . . . . . . . . . . . . . . . . . . 176
24.B Piecewise defined functions . . . . . . . . . . . . . . . . . . 179
24.C Well-defined functions . . . . . . . . . . . . . . . . . . . . . 182
24.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

25 Injective and surjective functions . . . . . . . . . . . . . . . . . . . 187
25.A Injective functions . . . . . . . . . . . . . . . . . . . . . . . 187
25.B Surjective functions . . . . . . . . . . . . . . . . . . . . . . 190
25.C The range of a function . . . . . . . . . . . . . . . . . . . . 194
25.D Bijective functions . . . . . . . . . . . . . . . . . . . . . . . 195
25.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

26 Composition of functions . . . . . . . . . . . . . . . . . . . . . . . 198
26.A Defining function composition . . . . . . . . . . . . . . . . . 198
26.B Composition of injective and surjective functions . . . . . . 201
26.C Inverse relations . . . . . . . . . . . . . . . . . . . . . . . . 201
26.D Composition of inverse functions . . . . . . . . . . . . . . . 203
26.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

27 Additional facts about functions . . . . . . . . . . . . . . . . . . . 206
27.A Functions between finite sets . . . . . . . . . . . . . . . . . 206
27.B Partitions and pasting functions . . . . . . . . . . . . . . . 207
27.C Restrictions of functions . . . . . . . . . . . . . . . . . . . . 209
27.D Images and preimages . . . . . . . . . . . . . . . . . . . . . 211
27.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

VIII Cardinality 215
28 Definitions regarding cardinality . . . . . . . . . . . . . . . . . . . 216

28.A How do we measure the size of sets? . . . . . . . . . . . . . 216
28.B Basic results and a picture . . . . . . . . . . . . . . . . . . . 218



CONTENTS v

28.C Definition of countable sets . . . . . . . . . . . . . . . . . . 218
28.D Subsets of countable sets . . . . . . . . . . . . . . . . . . . . 220
28.E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

29 More examples of countable sets . . . . . . . . . . . . . . . . . . . 222
29.A Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
29.B Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
29.C Rational numbers . . . . . . . . . . . . . . . . . . . . . . . 223
29.D Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

30 Uncountable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
30.A How big is R? . . . . . . . . . . . . . . . . . . . . . . . . . . 227
30.B Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

31 Injections and cardinalities . . . . . . . . . . . . . . . . . . . . . . 232
31.A Injections vs. bijections . . . . . . . . . . . . . . . . . . . . 232
31.B How big is P(N)? . . . . . . . . . . . . . . . . . . . . . . . 234
31.C Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
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Preface

This book is intended as the text for the Math 290 (Fundamentals of Mathematics)
class at Brigham Young University. It covers several fundamental topics in advanced
mathematics, including set theory, logic, proof techniques, number theory, relations,
functions, and cardinality. These topics are prerequisites for most advanced mathe-
matics classes, and it seems worthwhile to have a specific course in which they can
be learned by students.

The prerequisites for understanding this material are surprisingly light. Typically,
only a small amount of college algebra (manipulating simple algebraic expressions)
and knowledge of decimal expansions and prime numbers are needed; most other
necessary material is covered in the text. The book is designed for a semester-long
class; each section contains an appropriate amount of material for an hour long lecture.
The exercise sets at the end of each section give problems for the students to use to
practice the techniques learned in the section, and to develop their understanding of
the material. At BYU there are typically 42 class days in a typical semester; we have
included 36 sections in this book. This allows a few days for instructors to review for
exams or cover additional topics of their choice.

We are often asked if we will produce a solutions manual for the exercises. For
this particular course, a solutions manual is probably not a great benefit to the
student. Unlike most mathematics courses that students will have before studying
this material, the exercises in this book often do not have a single correct answer.
Indeed, as the student progresses further into the book, most of the problems ask
for proofs (or disproofs) of statements. Much of the learning in a course such as this
comes from the struggle to produce a proof, rather than studying the techniques used
by someone else to give a proof. Hence, providing a solutions manual would negate
a necessary aspect of the course. In addition, a solutions manual would be of very
little help in verifying the correctness of a proof, since there are many different ways
to prove almost any given statement, all equally correct.

One aspect of a proof is that it should be a convincing argument that a statement
is correct. A student should consider their solution of a proof-type problem to be
aimed at an audience of students at their level; if they are unsure if it is a valid proof,
then their goal has not been met.

In addition, it is important to note that most of the solutions to exercises in the
book will involve much more writing than is usual in previous mathematics classes.
In order to adapt to this increase in writing, students may need to change the way
they think about problems.

vii



viii PREFACE

One additional topic that instructors may want to include in a course based on this
book is writing mathematics using LATEX. This is an important skill for mathemati-
cians, engineers, scientists, and mathematics educators. Because technology moves
quickly, we have not included instructional material on LATEX in this text; an internet
search can easily find a plethora of such material. In our courses, we typically spend
one to two class days instructing students on the use of LATEX, as well as giving a
number of assignments to help students develop their skills in LATEX.

We thank the many BYU students and instructors who have worked through
preliminary versions of this textbook. They have discovered many typographical and
other errors, which have been eliminated. Should a reader discover any additional
errors in the text, please inform us, so that we can correct them in future printings.

Darrin Doud
Pace P. Nielsen



Chapter I

Set Theory

There is surely a piece of divinity in us, something that was before the elements, and
owes no homage unto the sun. Sir Thomas Browne

One of the benefits of mathematics comes from its ability to express a lot of
information in very few symbols. Take a moment to consider the expression

d

dθ
sin(θ).

It encapsulates a large amount of information. The notation sin(θ) represents, for
a right triangle with angle θ, the ratio of the opposite side to the hypotenuse. The
differential operator d/dθ represents a limit, corresponding to a tangent line, and so
forth.

Similarly, sets are a convenient way to express a large amount of information.
They give us a language we will find convenient in which to do mathematics. This is
no accident, as much of modern mathematics can be expressed in terms of sets.

1



2 CHAPTER I. SET THEORY

1 Sets, subsets, and set operations

1.A What is a set?

A set is simply a collection of objects. The objects in the set are called the elements.
We often write down a set by listing its elements. For instance, the set S = {1, 2, 3}

has three elements. Those elements are 1, 2, and 3. There is a special symbol, ∈,
that we use to express the idea that an element belongs to a set. For instance, we
write 1 ∈ S to mean that “1 is an element of S.”

For the set S = {1, 2, 3}, we have 1 ∈ S, 2 ∈ S, and 3 ∈ S. We can write this
more quickly as: 1, 2, 3 ∈ S. We can express the fact that 4 is not an element of S
by writing 4 /∈ S.

Example 1.1. Let P be the set {16,−5, 2, 6, 9}. Is 6 ∈ P? Yes! Is 5 ∈ P? No, so
we write 5 /∈ P . △

The order of the elements in a set does not matter, so we could have written
S = {1, 2, 3} as S = {1, 3, 2}, or as S = {3, 2, 1}. If an element is repeated in a set,
we do not count the multiplicity. Thus {1, 2, 3, 1} is the same set as S = {1, 2, 3}.
We say that two sets are equal when they have exactly the same elements.

Not all sets consist of numbers. For instance T = {a, b, c, d} is a set whose elements
are the letters a, b, c, d. Sets may have words, names, symbols, and even other sets as
elements.

Example 1.2. Suppose we want to form the set of Jesus’ original twelve apostles.
This would be the set

Apostles = {Peter, James, John the beloved, . . . , Judas Iscariot}.

We put the 3 dots in the middle to express the fact that there are more elements
which we have not listed (perhaps to save time and space). △

The Last Supper, ca. 1520, by Giovanni Pietro Rizzoli.

The next example is a set with another set as an element.
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Example 1.3. Let S = {1, 5, {4, 6}, 3}. This set has four elements. We have
1, 5, 3, {4, 6} ∈ S, but 4 /∈ S. However, 4 ∈ {4, 6} and {4, 6} ∈ S. △

It can be confusing when sets are elements of other sets. You might ask why
mathematicians would allow such confusion! It turns out that this is a very useful
thing to allow; just like when moving, the moving truck (a big box) has boxes inside
of it, each containing other things.

Advice 1.4. You can think of sets as boxes with objects inside. So we could
view the set {1, 5, {4, 6}, 3} from the previous example as the following box,
which contains another box:

1 5 4 6 3

Figure 1.4: A box with a box inside, each containing some numbers.

1.B Naming sets

We’ve seen that capitalized Roman letters can be used to give names to sets. Some
sets are used so often that they are represented by special symbols. Here are a couple
of examples.
� The set of natural numbers is the set

N = {1, 2, 3, . . .}.

This is the first example we’ve given of an infinite set, i.e., a set with infinitely
many elements.

� The set of integers is

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}.

The dots represent the fact that we are leaving elements unwritten in both
directions. We use the fancy letter “Z” because the word “integer” in German
is “Zahlen.”

Some sets are constructed using rules. For example, the set of even integers can
be written as

{. . . ,−4,−2, 0, 2, 4, . . .}
but could also be written in the following ways:

{2x : x ∈ Z}(1.5)

{x ∈ Z : x is an even integer}(1.6)

{x : x = 2y for some y ∈ Z}.(1.7)
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We read the colon as “such that,” so (1.5) is read as “the set of elements of the form
2x such that x is an integer.” Writing sets with a colon is called set-builder notation.
Notice that

{x ∈ Z : 2x+ 1}

doesn’t make any sense, since “2x+ 1” is not a condition on x.
Here are a few more examples. The set of prime numbers is

{2, 3, 5, 7, 11, 13, . . .} = {x ∈ N : x is prime}.

Similarly, Apostles = {x : x was one of the original 12 apostles of Jesus}.
With set-builder notation, we can list a few more very important sets.
� The set of rational numbers is

Q = {a/b : a, b ∈ Z, b ̸= 0}.

Note that there is no problem with the fact that different fractions can represent
the same rational number, such as 1/2 = 2/4. Repetitions do not matter in
sets. We will occasionally need the fact that we can always write a rational
number as a fraction a/b in lowest terms: i.e., so that a and b have no common
factor larger than 1. We will prove this in Section 18 (see Exercise 18.6).

� The set of real numbers is

R = {x : x has a decimal expansion}.

So we have π = 3.14159 . . . ∈ R, 3 = 3.00000 . . . ∈ R, and
√
2 ∈ R. Later in

this book we will prove
√
2 /∈ Q.

� The set of complex numbers is

C = {a+ bi : a, b ∈ R, i2 = −1}.

Is 3 a complex number? Yes, because we can take a = 3 and b = 0. So we have
3 ∈ N, 3 ∈ Z, 3 ∈ Q, 3 ∈ R, and 3 ∈ C!

Example 1.8. Which of the named sets does π = 3.14159 . . . belong to? We have
π ∈ R and π ∈ C. On the other hand, since 3 < π < 4 we have π /∈ N and π /∈ Z. It
is true, but much harder to show, that π /∈ Q. △

There is one more set we will give a special name.
� The empty set is the set with no elements. We write it as ∅ = { }.

Warning 1.9. The empty set is not nothing. It has no elements, but the empty
set is something. Namely, it is “the set with nothing in it.”

Thinking in terms of boxes, we can think of the empty set as an empty box.
The box is something even if it has nothing in it.

The symbol ∅ does not mean nothing. It means { }.
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Example 1.10. Sometimes we want the empty set to be an element of a set. For
instance, we might take

S = {∅}.
The set S has a single element, namely ∅. We could also write S = {{ }}. In terms of
boxes, S is the box containing an empty box. Note that not all sets have the empty
set as an element. △

A box with an empty box inside, representing {∅}.

1.C Subsets

In many activities in life we don’t focus on all the elements of a set, but rather on
subcollections. To give just a few examples:
� The set of all phone numbers is too large for most of us to handle. The subcol-
lection of phone numbers of our personal contacts is much more manageable.

� If we formed the set of all books ever published in the world, this set would be
very large (but still finite!). However, the subcollection of books we have read
is much smaller.

� If we want to count how many socks we own, we could use elements of the
integers Z, but since we cannot own a negative number of socks, a more natural
set to use would be the subcollection of nonnegative integers

Z≥0 = {0, 1, 2, 3, . . .}.

A subcollection of a set is called a subset. When A is a subset of B we write
A ⊆ B and if it is not a subset we write A ⊈ B. There are a couple different ways to
think about the concept of A being a subset of B.

Option 1: To check that A is a subset of B, we check that every element of A also
belongs to B.

Example 1.11. (1) Let A = {1, 5, 6} and B = {1, 5, 6, 7, 8}. Is A a subset of B?
Yes, because we can check that each of A’s three elements, 1, 5, and 6, belongs
to B.

(2) Let A = {6, 7/3, 9, π} and B = {1, 2, 6, 7/3, π, 10}. Is A ⊆ B? No, because
9 ∈ A but 9 /∈ B. So we write A ⊈ B.

(3) Let A = N and B = Z. Is A ⊆ B? Yes, every natural number is an integer.
(4) Is Z a subset of N? No, because Z has the element −1, which doesn’t belong

to N. △
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Option 2: To check that A is a subset of B, we check that we can form A by throwing
out some of the elements of B.

Example 1.12. (1) Let A = {1, 5, 6} and B = {1, 5, 6, 7, 8}. Is A a subset of B?
Yes, because we can throw away 7, 8 from B to get A.

(2) Let A = {6, 7/3, 9, π} and B = {1, 2, 6, 7/3, π, 10}. Is A a subset of B? No,
because as we throw away elements of B, we can never get 9 inside.

(3) Let A = N and B = Z. Is A a subset of B? Yes, because we can throw away
the negative integers and 0 to get the natural numbers.

(4) Is Z a subset of N? No, because we cannot get −1 by throwing away elements
from N. △

When we write A ⊆ B, the little line segment at the bottom of “⊆” means that
there is possible equality. (Just like x ≤ y means that x is less than or equal to y.)
Sometimes we do not want to allow equality. We use the following terminology in
this case.

Definition 1.13. If A ⊆ S and A ̸= S, we say that A is a proper subset of S,
and we write A ⊊ S.

Note that the symbol ⊊ is different from ⊈. If A ⊊ B, then A is a subset of B
that is not equal to B, while if A ⊈ B, then A is not a subset of B.

Example 1.14. We have {1, 2} ⊊ {1, 2, 3}. Of course {1, 2} ⊆ {1, 2, 3} is also
true. △

Warning 1.15. Some authors use ⊂ instead of ⊆. Other authors use ⊂ instead
of ⊊. Thus, there can be a lot of confusion about what ⊂ means, which is one
reason why we will avoid that notation in this book!

Warning 1.16. Many students learning about subsets get confused about the
difference between being an element and being a subset. Consider your music
library as a set. The elements are the individual songs. Playlists, which are
collections of some of the songs, are subsets of your library.

Example 1.17. The elements of C are complex numbers like 3+6i or−2.7−5.9i. The
subsets of C are sets of complex numbers like {5.4−7.3i, 9+0i,−2.671+9.359i}. △

Example 1.18. (1) Let T = {1, 2, 3, 4, 5}. Is 2 an element or a subset of T? It
is an element, since it lives inside T . It is not a subset, since it isn’t a set of
elements of T .

(2) Let U = {−5, 6, 7, 3}. Is {6} an element or a subset of U? It is not an element
of U , since the set {6} isn’t in its list of elements. It is a subset because it is a
box whose elements come from U .
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(3) Let X = {{6}, {7, 8}, {5, 8}}. Is 7 an element or a subset of X? Neither! It is
not one of the three elements listed in X, and it is not a box of elements in X
either.
Is {7, 8} an element or a subset of X? It is an element, since it is one of the
three listed elements. It is not a subset, even though it is a box, since it has
elements which don’t belong to X.

(4) Let Y = {5, {5}}. Is {5} an element or a subset of Y ? It is both! It is an
element, since it is the second element listed inside Y . It is also a subset of Y ,
since it is a box containing the first element of Y . △

It can be useful to construct sets satisfying certain properties in relation to one
another. In the following example we show how this can be done.

Example 1.19. We will find three sets A,B,C satisfying the following conditions:
(1) A ⊆ B,
(2) A ∈ C, and
(3) C ⊆ B with C ̸= B (i.e., C ⊊ B).
One method to solve this problem is to start with the simplest sets possible and

modify them as needed. So let’s start with

A = { }, B = { }, C = { }.

We see that condition (1) is fulfilled, but condition (2) is not. To force condition (2)
to be true, we must make A an element of C. Thus, our new sets are

A = { }, B = { }, C = {A}.

Condition (1) still holds, and condition (2) is now true. However, condition (3) doesn’t
hold. To make (3) true, we need B to have all the elements of C and at least one
more. So we take

A = { }, B = {A, 1}, C = {A}.
We double-check that all of the conditions hold (which they do), and so we have our
final answer. △

1.D Cardinality

The number of elements of a set is called its cardinality. For instance, the set S =
{1, 2, 3} has 3 elements. We write |S| = 3 to denote that S has cardinality 3. Note
that |∅| = 0 but |{∅}| = 1. A set is finite if its cardinality is either 0 or a natural
number, and it is infinite otherwise. In a later section in the book, we will talk about
a better way to define cardinality for infinite sets.

Example 1.20. If T = {5, {6, 7, 8}, {3}, 0, ∅}, the cardinality is |T | = 5. △

In mathematics, we sometimes use the same symbols for two different things. The
meaning of the symbols must be deduced from their context. For instance, if we write
|−3.392| this is certainly not the cardinality of a set, but instead is probably referring
to the absolute value of a number. In the next example, we use | · | in two different
ways.
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Example 1.21. If T = {x ∈ Z : |x| < 4}, what is |T |?
(Hint: It is bigger than 4.) △

1.E Power sets

In this section we define the power set and give some examples.

Definition 1.22. Let S be a set. The power set of S is the new set P(S) whose
elements are the subsets of S. In other words, A ∈ P(S) exactly when A ⊆ S.

The next example determines the power set of a small set S.

Example 1.23. Can we list all of the subsets of S = {1, 2, 3}? If we think about
subsets as “boxes containing only elements of S”, we just have to list all possibilities.
They are as follows:

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Why is the empty set one of the subsets? Is it really a box containing only elements
of S? Yes, its elements (there are none!) all belong to S. Thinking about it in terms
of “throwing away” elements of S, we threw all of them away.

Why is S ⊆ S? Because S is a box containing only elements of S. Thinking in
terms of “throwing away” elements, we threw away none of the elements. △

If S is a finite set, we can determine the size of the power set |P(S)| from |S|.

Theorem 1.24. If |S| = n, then |P(S)| = 2n.

Here is a sketch of why this is true. To form a subset of S, for each element in S we
choose to keep or throw away that element. Thus, there are 2 choices for each element.
Since there are n elements, this gives 2n options.

Example 1.25. For the set S = {1, 2, 3} we have |S| = 3. Thus the power set has
cardinality |P(S)| = 23 = 8. This is exactly the number of elements we listed in
Example 1.23. △

Example 1.26. How many elements will the power set of U = {1, ∅} have? The set
U has two elements, so there should be 22 = 4 subsets. They can be listed as:

P(U) = {∅, {1}, {∅}, U}.

Which of these are proper subsets of U? (All of them except U itself.) △

Example 1.27. List three elements of P(N), each having different cardinality, and
one being infinite.

Here is one possible answer: {1, 7}, {67, 193, 91948}, and {2, 4, 6, 8, 10, . . .}. There
are many other correct choices. △
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1.F Unions and intersections

There are multiple ways to modify sets. When there are two sets S and T , we can
put them together to form a new set called the union, and we write

S ∪ T = {x : x ∈ S or x ∈ T}.

This is the set of elements which belong to S or T or both of them. (When we use the
word “or” in this book, we will almost always use the inclusive meaning.) Pictorially,
we can view this set using a Venn diagram as follows.

S T

Figure 1.28: The union of S and T .

Similarly, given two sets S and T we can form the set of elements that belong to
both of them, called the intersection, and we write

S ∩ T = {x : x ∈ S and x ∈ T}.

The Venn diagram is the following.

S T

Figure 1.29: The intersection of S and T .

Example 1.30. Let A = {1, 6, 17, 35} and B = {1, 5, 11, 17}. Then

A ∪B = {1, 5, 6, 11, 17, 35}, A ∩B = {1, 17}. △

Example 1.31. Find sets P,Q with |P | = 7, |Q| = 9, and |P ∩ Q| = 5. How big is
|P ∪Q|?
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We start by letting P be the easiest possible set with 7 elements, namely P =
{1, 2, 3, 4, 5, 6, 7}. Since Q must share 5 of these elements, but have 9 elements total,
we could write Q = {1, 2, 3, 4, 5, 8, 9, 10, 11}.

For the example we constructed, we have P ∪ Q = {x ∈ N : x ≤ 11}, so
|P∪Q| = 11. If we chose other sets P and Q, could |P∪Q| be different? (Answer: No.
The given numbers determine the cardinality of each piece in the Venn diagram.) △

1.G Complements and differences

Let S and T be sets. The difference of T and S is

T − S = {x : x ∈ T and x /∈ S}.

The Venn diagram is as follows.

S T

Figure 1.32: The difference of T and S.

Example 1.33. Let S = {1, 2, 3, 4, 5, 6, 7} and T = {6, 7, 8, 9}. We find T − S is the
set

T − S = {8, 9}.

Notice that we do not need to worry about those elements of S which do not belong
to T . We only have to take away the part the two sets share. So T −S = T − (S∩T ).

Also notice that S − T = {1, 2, 3, 4, 5} is different from T − S. △

Example 1.34. Let A and B be sets. Assume |A| = 16 and |B| = 9. If |A∩B| = 2,
what are |A−B| and |B − A|?

There are only two elements that A andB share, thus |A−B| = 14 and |B−A| = 7.

Can you now figure out |A ∪B|? (Hint: Draw the Venn diagram.) △

Occasionally we will be working inside some set U , which we think of as the
universal set for the problem at hand. For instance, when solving quadratic equations,
such as x2 − x+ 2 = 0, your universal set might be the complex numbers C.

Given a subset S of the universal set U , we write S = U − S, and call this the
complement of S (in the universal set U). The Venn diagram follows.
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S

U

Figure 1.35: The complement of a set S inside a universal set U .

Example 1.36. Let U = N and let P = {2, 3, 5, 7, . . .} be the set of primes.
What is P? This is the set of composite numbers and 1, or in other words P =
{1, 4, 6, 8, 9, . . .}. △

1.H Exercises

Exercise 1.1. Each of the following sets is written in set-builder notation. Write the
set by listing its elements. Also state the cardinality of each set.
(a) S1 = {n ∈ N : 5 < |n| < 11}.
(b) S2 = {n ∈ Z : 5 < |n| < 11}.
(c) S3 = {x ∈ R : x2 + 2 = 0}.
(d) S4 = {x ∈ C : x2 + 2 = 0}.
(e) S5 = {t ∈ Z : t5 < 1000}. (This one is slightly tricky.)

Exercise 1.2. Rewrite each of the following sets in the form
{x ∈ S : some property on x},

just as we did in (1.6) above, by finding an appropriate property.
(a) A1 = {1, 3, 5, 7, 9, . . .} where S = N.
(b) A2 = {1, 8, 27, 64, . . .} where S = N.
(c) A3 = {−1, 0} where S = {−1, 0, 1}.

Exercise 1.3. Write the following sets in set-builder notation.
(a) A = {. . . ,−10,−5, 0, 5, 10, 15, . . .}.
(b) B = {. . . ,−7,−2, 3, 8, 13, 18, . . .}.
(c) C = {1, 16, 81, 256, . . .}.
(d) D = {. . . , 1/4, 1/2, 1, 2, 4, 8, 16, . . .}.

Exercise 1.4. Give specific examples of sets A, B, and C satisfying the following
conditions (in each part, separately):
(a) A ∈ B, B ∈ C, and A /∈ C.
(b) A ∈ B, B ⊆ C, and A ⊈ C.
(c) A ⊊ B, B ∈ C, and A ∈ C.
(d) A ∩B ⊆ C, A ⊈ C, and B ⊈ C.
(e) A ∩ C = ∅, A ⊆ B, and |B ∩ C| = 3.
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Exercise 1.5. Let A = {1, 2}. Find P(A), and then find P(P(A)). What are the
cardinalities of these three sets?

Exercise 1.6. Let a, b ∈ R with a < b. The closed interval [a, b] is the set {x ∈ R :
a ≤ x ≤ b}. Similarly, the open interval (a, b) is the set {x ∈ R : a < x < b}. Let
P = [3, 7], Q = [7, 9] and R = [−3, 8]. Give simple descriptions of the following sets.
(a) P ∩Q.
(b) P ∪Q.
(c) P −Q.
(d) Q− P .
(e) (R ∩ P )−Q.
(f) (P ∪Q) ∩R.
(g) P ∪ (Q ∩R).

Exercise 1.7. Consider the following blank Venn diagram for the three sets A,B,C.

B C

A

For each of the following sets, copy the Venn diagram above, and then shade in the
named region:
(a) A− (B ∩ C).
(b) A− (B − C).
(c) B − (A− C).
(d) (B ∩ C) ∩ (B ∪ A).
(e) (A−B) ∪ (A− C).

Exercise 1.8. Two sets S, T are disjoint if they share no elements. In other words
S ∩ T = ∅. Which of the following sets are disjoint? Give reasons.
(a) The set of odd integers and the set of even integers.
(b) The natural numbers and the complex numbers.
(c) The prime numbers and the composite numbers.
(d) The rational numbers and the irrational numbers (i.e., real numbers which are

not rational).

Exercise 1.9. Find some universal set U and subsets S, T ⊆ U , such that |S−T | = 3,
|T − S| = 1, |S ∪ T | = 6, and |S| = 2. (Write each of U , S, and T by listing their
elements.)
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2 Products of sets and indexed sets

2.A Cartesian products

Sets are unordered lists of elements. There are situations where order matters. For
instance, you probably don’t want to put your shoes on before your socks. To give a
more mathematical example, if we square a number and then take its cosine, that is
not the same as first taking the cosine and then squaring:

cos(x2) ̸= (cos(x))2.

There are other situations where we want to keep things ordered. We will write (x, y)
for the ordered pair where x occurs first and y occurs second. Thus (x, y) ̸= (y, x)
even though {x, y} = {y, x}. Also, an element can be repeated in an ordered list,
such as (1, 1), while sets do not count repetitions.

There is a very nice notation for sets of ordered pairs.

Definition 2.1. Let S and T be two sets. The Cartesian product of these sets
is the new set

S × T = {(s, t) : s ∈ S, t ∈ T}.

This is the set of all ordered pairs such that the first entry comes from S and
the second entry comes from T . We will often refer to S×T just as the product
of S and T .

We will now give an example of how to find simple Cartesian products.

Example 2.2. Let S = {1, 2, 3} and T = {1, 2}. What is S × T? It is the set
{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}. Notice that 3 can occur as a first coordinate
since 3 ∈ S, but not as a second coordinate since 3 /∈ T .

While the order matters inside an ordered pair, we could have listed the elements
of S × T in a different order since S × T is itself just a set (and order is irrelevant in
sets). So we could have written

S × T = {(1, 2), (2, 2), (3, 1), (1, 1), (2, 1), (3, 2)}.

However,
S × T ̸= T × S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. △

You might notice that in the previous example we have |S×T | = 6 = 3·2 = |S|·|T |.
This is not an accident. In fact, the following is true, although we do not as yet have
the tools to prove it.

Proposition 2.3. Let A and B be finite sets, with |A| = m and |B| = n. Then
A×B is a finite set, with |A×B| = mn.
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Sets do not need to be finite in order to act as components in products.

Example 2.4. Let A = N and B = {0, 1}. What are the elements of A× B? They
are

A×B = {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), . . .} = {(n, 0), (n, 1) : n ∈ N}.

Is A × B the same set as B × A? No, they have different elements. For instance,
(1, 0) ∈ A×B, but (1, 0) /∈ B × A since 0 /∈ A. △

In each of the previous examples, we took the Cartesian product of two different
sets. If we take the product of a set with itself, we sometimes write A2 = A×A. The
following example is one of the most useful products of a set with itself.

Example 2.5. The set R2 = R×R is called the Cartesian plane. We view elements
in this set as points {(x, y) : x, y ∈ R}.

x

y

The Cartesian plane, R× R

The set S × T in Example 2.2 is a subset of R× R. We can graph it as follows:

x

y

{1, 2, 3} × {1, 2}
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Similarly, the set A×B from Example 2.4 is graphed as:

x

y

N× {0, 1}

· · ·

· · ·

We can now describe more complicated sets. For instance

{(x, y) ∈ R× R : y = 3x+ 1}

is a line. The set R2 − {(0, 0)} is the punctured plane (the plane with the origin
removed). Can you describe a simple parabola? △

The following example addresses the question: “What do we do if one of the sets
has no elements?”

Example 2.6. We determine {1, 2, 3} × ∅. Elements of this set are ordered pairs of
the form (a, b), with a ∈ {1, 2, 3} and b ∈ ∅. Thus, there are no possible choices for
b, and so {1, 2, 3} × ∅ = ∅. Note that 3 · 0 = 0, so Proposition 2.3 works in this case
too. △

Just as with ordered pairs, we can form the set of ordered triples

A×B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

We can similarly form ordered quadruples, ordered quintuples, and so forth. The
next subsection will give us the tools necessary to talk about even more complicated
constructions.

2.B Indices

When we have a large number of sets, rather than writing them using different letters
of the alphabet

A,B,C,D, . . . , Z

it can be easier to use subscripts

A1, A2, A3, A4, . . . , A26.

This notation is extremely powerful for the following reasons:
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� The notation tells us how many sets we are working with, using a small number
of symbols. For instance, if we write A1, A2, . . . , A132, we know that there are
exactly 132 sets. (Try writing them down using different letters of the alphabet!)

� We can even talk about an infinite number of sets A1, A2, A3, . . .. Notice that
the subscripts all come from the set N. We refer to N as the index set for this
collection.

� Using indices we can form complicated unions, intersections, and Cartesian
products.

Example 2.7. Let A1 = {1, 2, 4}, A2 = {−3, 1, 5, 9}, and A3 = {1, 6, 10}. We find

3⋃
i=1

Ai = A1 ∪ A2 ∪ A3 = {−3, 1, 2, 4, 5, 6, 9, 10}

and
3⋂

i=1

Ai = A1 ∩ A2 ∩ A3 = {1}.

Those who have seen summation notation
3∑

i=1

i2 = 12 + 22 + 32

will recognize where this notation comes from. △
Can we form infinite unions and intersections? This is actually a common occur-

rence.

Example 2.8. Let B1 = {1,−1}, B2 = {2,−2}, B3 = {3,−3}, and so forth. In other
words Bn = {n,−n} for each n ∈ N. (Notice that while the subscripts come from N,
the elements of the sets Bn come from Z.)

The union is the set of elements which belong to at least one of the sets, thus
∞⋃
n=1

Bn = {. . . ,−3,−2,−1, 1, 2, 3, . . .} = Z− {0}.

The intersection is the set of elements which belong to every one of the sets, thus
∞⋂
n=1

Bn = { } = ∅. △

There is an alternative way to write intersections and unions, using index sets.
For instance, using the notation in the previous two examples, we could also write

3⋂
i=1

Ai = A1 ∩ A2 ∩ A3 =
⋂

i∈{1,2,3}

Ai

and
∞⋃
n=1

Bn =
⋃
n∈N

Bn.

There is nothing to limit our index set, so we can make the following broad definition.
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Definition 2.9. Let I be any set, and let Si be a set for each i ∈ I. We put⋃
i∈I

Si = {x : x belongs to Si for some i ∈ I}

and

⋂
i∈I

Si = {x : x belongs to Si for each i ∈ I}.

The next example shows, once again, how mathematics has the uncanny ability
to express information in varied subjects using very simple notation.

Example 2.10. Let A = {a,b,c,d, . . . , z} be the “lowercase English alphabet set.”
This set has twenty-six elements. Let V = {a,e,i,o,u} be the “standard vowel set.”
Notice that V ⊊ A.

Given α ∈ A, we let Wα be the set of words in the English language containing
the letter α. Note that α is a dummy variable, standing in for an actual element of
A. For instance, if α = x then we have

Wx = {xylophone, existence, axiom, . . .},

while if α = t then we have

Wt = {terminator, atom, attribute, . . .}.

Each set of words Wα is a subset of the universal set of all words in the English
language.

Try to answer the following questions:
(1) What is

⋂
α∈V Wα?

(2) Is that set empty?
(3) What is

⋃
α∈V Wα?

(4) Is that set empty?
Here are the answers. (Look at them only after you have your own!)

(1) This is the set of words that contain every standard vowel.
(2) It isn’t empty, since it contains words like “sequoia,” “evacuation,” etc.
(3) This is the set of words with no standard vowels. (Don’t forget that there is a

bar over the union.)
(4) It isn’t empty, since it contains words like “why,” “tsktsk,” etc. △

We finish with one more difficult example.

Example 2.11. We determine
⋃

x∈[1,2][x, 2]× [3, x+ 3].
First, to get a footing on this problem, we try to understand what happens for

certain values of x. The smallest possible x value in the union is when x = 1.
There we get that [x, 2] × [3, x + 3] = [1, 2] × [3, 4]. This is the set of ordered pairs
{(x, y) ∈ R2 : 1 ≤ x ≤ 2, 3 ≤ y ≤ 4}. This is just a box in the plane. Its graph is
the first graph below.
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x

y

[1, 2]× [3, 4]

x

y

{2} × [3, 5]

The largest possible x value in the union is when x = 2. There we get that
[x, 2] × [3, x + 3] = [2, 2] × [3, 5]. Notice that [2, 2] = {2} is just a single point. Now
{2} × [3, 5] is a line segment in the plane, where the x-value is 2 and the y-values
range from 3 to 5. Its graph is the second graph above.

If we consider the intermediate value x = 1.5, we get the box [1.5, 2] × [3, 4.5],
graphed below on the left.

x

y

[1.5, 2]× [3, 4.5]

x

y

⋃
x∈[1,2]

([x, 2]× [3, x+ 3])

Taking the union over all x ∈ [1, 2], we get the region graphed above on the right,
boxed in by the lines x = 1, y = 3, x = 2, and y = x+ 3.

△

2.C Exercises

Exercise 2.1. Sketch each of the following sets in the Cartesian plane R2.
(a) {1, 2} × {1, 3}.
(b) [1, 2]× [1, 3].
(c) (1, 2]× [1, 3]. (Hint: If an edge is missing, use a dashed, rather than solid, line

for that edge.)
(d) (1, 2]× {1, 3}.
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Exercise 2.2. Let A = {s, t} and B = {0, 9, 7}. Write the following sets by listing
all of their elements.
(a) A×B.
(b) B × A.
(c) A2.
(d) B2.
(e) ∅ × A.

Exercise 2.3. Answer each of the following questions with “True” or “False” and
then provide a reason for your answer.
(a) If |A| = 3 and |B| = 4, then |A×B| = 7.
(b) It is always true that A×B = B × A when A and B are sets.
(c) Assume I is an indexing set, and let Si be a set for each i ∈ I. We always have⋂

i∈I Si ⊆
⋃

i∈I Si.
(d) There exist distinct sets S1, S2, S3, . . ., each of which is infinite, but

∞⋂
i=1

Si

has exactly one element.
(e) The set A4 consists of ordered triples from A.

Exercise 2.4. Using the notations from Example 2.10, write the following sets (pos-
sibly using intersections or unions).
(a) The set of words containing all four of the letters “a,w,x,y.”
(b) The set of words not containing any of the letters “s,t,u.”
(c) The set of words containing both of the letters “p,r” but not containing any of

the standard vowels. (Is this set empty?)

Exercise 2.5. For each number r ∈ R, consider the “parabola shifted by r” defined
as:

Pr = {(x, y) ∈ R2 : y = x2 + r}.

Give simple descriptions of the following sets. Your description should not refer to
the dummy variable “r” or use any unions or intersections. Also graph the sets in
the Cartesian plane.
(a)

⋃
r∈R Pr.

(b)
⋃

r>0 Pr.
(c)

⋃
r ̸=0 Pr.

(d)
⋂

r∈R Pr.
(e)

⋂
r>0 Pr.

(When we write r > 0 we simply mean that we have restricted the dummy variable
r to the subset of positive reals. Similarly, r ̸= 0 means that we have restricted r to
the subset of nonzero real numbers.)
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Chapter II

Logic

I am convinced that the act of thinking logically cannot possibly be natural to the hu-
man mind. If it were, then mathematics would be everybody’s easiest course at school
and our species would not have taken several millennia to figure out the scientific
method. Neil deGrasse Tyson

At higher levels, mathematics is about proving theorems. A study of logic is
central to any endeavor involving proof. In this chapter, we introduce the study of
logic, beginning with the basic building blocks (statements) and the different ways of
connecting them (logical connectives).

Of particular significance will be the study of implication. Many important the-
orems in mathematics are stated as implications. For instance, the Mean Value
Theorem in calculus is:

If a function f is continuous on a closed interval [a, b] and differentiable on the
open interval (a, b), then there is some c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

This is an implication; if a certain condition is true, then some result is implied and
can be inferred to be true.

In addition to logical connectives, this chapter will introduce quantifiers, which
are also very common in mathematical writing. As an example, the Mean Value The-
orem (stated above) includes the quantified phrase “there is some c ∈ (a, b).” Proper
understanding and use of quantifiers is essential to understanding mathematical writ-
ing.

21
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3 Statements

3.A What is a statement?

Definition 3.1. A statement is a declarative sentence that has a truth value.

By a declarative sentence we mean a sentence that makes an assertion. This
assertion can in fact be false; in that case we say that the statement is false. Examples
of statements include the following:

� The number 3 is larger than the number 2.
� The sun is blue.
� There are exactly 100,000 words in this book.
� The number 7 is an odd integer.
� Birds are mammals.

Each of these statements has a truth value. The first and fourth statements are true,
the second and fifth are false, and the third can be determined to be true or false by
counting the words in this book. Whether we know the truth value of a sentence is
irrelevant when deciding whether the sentence is a statement; what is important is
that the truth value exists.

Often in mathematics it is desirable to use symbols to denote objects. If we wish
to use a symbol to stand for a statement, we will often use the letters P , Q, or R
(although any symbol could be used). Since many mathematical statements involve
an equals sign, we will not use an equals sign to describe a statement being assigned
to a symbol; instead, we will use a colon. Hence, if we write

P : 2 is an even number

we are stating that the symbol P will stand for the statement “2 is an even number.”

Sentences that are not statements could include questions (“What is the color of
the sky?”), commands (“Solve the equation”), or opinions (“Chocolate ice cream is
the best”). Moreover, words that don’t actually form sensible sentences do not have
truth values (“Try apples is”). In addition, sentences involving variables, such as “x
is greater than 2,” are not statements, unless the value of x is known. (We will talk
more about sentences containing variables in the next section.)

3.B Compound statements

Given several statements, we will often want to combine them in ways to create more
complex statements. There are a number of different operations that can be used to
combine or modify statements.
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Definition 3.2. Let P and Q be statements. The conjunction of P and Q,
written

P ∧Q,

is a statement that is true if both P and Q are true, and false otherwise.

When reading the symbols P ∧Q, we will say “P and Q.”

Example 3.3. If we have the statements:

P : 2 is an even number,

and

Q: 5 is an even number,

then the statement P ∧Q would be

2 is an even number and 5 is an even number.

This is a false statement, since Q is false. △

Definition 3.4. Let P and Q be statements. The disjunction of P and Q,
written

P ∨Q,

is a statement that is true if P is true, or if Q is true, or if both are true; it is
false otherwise.

When reading the symbols P ∨Q, we will say “P or Q.”

Example 3.5. For the statements P and Q in Example 3.3, P ∨ Q would be the
statement

2 is an even number or 5 is an even number.

In this case P ∨Q is true, since P is true. △

Warning 3.6. If both P and Q are true, then P ∨ Q is true. This is not the
way the word “or” is usually interpreted in the English language. For instance,
if I say to my daughter “You may have an ice cream cone or you may have a
candy bar,” I typically do not mean that she can have both. Thus, P ∨Q really
means “either P or Q or both,” but that is too wordy for common use, so we
just say “P or Q”.
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Definition 3.7. Let P be a statement. The negation of P , written

¬P,

is a statement that is true if P is false, and false if P is true.

The symbols ¬P may be read as “not P .” If we wish to express the meaning behind
¬P we might say “it is not the case that P holds,” or “P is false.”

Example 3.8. If we have the statement

P : 2 is an even number

(which is a true statement), then ¬P would be the statement

it is not the case that 2 is an even number

or, in other words,

2 is not an even number,

which is a false statement. △

Example 3.9. Let’s negate the statement

P : It is raining in London.

You probably do not know whether this statement is true or false. Nevertheless we
can still negate the sentence. The negation is

¬P : It is not raining in London. △

Advice 3.10. To see that the meaning of the negation of P is the same as “P
is false” consider two cases.

If P is true, the statement “P is false” is then false. Hence, it has the opposite
truth value as P .

If, on the other hand, P is false, then the statement “P is false” is a true
statement, so again, it has the opposite truth value as P .

Often, it is easier to understand (or maybe just shorter to say) “P is false”
than to say “it is not the case that P .” However, inserting the phrase “it is
not the case that” at the beginning of a sentence P has the advantage that
it will generally form a grammatical sentence when combined with the words
comprising P .
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Warning 3.11. Typically, if we are asked to negate a statement, the intent
is to write a statement that will have the opposite truth value to the original
statement, regardless of whether the original statement is known to be true or
false. For instance, if asked to negate the statement

P : 2 is an even number

(which is true), it would not be correct to write

¬P : The sun is blue

(which is false), because the fact that these two statements have opposite truth
values depends on knowing the truth values of each statement. A correct nega-
tion of the statement P would be the statement

¬P : 2 is not an even number.

The next concept that we define is one of the most important in mathematics.

Definition 3.12. Let P and Q be statements. Then we construct a new state-
ment, written

P ⇒ Q,

that is true unless P is true and Q is false.
A statement of the form P ⇒ Q is called an implication or a conditional

statement. In the implication P ⇒ Q, the statement P is called the premise and
Q is called the conclusion.

We read P ⇒ Q as either “P implies Q,” or as “If P , then Q.”

Example 3.13. Let P be the statement “2 is an even number” and Q be the state-
ment “5 is an even number,” as in Example 3.3. Then the statement P ⇒ Q would
be the statement

If 2 is an even number, then 5 is an even number,

which is false, since P is true and Q is false. On the other hand, the statement Q ⇒ P
would be the statement

If 5 is an even number, then 2 is an even number,

which would be true, since the premise is false. △



26 CHAPTER II. LOGIC

Remark 3.14. To better understand why implication is defined as it is, we can think
of an implication as a promise, or a contract. Suppose I tell my daughter

If you clean your room, then you will get ice cream.

This is an implication, with the premise being the statement

P : You clean your room

and the conclusion being the statement

Q: You will get ice cream.

We now examine this statement to find out under what conditions I am telling the
truth.

First, if my daughter cleans her room and I let her have ice cream, then I have
told the truth and kept my promise. In other words, if P is true and Q is true, then
P ⇒ Q is true.

Second, if my daughter cleans her room and I do not let her have ice cream, then
I have lied. In other words, if P is true and Q is false, then P ⇒ Q is false (a lie).

Third, if my daughter does not clean her room and I let her have ice cream anyway
(perhaps because she did some other duty to deserve the ice cream), then I have not
lied, so my statement is true. I am under no obligation to give her ice cream, but I
do so anyway. Hence, if P is false and Q is true, then P ⇒ Q is true.

Finally, if my daughter does not clean her room and I do not let her have ice
cream, then I have not lied; she did not fulfill the condition of the implication, so I
did not fulfill the conclusion. If P is false and Q is false, the implication P ⇒ Q is
true. ▲

Warning 3.15. Many students have difficulty with the idea that the statement
P ⇒ Q should be true when P is false and Q is true. It can help to think of
P ⇒ Q as meaning “Whenever P is true, Q must also be true, but if P is false,
anything can happen.”

We define one final way to combine statements, called the biconditional, be-
low.

Definition 3.16. Let P and Q be statements. Then the biconditional

P ⇔ Q

is a statement that is true if P and Q have the same truth value, and false
otherwise.

We read P ⇔ Q as “P if and only if Q.” We can also think of it as meaning that P
is true exactly when Q is true.
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Example 3.17. Suppose P is the statement “2 is an even integer” and Q is the
statement “5 is an even integer.” Then P ⇔ Q is the statement

2 is an even integer if and only if 5 is an even integer.

This is a false statement, since P is true and Q is false. △

In a sense that we will see later, P ⇔ Q is the same as saying that P ⇒ Q and
Q ⇒ P .

We have discussed a number of ways to combine and modify statements to form
more complex statements. We define a term to encompass all of these.

Definition 3.18. A logical connective is an operation that modifies or combines
statements into more complex statements.

Examples of logical connectives are ∧, ∨, ¬, ⇒, and ⇔. (Other connectives exist,
such as “exclusive or.”) We summarize the definitions of these symbols in Table 3.19.
In this table, we have a column for each of P , Q, ¬P , P ∧ Q, P ∨ Q, P ⇒ Q, and
P ⇔ Q. We have a row for each possible combination of truth values of P and Q,
and the entries in each row indicate the truth value of the statement at the top of
the column.

P Q ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Table 3.19: Truth values of common compound statements

Extremely complicated statements can be built by using multiple logical connec-
tives. For instance, consider

((P ∨Q) ∧ (R ∨ ¬(S))) ⇒ (P ∧R).

The following definition gives a name to all such statements.

Definition 3.20. A compound statement is a statement that has been built by
applying at least one logical connective to one or more statements.

Example 3.21. Let P , Q, R, and S be statements. Then the statement

(P ∧ (Q ⇒ R)) ∨ (¬(P ⇒ (R ∧ S)))

is a compound statement. We call P , Q, R, and S the components of the compound
statement. △
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Example 3.22. The statement “2 is even and 5 is even” is a compound statement,
P ∧Q, with components

P : 2 is even

and
Q: 5 is even. △

3.C Logical equivalences

In some cases, we will wish to show that two compound statements are essentially
the same. We make this notion precise with the following definition.

Definition 3.23. Two compound statements are logically equivalent if they have
the same truth value regardless of the truth values of the components. If R and
S are compound statements that are logically equivalent, we write R ≡ S.

The following example will give two compound statements that are logically equiv-
alent, and we show how to prove this equivalence.

Example 3.24. Let P and Q be statements. Then the statements

R : ¬(P ∧Q)

and
S : (¬P ) ∨ (¬Q)

are compound statements with components P and Q. In Table 3.25 below, we make
a truth table that indicates the truth values of these two compound statements for
every possible combination of truth values of P and Q.

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q (¬P ) ∨ (¬Q)

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Table 3.25: Truth table showing equivalence of ¬(P ∧Q) and (¬P ) ∨ (¬Q)

We notice immediately that the two boldface columns have identical truth values.
This shows that the statements R and S are logically equivalent, or, in symbols, that
¬(P ∧Q) ≡ (¬P ) ∨ (¬Q). △

When constructing a truth table, it is useful to organize the rows in such a way
that you can be sure that all possible combinations of the components are in fact
represented. If there are n components there will be 2n rows. One convenient way to
organize them is to write each component as a label for a column of the truth table
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(just as we did in Tables 3.19 and 3.25). For the last component (the rightmost one),
put alternating truth values of T and F in the column, until there are 2n of them.

For the second to the last component, fill the corresponding column with alter-
nating blocks of two T s and F s, until all the entries have been filled. Continue from
right to left, doubling the sizes of the blocks, until for the leftmost component, you
write just one block of T s and one block of F s.

In this way, you can (in a systematic way) be certain that all possible combina-
tions of truth values are written. An example of how this is to be done with three
components is given below in Example 3.27.

Note that a truth table can have as many columns as is convenient to work out the
truth values of the statements in which we are interested; typically, we will include a
column for each intermediate step.

A number of logical equivalences are important enough to be given standard
names.

Theorem 3.26. Let P , Q, and R be statements.
(1) ¬(¬P ) ≡ P (Double negation),
(2) ¬(P ∧Q) ≡ (¬P ) ∨ (¬Q) (De Morgan’s law),
(3) ¬(P ∨Q) ≡ (¬P ) ∧ (¬Q) (De Morgan’s law),
(4) P ⇒ Q ≡ (¬Q) ⇒ (¬P ) (Contrapositive),
(5) P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R) (Distributivity),
(6) P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) (Distributivity),
(7) P ∧ (Q ∧R) ≡ (P ∧Q) ∧R (Associativity),
(8) P ∨ (Q ∨R) ≡ (P ∨Q) ∨R (Associativity),
(9) P ∧Q ≡ Q ∧ P (Commutativity),
(10) P ∨Q ≡ Q ∨ P (Commutativity).

Each of the logical equivalences in Theorem 3.26 can be demonstrated by constructing
a truth table. For example, (2) is proved in Table 3.25.

Example 3.27. We prove 3.26(7) by forming the appropriate truth table.

P Q R P ∧Q (P ∧Q) ∧R Q ∧R P ∧ (Q ∧R)

T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F F T F
F T F F F F F
F F T F F F F
F F F F F F F

Because the two boldface columns match, the corresponding statements are logi-
cally equivalent. △
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3.D Tautologies and contradictions

Sometimes the truth value of a compound statement does not depend on the truth
value of the components from which it is composed. We give such compound state-
ments special names.

Definition 3.29. A compound statement that is false for every possible combi-
nation of truth values of its components is called a contradiction.

Example 3.30. Let P be a statement. The compound statement P ∧ (¬P ) is then
false, regardless of whether P is true or false. (Try it! Form the truth table to see
that this statement is always false. The truth table should have two rows.) △

Definition 3.31. A compound statement that is true for every possible combi-
nation of truth values of its components is called a tautology.

Example 3.32. Let P be a statement. Then the compound statement P ⇒ P is a
tautology. (Try it!) △

Example 3.33. Let P and Q be statements. The compound statement

(P ∧ (P ⇒ Q)) ⇒ Q

is a tautology. This can be seen from the following truth table.

P Q P ⇒ Q P ∧ (P ⇒ Q) (P ∧ (P ⇒ Q)) ⇒ Q

T T T T T
T F F F T
F T T F T
F F T F T

This particular tautology is so useful it has a name: modus ponens. △

Remark 3.34. All contradictions are logically equivalent to each other. Similarly,
all tautologies are logically equivalent to each other. (Can you see why?) ▲
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3.E Exercises

Exercise 3.1. Determine whether the given sentence is a statement. If it is, indicate
its truth value (if you can).
(a) The number 0 is an even integer.
(b) Let x = 2.
(c) If 2 is an even integer.
(d) Either 2 is even or 4 is odd.
(e) George Washington had seven children.
(f) There are 7254 different species of ants in the United States.

Exercise 3.2. Let P , Q, and R be statements. Construct a truth table showing the
possible truth values for each of the following compound statements.
(a) (P ∧Q) ⇒ P .
(b) P ⇒ (P ∨Q).
(c) ¬(P ⇒ Q) ∧ (¬P ).
(d) (P ∨Q) ∧R.
(e) P ∨ (Q ∧R).

Exercise 3.3. Use truth tables to prove the given logical equivalences.
(a) ¬(P ∧Q) ≡ (¬P ) ∨ (¬Q).
(b) P ⇒ Q ≡ (¬P ) ∨Q.
(c) (P ∨Q) ⇒ R ≡ (P ⇒ R) ∧ (Q ⇒ R)

Exercise 3.4. Determine whether the two given compound statements are logically
equivalent.
(a) ¬(P ⇒ Q) and P ∧ (¬Q).
(b) (P ∧Q) ⇒ R and P ⇒ (¬Q ∨R).
(c) P ⇒ (Q ∨R) and (P ∧ ¬Q) ⇒ R.
(d) (P ∨Q) ⇒ R and (¬R ∧ P ) ⇒ (¬Q).
(e) P ⇔ Q and (P ⇒ Q) ∧ (Q ⇒ P ).

Exercise 3.5. Let P , Q, and R be statements. Identify each of the following state-
ments as a tautology, a contradiction, or neither.
(a) ((P ⇒ Q) ∧ (¬Q)) ⇒ (¬P ).
(b) ((P ∨Q) ∧ (¬P )) ⇒ Q.
(c) (P ⇒ Q) ⇒ (P ⇒ R).
(d) ((¬Q) ⇒ (¬P )) ∧ P ∧ (¬Q).

Exercise 3.6. Let P and Q be statements.
(a) Prove that the compound statement P ⇒ Q is not logically equivalent to Q ⇒

P .
(b) The statement Q ⇒ P is called the converse of P ⇒ Q. Give an example of

statements P and Q for which P ⇒ Q is true, but Q ⇒ P is false. For the
specific statements P and Q in your example, state their truth values.

Exercise 3.7. The following exercise shows that the biconditional can be a useful
logical connective (if you are ever lost in grue infested woods):
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After getting lost in the woods, you stumble upon a path. As you follow the path
it comes to a fork, and a grue blocks your way. There is a sign which reads:

This grue either always tells the truth or always lies. You may ask the
grue a single question. Any more than that, and it will eat you.

You are positive that one of the paths leads home and the other leads to certain
death. Explain why asking the grue the question

Is the statement “the left path is the way home if and only if you are a
truth teller” true?

can help you decide which path to take. (Note that the question is not “Is the left
path the way home?” Also note that the Grue’s answer might be a lie.)
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4 Open sentences

4.A Open sentences

In many cases, we wish to write a sentence whose truth value depends on variables ,
where the variables can take on many different values. Typically, we want each
variable to take on values in some specific set. We call each such set of values the
domain of the corresponding variable.

Definition 4.1. An open sentence is a declarative sentence containing one or
more variables such that when all of the variables are assigned values in their
respective domains, the resulting sentence has a truth value.

Some authors do not explicitly write all open variables that occur in an open
sentence. We will always specify all open variables.

Example 4.2. Let x and y be variables, both with the same domain R. We may
define the open sentence

P (x, y): x > y.

With this definition we see that P (2, 3) is false (since the statement 2 > 3 is false),
P (5, 2) is true, and so on. Note that if we try to plug in a value of x or y outside the
domain, the resulting sentence may be meaningless. For instance P (apples, oranges) is
meaningless since the sentence “apples > oranges” makes no sense (you can’t compare
apples and oranges). △

Open sentences are very common throughout mathematics. They can express
quite important and general principles. Here are some examples.

Example 4.3. Let S be the set of triangles and let x be a variable with domain S.
Then we have an open sentence

P (x): The sum of the (interior) angles of x is 180◦.

The open sentence P (x) happens to be true for all choices of x ∈ S. This fact is a
very famous (and very old) theorem.

Again taking x to be a variable with domain S, we may write the open sentence

Q(x): One of the angles of x is a right angle.

In this case, Q(x) is not true for all x ∈ S; instead it is true exactly when x is a right
triangle. △
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Warning 4.4. An open sentence is much like a function from calculus. It can
be considered to be a rule in which, when we plug in a value for the variable (or
variables), we obtain a truth value. Even if an open sentence is true for each
value of the variable, it does not become a statement. For instance, if we let x
be a variable with domain equal to the real numbers, the open sentence

P (x): x2 > −1

is true for all possible values of x. Nevertheless, it is not a statement. It is still
a rule that assigns a truth value to every real number. Compare this to the
constant function defined by the rule

f(x) = 2

from algebra. The function f is not equal to the number 2; rather it is a rule
that associates to each value of x the number 2.

We can use logical connectives to combine open sentences much as we combine
statements. The result of combining open sentences with any of the logical connectives
∧, ∨, ¬, ⇒, or ⇔ is again an open sentence. This open sentence obtains a truth value
when all the variables in the component open sentences are given values. Once these
values are fixed, each of the component open sentences becomes a statement, and the
truth value of the compound sentence can be evaluated from the truth values of the
components.

Example 4.5. Let x be a variable with domain the set of all triangles, and define
the following open sentences:

P (x): The sum of the angles of x is 180◦

and
Q(x): One of the angles of x is a right angle.

Then, if we plug in a specific right triangle t in place of x, the statement P (t)∧Q(t)
is true; however, if we take x to be an equilateral triangle e (so that it cannot be a
right triangle), the statement P (e) ∧Q(e) is false (since Q(e) is false). △

Example 4.6. Let x be a variable with domain the set of real numbers. We define
two open sentences:

P (x): x > 3, Q(x): x < 5.

Consider the following compound open sentences:
(1) P (x) ∧Q(x),
(2) P (x) ∨Q(x),
(3) P (x) ⇒ Q(x),
(4) P (x) ⇔ Q(x),
(5) ¬P (x) ∧ ¬Q(x).
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Below, we write the set of places these statements are true. Try it for yourself before
looking at the answers.

We will work out (3) in detail. Remember that for a given value of x, we have

P (x) ⇒ Q(x) ≡ ¬P (x) ∨Q(x).

We know that ¬P (x) is true for x ∈ (−∞, 3]. Also Q(x) is true for x ∈ (−∞, 5).
Thus, ¬P (x) ∨Q(x) is true for x ∈ (−∞, 3] ∪ (−∞, 5) = (−∞, 5).

All Answers:
(1) (3, 5),
(2) R,
(3) (−∞, 5),
(4) (3, 5),
(5) ∅. △

Remark 4.7. The previous example demonstrates why logical equivalence is so use-
ful. We know that

P (x) ⇒ Q(x) ≡ ¬P (x) ∨Q(x)

even before we know the value of x, hence before we know the truth value of P (x) or
Q(x). Thus, we can simplify some compound open sentences, before we even know
what the components say. ▲

4.B Quantifiers

We have seen the expression “for all x ∈ S” several times. This expression is common
enough that we create a symbol for it.

Definition 4.8. Let x be a variable with domain S and let P (x) be an open
sentence. The expression

∀x ∈ S, P (x)

is then a statement. It is true if P (x) is true for each choice of x ∈ S, and it is
false if P (x) is false for one (or more) choice of x ∈ S.

We read the statement ∀x ∈ S, P (x) as “for all x in S, P (x).”

Example 4.9. Let S be the set of all triangles and let x be a variable with domain
S. Let P (x) be the open sentence

P (x): The sum of the angles of x is 180◦.

Then the statement “∀x ∈ S, P (x)” means “For all x in the set of triangles, the sum
of the angles of x is 180◦.” We may simplify this a bit by reducing it to the sentence
“The sum of the angles of any triangle is 180◦.” without changing the meaning. We
note that, in this case, the statement ∀x ∈ S, P (x) is a true statement. △
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Example 4.10. Again letting x be a variable with domain S equal to the set of all
triangles, we will let Q(x) be the open sentence

Q(x): One of the angles of x is a right angle.

If we examine the statement ∀x ∈ S, Q(x), we find that it is false, since it is not
the case that all triangles contain a right angle; for example, none of the angles in an
equilateral triangle are right angles. However, if we let T be the subset of S consisting
of right triangles, then the statement ∀x ∈ T, Q(x) is a true statement. △

We call the symbol ∀ the universal quantifier; the expression ∀x ∈ S, P (x) makes
the assertion that the open sentence P (x) is universally true for any x in the domain
S. There is another quantifier, ∃, called the existential quantifier.

Definition 4.11. Let x be a variable with domain S and let P (x) be an open
sentence. The expression

∃x ∈ S, P (x)

is then a statement. It is true if P (x) is true for at least one choice of x ∈ S,
and it is false if P (x) is false for each choice of x ∈ S.

The statement ∃x ∈ S, P (x) reads as “There exists some x in S such that P (x).”

Example 4.12. Let x be a variable with domain R and let P (x) be the open sentence

P (x): x2 = 2.

Then the statement ∃x ∈ R, P (x) is a true statement, because there is at least one
choice of x ∈ R, namely x =

√
2, for which P (x) is a true statement (in fact there

are two choices, since we could take x = −
√
2 as well). However, the statement ∃x ∈

Z, P (x) is false, since there are no integers x such that P (x) is a true statement. △

Example 4.13. Let A and B be sets and let x be a variable with domain A. We will
use quantifiers to describe some relationships between the sets A and B.

Suppose that the statement

∀x ∈ A, x ∈ B

is true. This means that every element of A is an element of B. This is what it means
to say that A ⊆ B.

Suppose that the statement

∀x ∈ A, x /∈ B

is true. In other words, every element of A is not an element of B. Then we know that
A and B have no elements in common; they are disjoint. In other words, A∩B = ∅.

Suppose that the statement

∃x ∈ A, x ∈ B

is true. In other words, there is at least one element in A that is also in B. This tells
us that A ∩B ̸= ∅; so A and B are not disjoint. △
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Note that, in the case of open sentences with multiple variables, we can define
quantification in a way similar to Definitions 4.8 and 4.11. In this case, we may need
multiple quantifiers in order to turn the open sentence into a statement. In general,
one quantifier will be needed for each distinct variable in the open sentence. As an
example, if we let x and y be variables with the domain R and let P (x, y) be the open
sentence

P (x, y) : x > y,

then the sentence ∀x ∈ R, P (x, y) is not a statement, because it still has a variable
that has not been specified or quantified (namely y). In order to make it a statement
we need to evaluate y; we could say ∀y ∈ R, ∀x ∈ R, P (x, y), which means that

For all real numbers y and for all real numbers x, it holds that x > y.

Note that this is a false statement, since taking y = 2 and x = 1 gives 1 > 2.

Example 4.14. Suppose we wish to express the statement “Every even integer is a
sum of two odd integers” in symbolic logic. We can do this using multiple quantifiers.
Let Even denote the set of even integers and let Odd denote the set of odd integers.
The statement

∀x ∈ Even, ∃y ∈ Odd,∃z ∈ Odd, x = y + z

then means that for each even integer x, there is an odd integer y and there is an odd
integer z such that x = y + z. In other words, any even integer x is the sum of two
odd integers, y and z. (This is true.) △

Example 4.15. Suppose we wish to express the statement “Every positive real num-
ber has a positive square root” in symbolic logic. Let R>0 be the set of positive real
numbers. We might write

∀x ∈ R>0,∃y ∈ R>0, x = y2.

Interpreted, this means that for each x in the positive real numbers, there exists a
positive real number y, such that x = y2. In other words, y is a positive real square
root of x. △

We will return to a much more detailed discussion of multiple quantifiers in the
next section. They are quite important and appear in many parts of mathematics.

4.C Implication and open sentences

If we have two open sentences P (x) and Q(x), and we join them with ⇒, we have
seen that the resulting sentence P (x) ⇒ Q(x) is again an open sentence. In order to
make a statement of it, we may either plug in a value of x from the domain or use
one of the two quantifiers ∀ or ∃.

Statements of the form
∀x ∈ S, P (x) ⇒ Q(x)

are so commonplace that there are multiple ways to express them. Here are some
common ways this is done.
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� Given x ∈ S, if P (x), then Q(x).
� Let x ∈ S. If P (x), then Q(x).
� If x is an arbitrary element of S satisfying P (x), then Q(x).
� If x is an element of S satisfying P (x), then Q(x).
� If P (x), then Q(x).

The last bulleted option can only be used when the domain S of x is understood.
However, it could be confused with the (unquantified) open sentence

P (x) ⇒ Q(x),

and so in general it is best to quantify statements in some way. (Similar considerations
hold for the biconditional.) It is best practice to always use some word signifying
the universal scope of the quantifier ∀, such as: “arbitrary”, “any”, “every”, “all”,
“given”, and “let” (as in the above bulleted list). (The words we associate with ∃
are: “for some”, “exists”, “fix”, etc.)

If we talk about the open sentence P (x) ⇒ Q(x), it is clear that no quantifier is
intended (since the quantified version of the sentence would be a statement not an
open sentence).

Example 4.16. Let P (x) be the open sentence

P (x): x is even

and let Q(x) be the open sentence

Q(x): x− 2 is even

(with the domain of x being the integers in both cases). If we wish to write the
quantified statement

∀x ∈ Z, P (x) ⇒ Q(x),

we may write the following:

If an (arbitrary) integer x is even, then x− 2 is even.

Notice that no explicit quantifier is stated, but the quantifier is nevertheless under-
stood.

Similarly the biconditional

An integer x is even if and only if x− 2 is even

means
∀x ∈ Z, P (x) ⇔ Q(x),

even though we didn’t use the words “for all x ∈ Z.” △

Example 4.17. Inclusion of sets can be understood through implication.
Let A and B be subsets of a universal set U . Let x be a variable with domain U ,

and assume that
∀x ∈ U, x ∈ A ⇒ x ∈ B
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is true. Since the implication must be true for all elements of U , we see that whenever
x ∈ A, it must be the case that x ∈ B. (When x /∈ A, we know nothing about whether
it is in B.) This is exactly what it means to say that A ⊆ B. Hence, the statement
A ⊆ B can be interpreted (in terms of symbolic logic) as the statement above.

Occasionally the universal set U is understood from context, and we will write
∀x, x ∈ A ⇒ x ∈ B. More simply, A ⊆ B could be written as ∀x ∈ A, x ∈ B,
without the use of implication or a universal set U . △

4.D The meaning of implication

We now discuss what it means for a statement of the form

∀x ∈ S, P (x) ⇒ Q(x)

to be true.

We first examine how it could be false. We see that the only way for it to be false
is for there to be one or more values of x for which P (x) is true and Q(x) is false.
Therefore, in order for the statement ∀x ∈ S, P (x) ⇒ Q(x) to be true, it must be
the case that for each x ∈ S, either P (x) is false or Q(x) is true. Another way to put
this is that whenever P (x) is true, it must happen that Q(x) is also true. In other
words, if we know that P (x) is true, then Q(x) must be true. Hence, for any given
x ∈ S we have “If P (x), then Q(x).”

There are a number of different ways of writing a sentence with the meaning “If
P , then Q.” Some of them are:

If P , then Q.
P implies Q.
P only if Q.
Q if P .
P is sufficient for Q.
Q is necessary for P .
Whenever P is true, then Q is true.

For example, if we say “P is sufficient for Q,” this has the meaning that P being
true is sufficient for us to conclude that Q is true. In other words, “If P is true, then
Q is true.”

You should think about the meaning of the other phrases above, and satisfy your-
self that they all have the same meaning as P ⇒ Q.

Another sentence that can be expressed in several different ways in English is
P ⇔ Q. Some of the ways that it can be expressed are:

P if and only if Q.
P is equivalent to Q.
P is necessary and sufficient for Q.
P holds exactly when Q holds.
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4.E Translating between English and symbolic logic

We now give some examples of translating statements from English to symbolic logic.

Example 4.18. The statement “If a real number is not zero, then its square is not
zero” can be written as

∀x ∈ R, x ̸= 0 ⇒ x2 ̸= 0.

Another way of interpreting this symbolic logic statement in English would be “Every
nonzero real number has a nonzero square” or “A nonzero real number has a nonzero
square.” △
Example 4.19. The statement “The square of any rational number is a rational
number” might be written

∀x ∈ Q, x2 ∈ Q. △
Example 4.20. The statement “There is a rational solution of the equation x2 +
2x+ 1 = 0” can be translated into symbolic logic as

∃x ∈ Q, x2 + 2x+ 1 = 0. △

Example 4.21. One way of translating “Every real solution of the equation x3−x = 0
is rational” into symbolic logic is as

∀x ∈ R, x3 − x = 0 ⇒ x ∈ Q. △

Example 4.22. We can translate the statement

∀x ∈ R, x2 = 2 ⇒ x /∈ Q

into English as “Every real number whose square is 2 is not rational.” Alternatively,
we could say “Given an arbitrary real number x, if x2 = 2, then x is not rational.” △
Example 4.23. The statement “A real number x has a real square root if it is
positive” might be interpreted in symbolic logic as

∀x ∈ R, x is positive ⇒ x has a real square root.

Or, we could be even more detailed, and write

∀x ∈ R, (x > 0 ⇒ ∃y ∈ R, x = y2),

which includes an interpretation of the phrase “has a real square root.” △
Example 4.24. In order to write the statement “Every even integer greater than
3 can be written as a sum of two primes” in symbolic logic, we define the set P =
{prime numbers in N}. Then we can write

∀x ∈ Z, (((x is even) ∧ (x > 3)) ⇒ (∃y ∈ P, ∃z ∈ P, x = y + z)).

Alternatively, we could let E be the set of even integers, and write the statement as

∀x ∈ E, (x > 3 ⇒ ∃y ∈ P, ∃z ∈ P, x = y + z).

Another alternative would be to define F = {x ∈ Z : x > 3 and x is even} to be the
set of even integers greater than 3, and write

∀x ∈ F, ∃y ∈ P, ∃z ∈ P, x = y + z. △
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4.F Exercises

Exercise 4.1. Let x be a variable with domain Z. Define the open sentences

P (x) : x > 1,

Q(x) : x2 < 16, and

R(x) : x+ 1 is even.

For each of the following compound open sentences, describe the subset of Z (by
listing its elements or by using set-builder notation without mentioning the symbols
P , Q, and R) where that open sentence is true.
(a) P (x) ∧Q(x).
(b) Q(x) ∧R(x).
(c) (Q(x) ∨ ¬P (x)) ∧ ¬R(x).
(d) (P (x) ⇒ Q(x)) ⇒ R(x). (Hint: Simplify using logical equivalences.)

Exercise 4.2. For each x ∈ {1, 2, 3, 4, 5, 6}, write down the truth value of

P (x): If x is an odd integer, then
3x+ 5

2
is an odd integer,

and then state whether you believe ∀x ∈ Z, P (x) is true or false.

Exercise 4.3. For each x ∈ {1, 2, 3, 4, 5, 6}, write down the truth value of

Q(x): If x is an even integer, then 3x+ 5 is an odd integer,

and then state whether you believe ∀x ∈ Z, Q(x) is true or false.

Exercise 4.4. Let A and B be two subsets of a universal set U . Write a symbolic
logic interpretation of the statement A = B. Explicitly write out any quantifiers
involved in the statement. (It is possible to do this with no reference to U .)

Exercise 4.5. Translate the following English sentences into symbolic logic. Explic-
itly write any quantifiers that are implied.
(a) There is an integer strictly between 4 and 6.
(b) The square of any odd integer is odd.
(c) If the square of an integer is odd, then the original integer is odd.
(d) If a real number is not rational, then it is not equal to 0.
(e) The sum of two rational numbers is rational.
(f) The square of any real number is a nonnegative real number.
(g) There is an integer solution to the equation x2 − 5x+ 6 = 0.
(h) Every real solution to x2 − 5x+ 6 = 0 is an integer.

Exercise 4.6. Translate the following symbolic logic statements into English.
(a) ∃x ∈ R, x2 = 2.
(b) ∀x ∈ Z, (x is even) ⇔ (x2 is even).
(c) ∀x ∈ R, (x > 1) ⇒ (x3 > 1).
(d) ∀x ∈ R, (x2 − 2x+ 1 = 0) ⇒ (x = 1).
(e) ∃x ∈ Q, 2x3 − x2 + 2x− 1 = 0.
(f) ∀x ∈ R,∃y ∈ Z,∃z ∈ [0, 1), x = y + z.
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5 Multiple quantifiers and negating sentences

5.A Statements with multiple quantifiers

Statements involving multiple quantifiers are quite common in mathematics. For such
statements, it is important to understand how the quantifiers interact and to be able
to analyze the truth values of the statements. We begin with two examples that
demonstrate that the order in which quantifiers occur is important.

Example 5.1. Let P (x, y) be the open sentence x > y with the domain of both x
and y being the real numbers. We examine the quantified statement

∀x ∈ R, ∃y ∈ R, P (x, y).

This statement means:

For each real number x, there is a real number y such that x > y,

or in other words, “For each real number x, there is a real number y (possibly de-
pending on x) that is smaller than x.” We claim that this statement is true. To see
this, suppose that x is any real number. The statement asserts that no matter what
x is, there is some real number y such that x > y. If we let y = x − 1, we see that
regardless of what the value of x is, x > y. Hence, for each real number x, there is
some y (for example y = x− 1) with x > y. △

Example 5.2. Let P (x, y) again be the open sentence x > y with the domain of
both x and y being the real numbers. We next examine the quantified statement

∃y ∈ R,∀x ∈ R, P (x, y).

Note that this statement is the same as the statement in Example 5.1, except for the
order of the quantifiers. In words, this statement means

There is some real number y such that x > y whenever x is a real number,

or in other words, “there is a real number y such that every real number is larger
than y.”

This statement is false, which we see as follows. If y is a real number, then y − 1
is not larger than y. Hence, there does not exist a real number y for which every real
number is larger than y. △

Warning 5.3. Existentially quantified variables are always allowed to depend
on any previously quantified variables. For instance, in Example 5.1 we are
allowed to choose a value of y in terms of x, as we did by taking y = x− 1, since
the variable x was quantified before y. However, a variable can never depend on
another variable that is quantified later. For instance, in Example 5.2 we cannot
define y in terms of x, since x is quantified later than y.
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These two examples demonstrate that the order of quantifiers in a statement
with multiple quantifiers can change the truth value of the statement. This only
happens when the quantifiers are not the same type. Changing the order of existential
quantifiers that are next to each other, or universal quantifiers that are next to each
other, will not change the truth value of the statement. For example,

∀x ∈ R,∀y ∈ R, x > y

has the same truth value as

∀y ∈ R,∀x ∈ R, x > y

(in this case both are false). Since the order does not matter in this case we will
abbreviate either of these statements as

∀x, y ∈ R, x > y,

which we can read as “for all x and y in R, we have x > y.”
Similarly,

∃x ∈ R,∃y ∈ R, x > y

has the same truth value as

∃y ∈ R,∃x ∈ R, x > y

(in this case both are true). Since the order does not matter in this case, we often
abbreviate either of these statements as

∃x, y ∈ R, x > y,

which we might read as “there are real numbers x and y such that x > y.”

Remark 5.4. Sometimes, when the domain of a variable is well understood and we
wish to quantify a statement over a subset of the domain that is defined by some easy
mathematical condition, we might adapt the notation that we use for a quantifier.
For instance, if x and y are variables with domain R and we wish to express the
statement “Every positive real number has a positive real square root,” we might
write

∀x > 0,∃y > 0, x = y2,

which is shorthand for
∀x ∈ R>0,∃y ∈ R>0, x = y2.

This modification of notation can only be used when the domain of a variable is
explicitly stated, or completely clear from context. One common example of the use
of this notation will occur in the definition of a limit in Chapter IX, where we will let
ε, δ, and x be real variables, and define

lim
x→a

f(x) = L

to mean
∀ε > 0,∃δ > 0,∀x ∈ R, 0 < |x− a| < δ ⇒ |f(x)− L| < ε.

(Note that most authors remove ∀x ∈ R, leaving it to the reader to fill in that
gap.) ▲
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5.B Negating statements

It is often necessary to understand both how to negate sentences and what those
negations mean. For example, to qualify for President of the United States you
must be a natural born citizen and be over the age of 35. Using these criteria,
what disqualifies one from being president? One is disqualified either by not being a
natural born citizen or being younger than 35. Notice that we have used the logical
equivalence ¬(P ∧Q) ≡ ¬P ∨ ¬Q (De Morgan’s law).

Negating a statement can be done by placing the words “it is not the case that”
in front of the statement. Alternatively, as we have seen, the negation of a statement
(or open sentence) P can be interpreted as “P is false”.

However, when negating compound sentences, it is often possible to make addi-
tional simplifications or modifications. For example, if we wish to negate the state-
ment P ∧ Q we could write the result as ¬(P ∧ Q). By using De Morgan’s law, we
see that

¬(P ∧Q) ≡ (¬P ) ∨ (¬Q).

Hence, we can say that the negation of the statement P ∧ Q is also (equivalent to)
the statement (¬P ) ∨ (¬Q), which is often easier to work with.

Example 5.5. If we wish to negate the statement P ⇒ Q (where P and Q are
statements), it is helpful to recall (see Exercise 3.3(b)) that

P ⇒ Q ≡ (¬P ) ∨Q.

Hence,
¬(P ⇒ Q) ≡ ¬((¬P ) ∨Q) ≡ (¬¬P ) ∧ (¬Q) ≡ P ∧ (¬Q),

where we have used De Morgan’s law and double negation.
We can interpret this string of equivalences as follows. Saying “P implies Q is

false” is the same as asserting “P is true and Q is false.” △

Negating statements with quantifiers is quite common. Suppose that we wish to
negate a statement of the form

R : ∀x ∈ S, P (x),

where P (x) is an open sentence, and x has domain S. The negation is

It is not the case that P (x) is always true.

What does this mean? Simply, that P (x) must be false sometime (i.e., for at least
one x ∈ S). More formally,

¬R : ∃x ∈ S, ¬P (x).

Similar reasoning can be used to see that the negation of ∃x ∈ S, P (x) is the
statement ∀x ∈ S, ¬P (x). We state our conclusions as an axiom.
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Axiom 5.6. Let P (x) be an open sentence, where x has domain S. Then the
negation of the statement

∀x ∈ S, P (x)

is equivalent to the statement

∃x ∈ S, ¬P (x).

Similarly, the negation of the statement

∃x ∈ S, P (x)

is equivalent to the statement

∀x ∈ S, ¬P (x).

Example 5.7. Suppose that we wish to negate the statement “All integers are posi-
tive.” We can write this statement with a quantifier as

P : ∀x ∈ Z, x > 0.

According to the axiom, the negation of this statement is (equivalent to)

¬P : ∃x ∈ Z, ¬(x > 0).

In words, we could state this as “There exists an integer that is not positive,” or
“Some integer is not positive.” We note that the negation of the open sentence x > 0
is easily seen to be x ≤ 0. Hence, we could write ¬P : ∃x ∈ Z, x ≤ 0 for the
negation. (In this example which of the following is true: P or ¬P?) △

We can extend these methods to negate statements with multiple quantifiers.

Example 5.8. Let x, y, z be variables with domains S, T , and U , respectively, and
let P (x, y, z) be an open sentence. We will negate the statement

∀x ∈ S,∀y ∈ T,∃z ∈ U, P (x, y, z).

In order to do this, we will use parentheses to make the order of the quantifiers clearer.
Hence, the statement that we wish to negate is

∀x ∈ S, (∀y ∈ T, (∃z ∈ U, P (x, y, z))).

Proceeding one level at a time, we see that

¬(∀x ∈ S,∀y ∈ T,∃z ∈ U, P (x, y, z))

≡ ∃x ∈ S, ¬(∀y ∈ T,∃z ∈ U, P (x, y, z))

≡ ∃x ∈ S,∃y ∈ T, ¬(∃z ∈ U, P (x, y, z))

≡ ∃x ∈ S,∃y ∈ T,∀z ∈ U, ¬P (x, y, z).

Notice that negating this quantified statement was as simple as swapping all ex-
istential and universal quantifiers, and negating the open sentence at the end. △
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Warning 5.9. One mistake that many students make is getting carried away
with negating quantifiers. In particular, when negating the statement

∀x ∈ S, P (x)

they might write, incorrectly,

∃x /∈ S, ¬P (x).

Notice that this sentence may be meaningless, because P (x) may not have a
truth value (or even make sense) when x /∈ S. The thing to remember is to swap
the quantifier without changing the domain of the variable.

Example 5.10. The problem mentioned in the previous warning most commonly
happens when we use notation other than x ∈ S in our quantifiers. For instance, if x
is a real variable, and we wish to negate

∀x > 0, P (x),

the correct negation is

∃x > 0, ¬P (x).

Since “x > 0” is shorthand for x ∈ R>0, it would be incorrect to change it to
x ≤ 0. △

Example 5.11. Suppose that we wish to negate the statement

P : ∀x ∈ R, ∃y ∈ R, x > y.

(Remember that this is the true statement from Example 5.1.) Then the negation is

¬P : ∃x ∈ R,∀y ∈ R, x ≤ y.

This new statement is false. △

5.C Greatest and least elements

We now use quantifiers to define some common terminology concerning sets of real
numbers.

Definition 5.12. Let S ⊆ R, and let x ∈ R.
(1) We say that x is the greatest element of S if x ∈ S and for each y ∈ S we

have x ≥ y.
(2) We say that x is the least element of S if x ∈ S and for each y ∈ S we

have x ≤ y.
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In symbols, x is the greatest element of S if

(x ∈ S) ∧ (∀y ∈ S, x ≥ y),

and x is the least element of S if

(x ∈ S) ∧ (∀y ∈ S, x ≤ y).

To say that a set S has a greatest element would be to say

∃x ∈ R, (x ∈ S ∧ (∀y ∈ S, x ≥ y)).

However, this can be written in a shorter way as

∃x ∈ S,∀y ∈ S, x ≥ y.

We summarize this information in the definition below.

Definition 5.13. Let S ⊆ R.
(1) We say that S has a greatest element if there is some x ∈ S that is the

greatest element of S.
(2) We say that S has a least element if there is some x ∈ S that is the least

element of S.

Example 5.14. Let S = N be the set of natural numbers. Then S ⊆ R. We note
that S has no greatest element. To see this, we may negate the definition of “S has
a greatest element,” to obtain

∀x ∈ S,∃y ∈ S, x < y.

This statement is true since, for any x ∈ S, there is some y ∈ S (namely y = x + 1)
such that x < y. Since the negation of “S has a greatest element” is true, we see that
“S has a greatest element” is false.

On the other hand, for S = N, the statement “S has a least element” is true; the
least element of the natural numbers is 1. △

Definition 5.15. Let S ⊆ R.
(1) An upper bound for S is some x ∈ R such that for all y ∈ S, y ≤ x.
(2) A lower bound for S is some x ∈ R such that for all y ∈ S, y ≥ x.
(3) We say that S has an upper bound if there exists some x ∈ R such that for

all y ∈ S, y ≤ x.
(4) We say that S has a lower bound if there exists some x ∈ R such that for

all y ∈ S, y ≥ x.

Example 5.16. Let S = (0, 1] = {x ∈ R : 0 < x ≤ 1}. Then S has a lower bound;
if we take x = −1, we see that every element y ∈ S satisfies y ≥ x. Note that we
could have taken x = 0 or x = −3 as well. We remark that although S has a lower
bound, it has no least element. △

We will investigate the ideas of greatest and least elements and upper and lower
bounds more in the exercises.
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5.D Chart of negation rules

The following chart summarizes how to simplify negated sentences.

¬(¬P ) −→ P

¬(P ∨Q) −→ ¬P ∧ ¬Q
¬(P ∧Q) −→ ¬P ∨ ¬Q
¬(P ⇒ Q) −→ P ∧ ¬Q

¬(∀x ∈ S, P (x)) −→ ∃x ∈ S, ¬P (x)

¬(∃x ∈ S, P (x)) −→ ∀x ∈ S, ¬P (x)

5.E Exercises

Exercise 5.1. Write the negation of the following statements and open sentences. In
each case, the domain of each variable x, ε, and δ is the set of real numbers. (Write
any quantifiers and logical connectives using English.)
(a) x > 2 and x < 3.
(b) If x > 3, then x > 2.
(c) If x > 3 and x ̸= 4, then x2 ̸= 16.
(d) If 3 < x < 4, then 9 < x2 < 16.
(e) If x = 2 or x = 3, then x2 − 5x+ 6 = 0.
(f) For all x ∈ R, it happens that x2 + 2x > 0.
(g) There exists an x ∈ R such that x2 + 2x > 0.
(h) For each x ∈ R, there exists y ∈ R such that y > x2.
(i) There exists an x ∈ R, such that for all y ∈ R, it holds that y > x2.
(j) For each ε > 0, there exists some δ > 0 such that for each x ∈ R, if 0 < |x−2| <

δ, then |x2 − 4| < ε.

Exercise 5.2. For each pair of statements, decide if they have the same truth value.
(a) ∀x ∈ R,∃y ∈ R, x+ y = 0 and ∃y ∈ R,∀x ∈ R, x+ y = 0.
(b) ∀x ∈ R,∃y ∈ R, xy = 0 and ∃y ∈ R,∀x ∈ R, xy = 0.
(c) ∀x ∈ R,∃y ∈ R, xy ̸= 0 and ∃y ∈ R,∀x ∈ R, xy ̸= 0.
(d) ∀x ∈ R,∃y ∈ R, y + x2 > 0 and ∃y ∈ R,∀x ∈ R, y + x2 > 0.

Exercise 5.3. Do the following:
(a) Give an example of a set of real numbers that has an upper bound, but does

not have a greatest element.
(b) Determine whether or not there can be a set that has a greatest element, but

does not have an upper bound. Explain your answer.

Exercise 5.4. Let S =
{
1, 1

2
, 1
3
, 1
4
, . . .

}
=
{

1
n
: n ∈ N

}
.

(a) Does S have an upper bound? If so, give an upper bound.
(b) Does S have a greatest element? If so, what is it?
(c) Does S have a lower bound? If so, give a lower bound.
(d) Does S have a least element? If so, what is it?
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Exercise 5.5. Let S = (0, 1) be the open interval of real numbers between 0 and 1.
(a) Does S have an upper bound? If so, give an upper bound.
(b) Does S have a greatest element? If so, what is it?
(c) Does S have a lower bound? If so, give a lower bound.
(d) Does S have a least element? If so, what is it?

Exercise 5.6. Let S be a set of real numbers, and let x ∈ R.
(a) Write (in symbolic logic) the negation of the statement “x is the greatest element

of S.”
(b) Write (in symbolic logic) the negation of the statement “x is an upper bound

for S.”
(c) Write (in symbolic logic) the negation of the statement “S has an upper bound.”

(Hint: The answer in part (c) should not use the symbol “x”, since x was already
given a meaning earlier in the problem. Instead, use a different letter, like z, in place
of x.)
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Chapter III

Basic Proof Techniques

Proving the obvious has never been easy. Marty Rubin

The last two chapters were an introduction to the language of mathematics. Know-
ing the definitions and concepts of set theory and logic allow us to communicate
thoughts more clearly and succinctly. In this chapter we will put our new knowledge
to use in proving that statements are true.

A good proof is like a good painting. It opens the viewer’s mind to deeper insights,
connections, and beauties. The purpose of a proof is not only to convince the reader
that something is true, but to do so in a way that aids in their understanding of why
it is true.

51
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6 Direct proofs

6.A Terminology

All mathematical arguments need a foundation on which to stand; we need truths
which are taken to be self-evident. These truths are called axioms. Some axioms
which are commonly used by mathematicians are the following:
� The empty set exists.
� For each real number, there is an integer greater than it.
� Any two lines either intersect in a single point or are parallel.

In this book we will not worry too deeply about which axioms we will use, trusting
that readers will learn by example what sorts of statements they may use freely.

Once the language of mathematics is in place we also have definitions. We gave
many examples in the previous two chapters of concepts we have defined, such as
unions, intersections, logical connectives, and so forth. In this section, the following
two definitions will be very important.

Definition 6.1. Let n ∈ Z. We say n is an even integer if n = 2k for some
k ∈ Z. The set of even integers is written

Even = 2Z = {. . . ,−4,−2, 0, 2, 4, 6, . . .}.

Definition 6.2. Let n ∈ Z. We say that n is an odd integer if n = 2k + 1 for
some k ∈ Z. The set of odd integers is written

Odd = 2Z+ 1 = {. . . ,−3,−1, 1, 3, 5, . . .}.

Example 6.3. The integer 3 is odd, since 3 = 2 · 1 + 1. The integer 16 is even, since
16 = 2 · 8. △

Warning 6.4. If n is an even integer, this does not mean that n = 2k for all
k ∈ Z. It is impossible for a single number to equal all of the even integers at
once.

The following three facts probably seem self-evident:
� If x ∈ Z is not even, then it is odd.
� If x ∈ Z is not odd, then it is even.
� There is no number which is both even and odd.

You may freely use these facts, treating them as axioms. (We will prove in a later
chapter that they follow from a more basic axiom.)

Finally, there are special names given to statements we want to prove.
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� A theorem is an important statement we prove. In this book we will only name
results “Theorems” when they are extremely important.

� A proposition is a basic statement we prove.
� A lemma is a (usually minor) result that we prove in order to use it later to
prove a bigger result. We use lemmas as a way of breaking up large proofs into
smaller, more understandable pieces.

� A corollary is a (usually minor) result that follows easily from another result
we have proved.

In the rest of Section 6 we will focus on techniques for proving statements of the
form:

∀x ∈ S, P (x) ⇒ Q(x).

6.B Trivial proofs

There are two situations where an implication is true for silly reasons. The following
definition gives the first situation.

Definition 6.5. Let S be a set. We say that the statement

∀x ∈ S, P (x) ⇒ Q(x)

is trivially true when the simpler statement ∀x ∈ S, Q(x) is true. In other
words, an implication is trivially true when the conclusion of the implication is
always true.

Here are some easy examples, followed by proofs.

Proposition 6.6. Let x ∈ R. If x2 < 73, then 0 < 1.

Proof. The conclusion 0 < 1 is always true. So the implication is trivially true.

Proposition 6.7. Let a ∈ Z. If a is odd, then 2a is even.

Proof. The conclusion is always true; the number 2a is even since it is 2 times an
integer. Hence the implication is trivially true.

Notice that in both cases the premise of the implication was irrelevant. In the
first proposition it didn’t matter whether or not x2 < 73, since 0 < 1 is always true.
Similarly, in the second proposition it didn’t matter whether or not a is odd, because
2a is always even.

Also notice the little square box at the end of the proof. This tells the reader that
you have finished the proof.
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Warning 6.8. The word “trivial” should not be used in a proof to mean “this
step is easy, so I will skip it.”

Sometimes “trivial” proofs are not easy and take some work to prove.

Proposition 6.9. Let x ∈ R. If x < 5, then x2 − 2x ≥ −1.

Proof. The inequality x2−2x ≥ −1 is equivalent to x2−2x+1 ≥ 0. This is the same
as (x− 1)2 ≥ 0, which is always true. Thus, the implication is trivially true.

Advice 6.10. It is always a good idea to understand the premise and conclusion
of an implication separately before trying to prove the implication.

6.C Vacuous proofs

There is a second situation where implications are true for silly reasons. This happens
when the premise is always false.

Definition 6.11. Let S be a set. We say that the statement

∀x ∈ S, P (x) ⇒ Q(x)

is vacuously true when the simpler statement ∀x ∈ S, ¬P (x) is true. In other
words, an implication is vacuously true when the premise of the implication is
never true.

We use the word “vacuous” when the premise of an implication is false everywhere
in the domain because we think of the implication as an empty promise in that case.
In other words, the statement is true because it isn’t asserting anything!

The following are some examples of vacuously true statements and their proofs.

Proposition 6.12. Let x ∈ Z. If 3 < x and x < 2, then x2 + 4 = 7.

Proof. The premise is impossible, so the implication is vacuously true.

Proposition 6.13. Let x ∈ Z. If −x2 > 2, then x = 5.

Proof. The premise is −x2 > 2, which is equivalent to 0 > x2 + 2. The right side is
the sum of a square and a positive number; such a sum can never be negative. Thus,
the implication is vacuously true.
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Advice 6.14. To remember the difference between trivial and vacuous proofs,
memorize the following phrase:

Trivial, the Q is true.
Vacuous, the premise is bogus.

Sometimes it is not obvious whether a statement is vacuously true or trivially
true. The following is a list of some examples.

Example 6.15. Consider the following statements, and determine if they are trivially
true, vacuously true, or neither trivial nor vacuous.
(1) Given a ∈ R, if a2 is a negative real number, then a = 5.
(2) Given a ∈ C, if a2 is a negative real number, then a ∈ C− R.
(3) Let x ∈ N. If x ∈ ∅, then x > 0.
(4) Let a ∈ N. Either a is even or a is odd.

The answers are as follows:
(1) The statement is vacuously true, since the premise is never true. It is not trivial,

because the conclusion can be false for some a ∈ R (such as a = 6).
(2) This implication is not vacuous, since the premise is true for some a ∈ C (such

as a = i =
√
−1). It is also not trivial since the conclusion is false for some

a ∈ C (such as a = 0).
(3) This statement is both vacuous and trivial! The premise is never true, and the

conclusion is always true (for x ∈ N).
(4) This is not an implication, so it is not trivial or vacuous. △

6.D Outline of a direct proof

Now that we have dealt with the two oddities that can arise, we are ready to introduce
the most important technique for proving implications.

Given a statement ∀x ∈ S, P (x) ⇒ Q(x), we can prove it directly by assuming
the premise P (x) holds and then, using that information, we show that Q(x) must
also hold true. We begin with an example of such a proof.

Proposition 6.16. For each x ∈ Z, if x is even, then 5x+ 3 is odd.

Proof. Let x ∈ Z be arbitrary. We will work directly. Assume x is even. This means
x = 2k for some k ∈ Z. Thus

5x+ 3 = 5(2k) + 3 = 10k + 3 = 2(5k + 1) + 1.

Since 5k + 1 ∈ Z, this means that 5x+ 3 is odd.

In the first sentence, we deal with the ∀x ∈ Z, by telling the reader we are letting
x be an arbitrary integer. The next sentence tells the reader what type of proof
technique we will use. In this case it is a direct proof. (We will have more options
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available over the next few sections.) After telling the reader we are working directly,
we must assume the premise of the implication. So the third sentence does exactly
that; we assume x is even. We then do some work, and we finish by showing that the
conclusion holds.

The basic outline of a direct proof is as follows.
Result to be proved. Given x ∈ S, if P (x) is true, then Q(x) is true.

Proof outline. Let x ∈ S.
We work directly.
Assume P (x).
Do some work (to be filled in).
Thus, Q(x) holds.

Advice 6.17. When first writing proofs it can be useful to leave some space in
the middle and write the last sentence on the bottom. That way, you can see
where you need to end up.

Here are some more examples of direct proofs.

Proposition 6.18. If n is an odd integer, then n2 − 2n+ 3 is even.

Proof. Let n ∈ Z. We work directly. Assume n is odd. Hence n = 2k + 1 for some
k ∈ Z. We then find

n2 − 2n+ 3 = (2k + 1)2 − 2(2k + 1) + 3

= 4k2 + 4k + 1− 4k − 2 + 3 = 4k2 + 2 = 2(2k2 + 1).

Since 2k2 + 1 is an integer, n2 − 2n+ 3 is even.

Proposition 6.19. Let n ∈ Z. If 3n is even, then n+ 7 is odd.

Proof. Let n ∈ Z. We work directly. Assume 3n is even. Hence 3n = 2k for some
k ∈ Z. We find

n+ 7 = n+ (2n− 2n) + 7 = 3n− 2n+ 7

= 2k − 2n+ 7 = 2(k − n+ 3) + 1.

Since k − n+ 3 ∈ Z, we have n+ 7 is odd.

In this proof, you might be tempted, after writing 3n = 2k, to solve for n and get
n = 2k/3. However, at that point you are no longer working with integers; instead,
you are working with rational numbers. Try to fill in the rest of the proof and look
for where you get an error. (Note: We will see in the next section an easier way to
prove this proposition, which doesn’t involve the trick of adding 0 = 2n− 2n.)

We end this section with one final example.
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Proposition 6.20. If n is an odd integer, then 4n2 − 1 is odd.

Proof. Let n ∈ Z. We work directly. Assume n is odd. Thus, n = 2k + 1 for some
k ∈ Z. We find

4n2 − 1 = 4(2k + 1)2 − 1 = 4(4k2 + 4k + 1)− 1

= 16k2 + 16k + 3 = 2(8k2 + 8k + 1) + 1.

Since 8k2 + 8k + 1 ∈ Z, we have 4n2 − 1 is odd.

Did you notice that there is another way to prove this proposition? (Hint: Is it
trivial/vacuous?)

6.E Exercises

Exercise 6.1. Let x ∈ R. Prove that if x ̸= 3, then x2 − 2x + 3 ̸= 0. (Would this
result be true if we took x ∈ C?)

Exercise 6.2. Let n ∈ N. Prove that if 2 < n < 3, then 7n+ 3 is odd.

Exercise 6.3. Prove that if x is an odd integer, then x2 is odd.

Exercise 6.4. Prove that if x is an even integer, then 7x− 5 is odd.

Exercise 6.5. Let a, b, c ∈ Z. Prove that if a and c are odd, then ab+ bc is even.

Exercise 6.6. Let n ∈ Z. Prove that if |n| < 1, then 3n− 2 is an even integer.

Exercise 6.7. Prove that every odd integer is a difference of two squares of integers.
(Hint: Try small cases; write 1, 3, 5, and 7 as differences of squares. It might help to
rephrase this statement as an implication, with a premise and conclusion.)
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7 Contrapositive proof

While the technique of direct proof is a powerful tool, this section will introduce
another method which is very similar in spirit. This new method is called “contra-
positive proof.” You may have experienced it in your own life. For instance, consider
the following story:

Alice is at work on Friday and tells her coworker Bob: “If it rains on Monday,
then I’m not coming in to work.” Bob has an important deadline on Monday, and so
works through the entire weekend. On Monday Bob sees Alice come into the office.
He concludes it must not be raining.

Bob’s logic is sound and will be explained (and exploited) in this section.

7.A What is the contrapositive?

Let P and Q be statements. We have been working with the implication

R : P ⇒ Q.

We say that the new sentence

¬Q ⇒ ¬P

is the contrapositive of R. A truth table shows the amazing fact that the implication
R has exactly the same truth table as the contrapositive! In other words:

Theorem 7.1. Let P and Q be statements. Then

P ⇒ Q ≡ ¬Q ⇒ ¬P.

Example 7.2. We will find the contrapositive of the statement: “If it rains on
Monday, then I’m not coming in to work on Monday.” The contrapositive (after an
easy application of double negation) is exactly: “If I come in to work on Monday,
then it is not raining on Monday.” In the story at the beginning of this section, Bob
used the contrapositive of Alice’s sentence to conclude it was not raining. △

We can also take the contrapositive of an implication between two open sentences,
as in the following example.

Example 7.3. The contrapositive of

If 3x− 7 is even, then x is odd.

is the new sentence

If x is even, then 3x− 7 is odd.

Which one looks easier to prove when universally quantified? △
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To prove an implication P ⇒ Q, we can instead change to the contrapositive
sentence ¬Q ⇒ ¬P and work directly with this new sentence. We usually work this
way when the direct proof (of the original sentence) is more difficult. The proof of
the following proposition shows how this is to be done: we assume the negation of
the conclusion and then show the negation of the premise.

Proposition 7.4. Given x ∈ Z, if 3x− 7 is even, then x is odd.

Proof. Let x ∈ Z. We work contrapositively. Assume x is even. Thus x = 2k for
some k ∈ Z. We find

3x− 7 = 3(2k)− 7 = 6k − 7 = 2(3k − 4) + 1

is odd.

It is possible to prove this proposition directly; however, it will be more difficult.
When we assume 3x − 7 is even, we get 3x − 7 = 2k. It is very tempting to solve
for x by bringing 7 to the other side and dividing by 3. But if we do that, we get
x = (2k+7)/3 which is written as a rational fraction, so it is difficult to tell whether
it is even or odd (or an integer!). However, there is a clever way to work around this
fact:

Alternative proof. Let x ∈ Z. We work directly. Assume 3x−7 is even. So 3x−7 = 2k
for some k ∈ Z. Then

x = (3x− 7)− 2x+ 7 = 2k − 2x+ 7 = 2(k − x+ 3) + 1

is odd.

The moral of this story is:

Advice 7.5. To decide whether to do a direct proof or a contrapositive proof,
choose the method which gives you the “best” information to start with.

For the next proposition, try to decide for yourself whether you should work
directly or contrapositively.

Proposition 7.6. Let x ∈ Z. If x2 − 6x+ 7 is odd, then x is even.

Do you want to work directly? If you do, you will assume x2 − 6x+7 is odd, and
try to show that x is even.

Or do you want to work contrapositively? If you do, you will assume x is odd,
and try to show that x2 − 6x+ 7 is even.
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Proof. Let x ∈ Z. We work contrapositively. Assume x is odd. So x = 2k + 1 for
some k ∈ Z. We find

x2 − 6x+ 7 = (2k + 1)2 − 6(2k + 1) + 7 = 4k2 + 4k + 1− 12k − 6 + 7

= 4k2 − 8k + 2 = 2(2k2 − 4k + 1)

is even.

For many people, to prove the previous proposition it is easier to work contrapos-
itively than to work directly.

7.B Division

We have done many proofs using even and odd integers. We will now introduce a
new definition which we can use to prove more statements.

Example 7.7. (1) Does 3 divide 6? Yes, dividing 6 by 3 yields the integer 2. So
6 = 3 · 2.

(2) Does 5 divide 9? No, dividing 9 by 5 yields a remainder of 4. △

Generalizing these examples we have the following:

Definition 7.8. Let a, b ∈ Z. We say that a divides b if

∃c ∈ Z, b = ac.

In other words, a is a divisor of b. Alternatively, b is a multiple of a.
We write a | b to mean “a divides b.”

Warning 7.9. The symbols a | b represent a sentence that means a divides into
b. It means that the fraction b

a
is an integer. It does not mean a÷ b (which is

just the number a
b
, not a sentence).

Example 7.10. (1) Is it true that 7 | 21? Yes, 21 = 7 · 3.
(2) For any integer n, we have 1 |n, since n = 1 · n.
(3) What integers does 0 divide? If 0 |n, then this means n = 0c for some c ∈ Z.

Thus, n = 0. On the other hand, 0 | 0 is true since 0 = 0 · 1.
(4) Does 8 | 4? No, so we write 8 ∤ 4. △

To prove a statement involving the condition a | b we use its definition to turn it
into the new sentence “b = ac for some c ∈ Z.” (Notice that the term b which was
on the right-hand side of the vertical bar is now alone on the left-hand side of the
equality.) This is similar to what we did with even/odd proofs; when x is even, we
rewrite this using the definition to say that x = 2k for some k ∈ Z.
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Proposition 7.11. Let a, b ∈ Z. If a | b, then a | 2b.

Proof. Let a, b ∈ Z. We work directly. Assume a | b. Thus b = ac for some c ∈ Z.
Now, 2b = 2(ac) = a(2c). Since 2c ∈ Z, we have a | 2b.

Question: In the sentence starting “Now, 2b = . . .,” how did we know to look at 2b?
Answer: We were working directly, so we knew we needed to show a | 2b. From the
definition, we knew we needed to look at 2b and “pull out” a ∈ Z as a factor, with
the other factor also an integer.

Can you figure out what is wrong with the following FALSE proposition and
proof?

Proposition 7.12 (False!). Let a, b ∈ Z. If a | 2b, then a | b.

Proof. Let a, b ∈ Z. We work directly. Assume a | 2b. Thus 2b = ac for some c ∈ Z.
Now, b = ac/2 = a(c/2). Since c/2 ∈ Z, we have a | b.

When proving statements about divisors, we usually do NOT actually divide!
Here are some more examples of proofs using divisors.

Proposition 7.13. Let a, b, c ∈ Z. If a | b and b | c, then a | c.

Proof. Let a, b, c ∈ Z. We work directly. Assume a | b and b | c. Thus b = ax and
c = by for some x, y ∈ Z.

Now, c = by = (ax)y = a(xy). Since xy ∈ Z, we have a | c.

Question: Why did we use x and y instead of c?
Partial Answer: There are two reasons! First, because c was a symbol already in
use. Can you figure out the reason why we needed different letters x and y?

Proposition 7.14. Given x ∈ Z, if 2 ∤ x then x is odd.

Proof. Let x ∈ Z. We work contrapositively. Assume x is even. Thus x = 2k for
some k ∈ Z. Hence 2 |x.

Theorem 7.15. Let a, b, c, x, y ∈ Z. If a | b and a | c, then a | (bx+ cy).

Proof. Let a, b, c, x, y ∈ Z. We work directly. Assume a | b and a | c. Thus b = au and
c = av for some u, v ∈ Z.

Now,
bx+ cy = (au)x+ (av)y = a(ux+ vy).

Since ux+ vy ∈ Z, we have a | (bx+ cy).
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7.C More terminology for implications

Suppose we are given an implication

R(x) : P (x) ⇒ Q(x).

There are other interesting open sentences related to R. Consider the following:

� The converse of R(x) is: Q(x) ⇒ P (x).
� The inverse of R(x) is: ¬P (x) ⇒ ¬Q(x).
� The contrapositive of R(x) is: ¬Q(x) ⇒ ¬P (x).
� The negation of R(x) is: ¬R(x) ≡ ¬(P (x) ⇒ Q(x)) ≡ P (x) ∧ ¬Q(x).

The contrapositive has the same truth table as R(x) (treating P (x) and Q(x) as
components of a compound sentence). However, the converse has a different truth ta-
ble. (Try it!) The negation has another, third, truth table. (Try it!) So the converse,
the contrapositive, and the negation are (in general) all very different sentences.

What about the inverse? It does have the same truth table as one of the other
three sentences! But which one? (Try it!)

7.D Biconditional

Over the past few sections, we have been focusing on proving (universally quanti-
fied) implications P (x) ⇒ Q(x). Another common sentence to prove is the bicon-
ditional P (x) ⇔ Q(x). To prove it, we show both P (x) ⇒ Q(x) and the converse
Q(x) ⇒ P (x). Each direction can be proved directly or contrapositively! Consider
the following example.

Proposition 7.16. Let n ∈ Z. The number n2 is odd if and only if n is odd.

Proof. We first prove that if n2 is odd, then n is odd. We work contrapositively, so
assume n is even. Then n = 2k for some k ∈ Z. Hence

n2 = (2k)2 = 4k2 = 2(2k2)

is an even integer.

We now prove conversely that if n is odd, then n2 is odd. We work directly.
Assume n is odd. Then n = 2k + 1 for some k ∈ Z. Hence

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

is an odd integer.

To help the reader, sometimes a proof writer will use arrows to tell the reader
which of the two directions is being proved. For instance, the previous proof could
be rewritten as follows.
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Proof. (⇒): We work contrapositively. Assume n is even, so n = 2k for some k ∈ Z.
Then

n2 = (2k)2 = 4k2 = 2(2k2)

is an even integer.
(⇐): We work directly. Assume n is odd, so n = 2k + 1 for some k ∈ Z. Hence

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

is an odd integer.

We end this subsection with a proof of some statement that we haven’t written
down. Try to figure out what is being proved, from the proof itself.

Proof. Assume x is even and y is odd. Therefore x = 2k and y = 2ℓ + 1 for some
k, ℓ ∈ Z. We find

(x+ 1)y = (2k + 1)(2ℓ+ 1) = 4kℓ+ 2k + 2ℓ+ 1 = 2(2kℓ+ k + ℓ) + 1

is an odd integer.

Which of the following is being proved?
(1) If x is even and y is odd, then (x+ 1)y is odd.
(2) If (x+ 1)y is odd, then x is even and y is odd.
(3) If x is odd or y is even, then (x+ 1)y is even.
(4) If (x+ 1)y is even, then x is odd or y is even.
Answer: Did you see that two of the choices are actually correct? We could be

working directly to prove (1), or we could be working contrapositively to prove (4).

7.E Exercises

Exercise 7.1. Let a ∈ Z. Prove that if a2 + 3 is odd, then a is even.

Exercise 7.2. Prove the following: Let x, y ∈ Z. If xy + y2 is even, then x is odd or
y is even.

Exercise 7.3. Let s ∈ Z. Prove that s is odd if and only if s3 is odd.

Exercise 7.4. Consider the following situation. A student is asked to prove the
statement: “Given x ∈ Z, if 2 |x, then x is even.” The student writes: “Assume,
contrapositively, that x is even. Then x = 2k for some k ∈ Z. Hence 2 |x.”

Identify what is wrong with this student’s proof and write a correct proof.

Exercise 7.5. Let a, b, c, d ∈ Z. Prove that if a | c and b | d, then ab | cd.

Exercise 7.6. State the contrapositive of the implication in the previous exercise.

Exercise 7.7. Let a ∈ Z. Prove that if 4 ∤ a2, then a is odd.

Exercise 7.8. Prove the following implication two ways (directly and contraposi-
tively): Given x ∈ Z, then 5x − 1 is even only if x is odd. (Be careful to prove the
correct implication. See Subsection 4.D for the meaning of “only if”.)
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8 Proof by cases

8.A Introductory examples

Some problems break down into natural cases. Here are some common examples:

� Integers are either even or odd.
� Real numbers (or integers) can be positive, negative, or zero.
� Numbers can be zero or nonzero.
� Real numbers can be rational or irrational.
� Sets can be empty or nonempty.
� Sets can be finite or infinite.

Some problems can be handled by considering all possible cases separately. The
proof of the following proposition shows how this is to be done.

Proposition 8.1. If x ∈ Z, then x2 + x is even.

Proof. We work directly. Assume x ∈ Z. There are two natural cases.

Case 1: Suppose x is even. Then x = 2k for some k ∈ Z. Then

x2 + x = (2k)2 + 2k = 4k2 + 2k = 2(2k2 + k)

is even.

Case 2: Suppose x is odd. Then x = 2k + 1 for some k ∈ Z. Then

x2 + x = (2k + 1)2 + (2k + 1) = 4k2 + 6k + 2 = 2(2k2 + 3k + 1)

is even.

In every case x2 + x is even.

The key to working by cases is that we can break a problem into smaller “sub-
problems” that each can be handled separately. Sometimes it takes practice to rec-
ognize how to break a problem into smaller cases. On the other hand, sometimes a
problem shouts “Do me by cases!” To demonstrate, let’s introduce another definition.

Definition 8.2. Let x, y ∈ Z. We say that x and y have the same parity if
either they are both even or they are both odd. If this doesn’t happen, we say
that x and y have the opposite parity .

Proposition 8.3. Let x, y ∈ Z. If x + y is even, then x and y have the same
parity.
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Proof. Let x, y ∈ Z. We work contrapositively. Thus, we assume x and y have
opposite parity. There are two natural cases to consider.

Case 1: Suppose x is even and y is odd. Thus x = 2k and y = 2ℓ + 1 for some
k, ℓ ∈ Z. Then

x+ y = 2k + 2ℓ+ 1 = 2(k + ℓ) + 1

is odd.
Case 2: Suppose x is odd and y is even. Thus x = 2k + 1 and y = 2ℓ for some

k, ℓ ∈ Z. Then
x+ y = 2k + 1 + 2ℓ = 2(k + ℓ) + 1

is odd.
In every case x+ y is odd.

Notice that in this proof the two cases look almost exactly the same. When this
happens sometimes mathematicians save time by writing “The other case is similar.”
or “There are two cases, but without loss of generality we may assume x is even and
y is odd.” Feel free to write this, but only if the two cases really are no different.
Consider the following proposition, which is the inverse of the previous proposition.

Proposition 8.4. Let x, y ∈ Z. If x + y is odd, then x and y have opposite
parity.

Proof. Let x, y ∈ Z. We work contrapositively. Assume x and y have the same parity.
There are two cases.

Case 1: Suppose x, y are both even. Then x = 2k and y = 2ℓ for some k, ℓ ∈ Z.
Then

x+ y = 2k + 2ℓ = 2(k + ℓ)

is even.
Case 2: Suppose x, y are both odd. Then x = 2k + 1 and y = 2ℓ + 1 for some

k, ℓ ∈ Z. Then
x+ y = 2k + 1 + 2ℓ+ 1 = 2(k + ℓ+ 1)

is even.
In every case x+ y is even.

Notice that we didn’t say that Case 2 is similar to Case 1. That’s because they
really are different!

In some situations, the cases we should consider come from one of our assumptions.

Proposition 8.5. For any x, y ∈ Z, if x is even or y is even, then xy is even.

Proof. Let x, y ∈ Z. We work directly. Assume that x is even or y is even.
Case 1: Suppose x is even. Hence x = 2k for some k ∈ Z. Hence xy = 2ky is

even.
Case 2: Suppose y is even. This is similar to Case 1.
Thus, xy is even in all cases.
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Why were those two cases enough to cover all possibilities? Aren’t we missing the
case where x is odd and y is odd? We are ignoring the case where x is odd and y
is odd! But we can ignore that case because we assumed the fact that x is even or
y is even (when working directly). Our assumption limited the number of cases we
needed to consider. If we hadn’t made that assumption, we would need to consider
that last possibility.

Advice 8.6. If you assume P ∨ Q, then you have two cases: case 1 is when
P holds, and case 2 is when Q holds. You could also break this up into three
separate cases: case 1 is when P and Q both hold, case 2 is when P holds but
Q fails, and case 3 is when P fails but Q holds.

Warning 8.7. If you are trying to show P ∨Q, then you do not just consider
the two cases P or Q. You do not yet know those are the only two options!

However, you do know that P or ¬P happens. So, perhaps your two cases
could be as follows. Case 1 is when P holds, and you are done. Case 2 is when
P fails, and try to show Q now holds.

Here is another example of these ideas.

Proposition 8.8. Let x ∈ Z. Then x2 |x if and only if x ∈ {−1, 0, 1}.

Proof. Let x ∈ Z. We are proving a biconditional, so we need to prove both directions.
(⇒): We will work directly. Assume x2 |x. Thus x = x2y for some y ∈ Z. There

are two cases we will consider.
Case 1: Suppose x = 0. Then we are done!
Case 2: Suppose x ̸= 0. Then, we can divide by x, and get 1 = xy. The only

divisors of 1 are ±1. Thus x = 1 or x = −1.
In every case x ∈ {−1, 0, 1}.
(⇐) : We work directly again. Assume x ∈ {−1, 0, 1}. There are thus three cases:

x = −1, x = 0, or x = 1. In all three cases, we can check immediately that x2 |x.

Question: In the backwards direction, (⇐), we had three cases. Why didn’t we have
those three cases in the forward direction?
Answer: In the backwards direction we made the assumption x ∈ {−1, 0, 1}, which
limited the possibilities for x to three cases. In the forward direction we didn’t have
such an assumption. So we had to consider every possibility.

The following theorem is very useful and also demonstrates these same ideas again.

Theorem 8.9. Given a, b ∈ C, we have ab = 0 if and only if a = 0 or b = 0.
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Proof. This is a biconditional, so we will prove both directions.
(⇒): We work directly. Assume ab = 0. There are two possibilities for a, given

by the following two cases.
Case 1: Suppose a = 0. Then we are done.
Case 2: Suppose a ̸= 0. [Note: Why not suppose b = 0?] Since a ̸= 0 we can

divide the equality ab = 0 on both sides by a, to get b = 0.
Thus, in every case, either a = 0 or b = 0.
(⇐): We now prove the converse. We again work directly, so we assume a = 0 or

b = 0. There are two cases.
Case 1: Suppose a = 0. Then ab = 0b = 0.
Case 2: Suppose b = 0. Then ab = a0 = 0.
In every case ab = 0.

What does this theorem mean? The following example shows one way to under-
stand how to use it.

Example 8.10. We will show that the only complex solutions of x2 = 3x − 2 are
x = 1 or x = 2.

If x2 = 3x− 2, then x2− 3x+2 = 0. Factoring, this means (x− 1)(x− 2) = 0. By
the previous theorem (take a = x − 1 and b = x − 2), we then must have x − 1 = 0
or x− 2 = 0. In other words, x = 1 or x = 2. △

8.B Congruence

If the clock on the wall says 9:00, and 37 hours pass, what time is it then? It isn’t
too difficult to figure out that the new time is 10:00. The way we figure this out is to
notice that each 12 hour block keeps the clock fixed, and so 37 hours looks the same
as 1 hour.

We do something similar when working with even and odd numbers. We know
that an even number plus an odd number will always be odd. The reason is that
adding any multiple of 2 doesn’t change whether a number is odd or even.

These two situations are special cases of a much more general, and powerful,
technique. In the first situation, we are looking at numbers and treating multiples of
n = 12 as trivial. In the second case, we are treating multiples of n = 2 as trivial
blocks. The following definition does this for an arbitrary integer n.

Definition 8.11. Let a, b, n ∈ Z. We say that a is congruent to b modulo n if
n | (a − b). In other words, a − b = nk for some k ∈ Z. Or, in other words, a
and b differ by a multiple of n. We write

a ≡ b (mod n)

to denote that a is congruent to b modulo n.

In the following example we work out some instances where this definition holds
or does not hold.
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Example 8.12. (1) Is 7 ≡ 3 (mod 2)? Yes, we have 2 | (7− 3).
(2) Is 3 ≡ 16 (mod 31)? This is asking, does 31 | (3 − 16)? No, 31 ∤ (−13). Thus

we write 3 ̸≡ 16 (mod 31).
(3) Is 21 ≡ 9 (mod 12)? This is asking, does 12 | (21− 9)? Yes, 12 | 12. Notice that

this question is really asking whether 21 hours looks like 9 hours on a clock.
(4) Is 2 ≡ −2 (mod 3)? This is asking does 3 | (2 − (−2))? No, 3 ∤ 4. So we write

2 ̸≡ −2 (mod 3).
(5) Is 95482 ≡ 2892 (mod 2)? We can see that the answer will be yes, since both

numbers are even. However, we double-check that 2 | (95482 − 2892), which is
true.

(6) If x is an integer, is x ≡ x (mod n)? We are asking whether n | (x − x). The
answer is yes, since n | 0. △

In many cases, we can work with congruences almost as if they were equations.
We will later prove several theorems of this sort; the following proposition is an
example.

Proposition 8.13. Let a, b, c, n ∈ Z. If a ≡ b (mod n), then ac ≡ bc (mod n).

Proof. Let a, b, c, n ∈ Z. Assume a ≡ b (mod n). Thus n | (a − b). In other words,
a−b = nk for some k ∈ Z. Multiplying by c, we get ac−bc = nkc. Hence n | (ac−bc),
so ac ≡ bc (mod n) as desired.

This proposition says that when numbers are congruent, we can multiply by any
integer and they stay congruent. For instance, we have 5 ≡ −9 (mod 7). Multiply
by 5 to get 25 ≡ −45 (mod 7).

Example 8.14. Another way to think about congruence is that two numbers are
congruent modulo n if they have the same remainder when we divide by n. When we
divide by 2, there are only two remainders, so every x ∈ Z is either odd or even. In
other words,

x ≡ 0 (mod 2) or x ≡ 1 (mod 2).

What happens if we work modulo 3? Now there are three remainders, and we get

x ≡ 0 (mod 3), x ≡ 1 (mod 3), or x ≡ 2 (mod 3).

In other words, every integer x is of exactly one of the forms 3k, 3k+1, or 3k+2 for
some k ∈ Z. (We will prove this later, but you can use it freely for now.) △

The previous example tells us that sometimes we can reduce questions about
division into cases according to remainders!

Proposition 8.15. If x ∈ Z, then x3 ≡ x (mod 3).
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Proof. Let x ∈ Z. We consider the following three cases.
Case 1: Suppose x = 3k for some k ∈ Z. Then

x3 − x = (3k)3 − 3k = 27k3 − 3k = 3(9k3 − k).

So 3 | (x3 − x), hence x3 ≡ x (mod 3).
Case 2: Suppose x = 3k + 1 for some k ∈ Z. Then

x3 − x = (3k + 1)3 − (3k + 1) = 27k3 + 27k2 + 9k + 1− 3k − 1 = 3(9k3 + 9k2 + 2k).

So 3 | (x3 − x), hence x3 ≡ x (mod 3).
Case 3: Suppose x = 3k + 2 for some k ∈ Z. Then

x3−x = (3k+2)3−(3k+2) = 27k3+54k2+36k+8−3k−2 = 3(9k3+18k2+11k+2).

So 3 | (x3 − x), hence x3 ≡ x (mod 3).

Example 8.16. The previous proposition asserts that 3 | (10373 − 1037). Check
it! △

8.C Absolute values

One important place where the method of proof by cases arises is in proving state-
ments about absolute values. Indeed, the very definition of the absolute value of a
number is given in terms of cases.

Definition 8.17. Let a ∈ R. Define

|a| =

{
a if a ≥ 0,

−a if a < 0.

Example 8.18. We have |2| = 2, and |−2| = 2. If x = −5, then |x| = −x = 5. △

Warning 8.19. Many students have difficulty with the idea that |x| = −x,
which is true anytime that x < 0. Part of this difficulty is that they think that
an expression beginning with a negative sign (such as −x) must be negative.
However, if x is negative, then −x is positive.

Another instance where this problem can come up is if we compute |−x|. We
note that this is not necessarily equal to x. In particular, if x is negative |−x|
never equals x.

We will now prove some statements involving absolute values. Several of these are
important enough to be called Theorems (and one is even important enough to have
a name).
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Proposition 8.20. Let a, b, x ∈ R and assume that b ≥ 0. If

|x− a| ≤ b,

then a− b ≤ x ≤ a+ b.

Proof. Suppose that |x− a| ≤ b. We divide the proof into cases.
Case 1: Suppose that x−a ≥ 0. Then |x−a| = x−a, so we have that 0 ≤ x−a ≤ b.

Adding a, we find that a ≤ x ≤ b+ a. Since a− b ≤ a, we see that

a− b ≤ x ≤ a+ b.

Case 2: Suppose that x − a < 0. Then 0 < |x − a| = −(x − a) = a − x. Hence,
0 < a− x ≤ b. Multiplying by −1, we get −b ≤ x− a < 0. Now adding a,
we get a− b ≤ x < a. Since a ≤ a+ b, we have

a− b ≤ x ≤ a+ b.

In both cases we obtain the desired inequalities.

Theorem 8.21 (The Triangle Inequality). Let x, y ∈ R. Then |x+y| ≤ |x|+|y|.

Proof. Without loss of generality, we may assume that x ≥ y, so that if only one of
x, y is nonnegative, it is x. We divide the remaining possibilities into four cases.
Case 1: Suppose that x ≥ 0 and y ≥ 0. Then x+ y ≥ 0, so

|x+ y| = x+ y = |x|+ |y|.

Case 2: Suppose that x < 0 and y < 0. Then x+ y < 0, so

|x+ y| = −(x+ y) = (−x) + (−y) = |x|+ |y|.

Case 3: Suppose that x ≥ 0, y < 0, and x+ y ≥ 0. Then we have

|x+ y| = x+ y = |x| − |y| < |x|+ |y|

where the inequality arises because −|y| < |y| (and one can just add |x| to
both sides).

Case 4: Suppose that x ≥ 0, y < 0, and x+ y < 0. Then

|x+ y| = −(x+ y) = (−x) + (−y) = −|x|+ |y| ≤ |x|+ |y|.

Hence, in all four cases, the theorem is true.

Theorem 8.22. Let x, y ∈ R. Then |xy| = |x||y|.

Proof. This proof is left as Exercise 8.8.
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8.D Exercises

Exercise 8.1. Let x, y ∈ Z. Prove that if x and y have the same parity, then x2+xy
is even.

Exercise 8.2. Let a, b, c ∈ Z. Prove that if a ∤ bc, then a ∤ b and a ∤ c. (The converse
is not true. Can you see why?)

Exercise 8.3. Do the following:
(a) Prove that given x ∈ Z, either x2 ≡ 0 (mod 4) or x2 ≡ 1 (mod 4).
(b) Prove that for any integer x we have 4 | (x4 − x2).

Exercise 8.4. Let a, b, c, n ∈ Z. If a ≡ b (mod n) and b ≡ c (mod n), show that
a ≡ c (mod n).

If we know 11 ≡ −3 (mod 7) and −3 ≡ 4 (mod 7), can we say that 11 ≡ 4
(mod 7)?

Exercise 8.5. Prove, for any n ∈ Z, that 3 |n if and only if 3 |n2. (Hint: Use the
idea in Example 8.14 to divide the proof into cases.)

Exercise 8.6. Prove 3 | (2n2 + 1) if and only if 3 ∤ n, for n ∈ Z.

Exercise 8.7. Let a, b, c, d, n ∈ Z. If a ≡ b (mod n) and c ≡ d (mod n), prove that
ac ≡ bd (mod n).

What does this statement say if we take c = a and d = b?
We know that 19 ≡ 5 (mod 7). Do we then know 192 ≡ 52 (mod 7)? How about

193 ≡ 53 (mod 7)?

Exercise 8.8. Prove Theorem 8.22; for any x, y ∈ R, we have |xy| = |x||y|.

Exercise 8.9. Let a ∈ R. Prove that a2 ≤ 1 if and only if −1 ≤ a ≤ 1. In the proof
you may use the following two facts that are true for any a, b, c ∈ R.
(1) If a < b and c > 0, then ac < bc.
(2) If a < b and c < 0, then ac > bc.
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9 Proof by contradiction

9.A Basic technique and examples

In this section we explore a proof technique that can be applied not only to implica-
tions but to other statements as well; the technique is called “proof by contradiction.”
It is based upon the following simple idea:

Theorem 9.1. Let R and S be statements. If (¬R) ⇒ S is true and S is false,
then R must be true.

Proof. If the conclusion of an implication is false, the only way for the implication to
be true is if the premise is also false. Hence ¬R is false. But this means R is true.
(Alternatively, draw a truth table.)

Another way to think about this theorem is that if by assuming ¬R we can reach
some false statement, then R must have been true after all. (If an assumption leads
to nonsense, that assumption must have been false.) We will see this proof technique
in action, by proving the following proposition.

Proposition 9.2. There is no smallest positive rational number.

Proof. Assume, by way of contradiction, that there is a smallest positive rational
number; call it r ∈ Q. Then r/2 is a rational number, still positive, and r/2 < r.
This is impossible, because r was supposed to be the smallest element with these
properties. This contradiction shows that our assumption must have been false, so
there is no smallest positive rational number.

Proof by contradiction is a very powerful technique, because it applies to many
different types of statements. However, it is also limited in two ways:
(1) By assuming ¬R you are working in an imaginary world, where you are pre-

tending R is false (even though you believe R is true). Your ultimate goal is to
find some false statement or contradiction that follows from your assumption.
The only conclusion you can make after finding that false statement is that R
must have been true after all (since you were working in an imaginary world).

(2) Sometimes it can be difficult to find the contradiction that arises from the
assumption ¬R. Unlike direct proofs or contrapositive proofs, we do not know
where we are headed. It can take practice to get a feeling for what to search
for.

9.B Proof by contradiction for implications

When R is a statement of the form

R : ∀x, P (x) ⇒ Q(x)
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then the negation is
¬R : ∃x, P (x) ∧ ¬Q(x).

Thus, to do a proof by contradiction in the case of an implication, you assume the
premise and the negation of the conclusion, and then search for a contradiction.

Advice 9.3. An easy way to remember what to assume when proving an im-
plication by contradiction is that you have the same assumptions as in both a
direct proof and a contrapositive proof.

Here is an example of how to do an “even/odd” proof by contradiction.

Proposition 9.4. Let x ∈ Z. If 2 |x then 2 ∤ (x2 + 1).

Proof. Assume, by way of contradiction, that 2 |x and 2 | (x2+1) for some x ∈ Z. We
can then write x = 2y and x2 + 1 = 2z for some y, z ∈ Z. Plugging the first equality
into the second, we get 4y2 + 1 = 2z. Therefore 1 = 2z − 4y2 = 2(z − 2y2) is even,
which is false. Thus, the original implication is true.

Here is another example where either a direct proof or a contrapositive proof
would be very difficult to accomplish (unless you use a lemma to help).

Proposition 9.5. Given x ∈ Z, if x2 + 2x− 3 is odd then x2 + 4x− 5 is odd.

Proof. Assume, by way of contradiction, that x2 + 2x − 3 is odd and x2 + 4x − 5 is
even, for some x ∈ Z. Then we can write x2+2x−3 = 2k+1 and x2+4x−5 = 2ℓ for
some k, ℓ ∈ Z. Subtracting each side of the second equation from the corresponding
side of the first equation, we obtain

(x2 + 2x− 3)− (x2 + 4x− 5) = 2k + 1− 2ℓ.

After simplifying, we obtain 1 = 2x+ 2k − 2ℓ is even, a contradiction.

Contradiction proofs can also involve cases. We just need to check that every case
ends in a contradiction, in order to show that that case could not have happened after
all. The following result demonstrates this idea.

Proposition 9.6. If x ∈ Z is even, then x is not the sum of three integers with
an odd number of them being odd.

Proof. Assume, by way of contradiction, that there is some even integer x that is the
sum of three integers a, b, c ∈ Z, an odd number of them being odd. There are two
cases.
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Case 1: Assume all three are odd. Then a = 2k + 1, b = 2ℓ+ 1, and c = 2m+ 1
for some k, ℓ,m ∈ Z. Adding, we get

x = a+ b+ c = 2k + 1 + 2ℓ+ 1 + 2m+ 1 = 2(k + ℓ+m+ 1) + 1

is odd, contradicting the fact that x is even.
Case 2: Assume one of the three numbers is odd and that the other two are

even. Without loss of generality, suppose c is the odd one. Then a = 2k, b = 2ℓ, and
c = 2m+ 1 for some k, ℓ,m ∈ Z. Adding, we get that

x = a+ b+ c = 2k + 2ℓ+ 2m+ 1 = 2(k + ℓ+m) + 1

is odd, contradicting the fact that x is even.
Thus, in every case, we reached a contradiction.

9.C Irrationality proofs

In this subsection we will focus on proofs which involve the following definition:

Definition 9.7. A real number r is irrational if it is not rational. In other
words, r ∈ R−Q.

Do we know that there exist any irrational numbers? Yes, and this fact was proved
thousands of years ago by the Pythagoreans. (Legend has it that the mathematician
who originally proved this fact was either killed or exiled for the proof, since it ran
counter to the doctrine of the times!) Here is the proof, essentially unchanged from
that time.

Theorem 9.8. The real number
√
2 is irrational.

Proof. Assume, by way of contradiction, that
√
2 ∈ Q. We can then write

√
2 =

a/b for some a, b ∈ N, with a/b in lowest terms. By squaring and then clearing
denominators, we have a2 = 2b2. Thus 2 | a2, and hence 2 | a by Proposition 7.16.
Write a = 2x for some x ∈ Z.

Plugging a = 2x into the equality a2 = 2b2 yields 4x2 = 2b2, or in other words b2 =
2x2. Thus 2 | b2, and hence 2 | b. However, now a and b are both even which contradicts
the fact that a/b was assumed to be in lowest terms. Hence

√
2 is irrational.

9.D Advice

We end this section with two pieces of advice.
First, sometimes one can tell that a result could be proved by contradiction be-

cause the statement R itself has some negative sounding words. For instance, in this
section we proved the following statements R:
� There is no smallest positive rational number.
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� The number
√
2 is not rational.

� If x is even, then 2 does not divide x2 + 1.
It is usually easier to work with positive conditions, rather than negative conditions,
which is why proofs by contradiction work so well in these cases. The negative
conditions are turned positive after negating R.

Second, if a proof can be done without contradiction, then that is usually a better
option, because you never enter an “imaginary” world where you assume something
you are hoping to show is false.

9.E Exercises

Exercise 9.1. Let R and S be statements. Draw a truth table with columns labeled
R, S, ¬R, and (¬R) ⇒ S. Verify that the only row where S is false and (¬R) ⇒ S
is true occurs when R is true.

Exercise 9.2. Prove the following statement directly, contrapositively, and by con-
tradiction: Given x ∈ Z, if 3x+ 1 is even, then 5x+ 2 is odd.

Exercise 9.3. Prove, by way of contradiction, the following statement: Given a, b, c ∈
Z with a2 + b2 = c2, then a is even or b is even. (Hint: Consider Exercise 8.3.)

Exercise 9.4. Prove that
√
3 is irrational.

Exercise 9.5. Prove that 3
√
2 is irrational.

Exercise 9.6. Prove: If x ∈ Q and y ∈ R−Q, then x+ y ∈ R−Q.

Exercise 9.7. Prove: If we are given a nonzero rational number x and an irrational
number y, then the number xy is irrational. (Hint: Your proof should, somewhere,
use the fact that x ̸= 0, because when x = 0 the conclusion is false.)

Exercise 9.8. Prove there is no smallest positive irrational number. (Hint: Use the
result of the previous exercise.)

Exercise 9.9. Given x, y ∈ Z, prove that 33x+ 132y ̸= 57.
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10 Proofs in set theory

A fundamental skill when doing proofs is handling sets. The methods developed in
the previous few sections will be extremely useful in this regard. In this section we
focus on three skills: (1) How to prove x ∈ A. (2) How to prove A ⊆ B. (3) How to
prove A = B.

10.A Proving set membership

If we want to prove x is an element of some set A, the proof might depend on how
we describe A. For instance, if A is given as a list of elements {1, 2, 3}, then we
just have to check that x is one of those elements in the list. When A is described
using set-builder notation, then we must verify that x satisfies all of the properties
for elements in A. Here is an example.

Proposition 10.1. Let S = {n : n is an odd integer}. Then 3 ∈ S.

Proof. The number 3 is an odd integer, since 3 = 2 · 1 + 1. Thus 3 ∈ S.

Suppose T = {x ∈ N : x is a squared integer}. Is 0 ∈ T? The answer is no. It is
true that 0 is a squared integer, but there is a second requirement for elements of T ,
they must belong to N. Thus 0 /∈ T because 0 /∈ N.

Here is one final example of proving that an element belongs to a set.

Proposition 10.2. (28, 6) ∈ {(x, y) ∈ Z× Z : x ≡ y (mod 11)}.

Proof. First, we see that since 28 and 6 are integers, we have (28, 6) ∈ Z× Z.
Second, we check directly that 28 − 6 = 22 is divisible by 11. Hence 28 ≡ 6

(mod 11).
Therefore (28, 6) satisfies all of the conditions to belong to this set.

10.B Proving inclusion of sets

Let A and B be sets. What does A ⊆ B mean? It means that every element of A is
an element of B. In other words

∀x, x ∈ A ⇒ x ∈ B.

Most often we prove this implication using a direct proof. The steps are simple.
(1) Assume x ∈ A.
(2) Using that information, show x ∈ B.

We demonstrate how this is to be done with a few examples.
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Proposition 10.3. Let A = {x ∈ Z : 4 |x} and B = {x ∈ Z : 2 |x}. It holds
that A ⊆ B.

Proof. Assume a ∈ A. Thus a ∈ Z and 4 | a. We can write a = 4m for some m ∈ Z.
Therefore a = 2(2m), hence 2 | a. We have demonstrated that a satisfies all the
properties to belong to B, so a ∈ B.

As a ∈ A was arbitrary, we have now shown A ⊆ B.

In the next example we will prove that S ∪ T ⊆ S ∩T . (Drawing a Venn diagram
helps us believe this is true, but we still need to give the formal proof.) The method
we use is still the same: we will assume x is an element of the (hypothetically) smaller
set S ∪ T and then prove it belongs to the bigger set S ∩ T .

Proposition 10.4. Given sets S and T , then S ∪ T ⊆ S ∩ T .

Proof. Assume x ∈ S ∪ T . Thus ¬(x ∈ S ∪ T ). In other words ¬(x ∈ S or x ∈ T ).
Using De Morgan’s law, we have ¬(x ∈ S) and ¬(x ∈ T ). In other words x ∈ S and
x ∈ T . Using the definition of intersection, we have x ∈ S ∩ T .

Warning 10.5. If instead of using ¬(x ∈ A) you use the symbols x /∈ A, be
very careful! The statement x /∈ X ∪ Y means that x /∈ X and x /∈ Y , even
though a union represents “or”.

In the next example, we make use of the tautology P ⇒ P ∨Q. (If P is true, then
P is true or Q is true.)

Proposition 10.6. Given sets S and T , then S ⊆ S ∪ T .

Proof. Assume x ∈ S. By the tautology mentioned above we know that x ∈ S or
x ∈ T . Therefore, x ∈ S ∪ T by the definition of union.

In summary, when proving a set inclusion, start with assuming x is an arbitrary
element of the smaller set, and then prove it also must belong to the bigger set. Note:
You do not need to always use the letter x, especially if some other letter makes more
sense for the problem at hand.

10.C Proving equality

When are two sets equal? This happens when they have exactly the same elements.
In other words A = B means

∀x, x ∈ A ⇔ x ∈ B.

This is a biconditional, which we often prove by doing each direction separately. Here
is an example of how this can be done.
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Proposition 10.7. Let A = {x ∈ R : x2 ≤ 1} and B = {x ∈ R : −1 ≤ x ≤ 1}.
We have A = B.

Proof. We first prove A ⊆ B. Assume a ∈ A. Thus a ∈ R and a2 ≤ 1. The second
condition is equivalent to −1 ≤ a ≤ 1, by Exercise 8.9. Thus a ∈ B.

Conversely, we now show B ⊆ A. Assume b ∈ B. Thus b ∈ R and −1 ≤ b ≤ 1.
As mentioned above, the second condition is equivalent to b2 ≤ 1. Hence b ∈ A.

In some situations it takes more work to show that two sets are equal. For instance
we have:

Proposition 10.8. {x ∈ Z : 6 |x} = {x ∈ Z : 2 |x} ∩ {x ∈ Z : 3 |x}.

Proof. Let A = {x ∈ Z : 6 |x}, B = {x ∈ Z : 2 |x}, and C = {x ∈ Z : 3 |x}. We
first prove A ⊆ B ∩C. Let a ∈ A. Thus a ∈ Z and 6 | a. The second condition means
a = 6k for some k ∈ Z. Hence a = 2(3k) and a = 3(2k), so 2 | a and 3 | a. We have
shown that a ∈ B and a ∈ C (since it satisfies all the necessary conditions for set
membership). Therefore a ∈ B ∩ C.

Conversely, we now show that B∩C ⊆ A. Fix z ∈ B∩C. Thus z ∈ B and z ∈ C.
Hence z ∈ Z, and 2 | z, and 3 | z. Thus z = 2k and z = 3ℓ for some k, ℓ ∈ Z. Since
z is even, ℓ must be even. (You can prove this, contrapositively.) Hence ℓ = 2m for
some m ∈ Z. Thus z = 3ℓ = 3(2m) = 6m. So 6 | z. Therefore z ∈ A.

We finish with one more example.

Proposition 10.9. Given sets X, Y , and Z, we have X ∪ (Y ∩Z) = (X ∪Y )∩
(X ∪ Z).

Proof. We first prove the inclusion X ∪ (Y ∩ Z) ⊆ (X ∪ Y ) ∩ (X ∪ Z). Assume
a ∈ X ∪ (Y ∩Z). Therefore a ∈ X or a ∈ Y ∩Z. We deal with those cases separately.

Case 1: Assume a ∈ X. Then, by tautology, a ∈ X or a ∈ Y . Hence a ∈ X ∪ Y ,
by the definition of union. By similar reasoning a ∈ X∪Z. Thus a ∈ (X∪Y )∩(X∪Z)
by the definition of intersection.

Case 2: Assume a ∈ Y ∩ Z. Thus a ∈ Y and a ∈ Z. By tautology we know
a ∈ X or a ∈ Y , hence a ∈ X ∪ Y from the definition of union. Similarly, a ∈ X ∪Z.
Therefore, a ∈ (X ∪ Y ) ∩ (X ∪ Z) by definition of intersection.

In both cases, we have shown a ∈ (X ∪ Y ) ∩ (X ∪ Z). This proves the needed
inclusion.

We now show, conversely, that (X ∪ Y ) ∩ (X ∪ Z) ⊆ X ∪ (Y ∩ Z). Assume
b ∈ (X ∪ Y ) ∩ (X ∪ Z). We have b ∈ X ∪ Y and b ∈ X ∪ Z, from the definition of
intersection. Hence, b ∈ X or b ∈ Y , and we also have b ∈ X or b ∈ Z. There are
two cases to consider.

Case 1: Assume b ∈ X. Thus (by a tautology) b ∈ X or b ∈ (Y ∩ Z). Hence
b ∈ X ∪ (Y ∩ Z).
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Case 2: Assume b /∈ X. Then, from our work above we know that b ∈ Y and
b ∈ Z. Hence b ∈ Y ∩Z. By tautology, b ∈ X or b ∈ Y ∩Z. Therefore b ∈ X∪(Y ∩Z),
by definition of union.

In every case we proved b ∈ X ∪ (Y ∩Z), so we have proved the needed inclusion.

10.D Laws for sets

The following theorem lists some of the most useful set equalities. It can be useful
to try to prove for oneself a few of these equalities. (Some are silly to prove, like the
commutative laws.)

Theorem 10.10. Let A, B, and C be sets. Assume that they all are subsets of
some universal set U . The following properties hold:
� Commutative laws.

A ∩B = B ∩ A.
A ∪B = B ∪ A.

� Associative laws.
(A ∩B) ∩ C = A ∩ (B ∩ C).
(A ∪B) ∪ C = A ∪ (B ∪ C).

� Distributive laws.
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

� Identity laws.
A ∪ ∅ = A.
A ∩ U = A.

� Complement laws.
A ∪ A = U .
A ∩ A = ∅.

It is a deep fact that every other set equality involving only unions, intersections,
and complements, can be derived (algebraically) from these laws. However, there are
a few other common properties that can be proved quite easily just using the methods
of this section. (In fact, we proved part of one of them earlier!)

Theorem 10.11. Let A and B be sets. Assume that they all are subsets of some
universal set U . The following properties hold:
� De Morgan’s laws.

A ∪B = A ∩B.
A ∩B = A ∪B.

� Double negation.

A = A.
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10.E Exercises

Exercise 10.1. For each element and set listed below, explain why the element does
or does not belong to the set.
(a) Is 3 ∈ {1, 2, 3, 4, 5, 6, 7}?
(b) Is π ∈ {1, 2, 3, 4, 5, 6, 7}?
(c) Is π ∈ R?
(d) Is 2/3 ∈ {x ∈ R : x < 1}?
(e) Is 2/3 ∈ {x ∈ Z : x < 1}?

Exercise 10.2. Fix
A = {(x, y) ∈ Z× Z : 4 | (x− y)}

and fix
B = {(x, y) ∈ Z× Z : x and y have the same parity}.

Prove A ⊆ B.

Exercise 10.3. Let X be the set of integers which are congruent to −1 modulo 6
and let Y be the set of integers which are congruent to 2 modulo 3. Prove X ⊆ Y .

Exercise 10.4. Let A and B be sets inside some universal set U .
(a) Prove that A ∩B ⊆ A ∪B.
(b) Prove that A ∪B ⊆ A ∩B.
(c) Putting those two previous parts together, what have you proved?

Exercise 10.5. Let X and Y be sets. Prove X−(X−Y ) ⊆ X∩Y . (Hint: Remember
that s ∈ S − T means s ∈ S and s /∈ T . Thus, s /∈ S − T means s /∈ S or s ∈ T .)

Exercise 10.6. Given a set X, prove that X ∪ ∅ = X. (Hint: If you have a case
where x ∈ ∅, then you know that case doesn’t actually happen.)

Exercise 10.7. Let n ∈ Z. Prove that

{x ∈ Z : n |x} = {x ∈ Z : x ≡ 0 (mod n)}.

Exercise 10.8. Let A, B, and C be sets. Prove that

A− (B ∩ C) ⊆ (A−B) ∪ (A− C).

Is the other inclusion true?

Exercise 10.9. For each n ∈ N, define Sn = {m ∈ Z : m ≤ n}. Prove that⋃
n∈N

Sn = Z.

(Recall that, by Definition 2.9,

x ∈
⋃
i∈I

Si

means that x ∈ Si for some i ∈ I.)
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11 Existence proofs and counterexamples

In the previous sections we have mainly proved universal statements:

∀x ∈ S, R(x).

In this section we focus our attention on proving existential statements:

∃x ∈ S, R(x).

Often these statements are significantly easier to prove than universal statements,
because you just need to find a single example to demonstrate their truth.

11.A Constructive existence proofs

When attempting to prove ∃x ∈ S, R(x), it is sometimes possible to find an element
x of the set S satisfying the property R(x). Here are some instances where we can
do this.

Example 11.1. (1) The statement ∃x ∈ R, x > 1 is true, because x = 3 is an
example. (There are many more examples, we just needed to find one.)

(2) The statement ∃n ∈ N, n3 < 2 is true because n = 1 is an example. (In this
case, the number n = 1 is the only example.)

(3) The statement ∃x ∈ R, x2 < x is true because x = 0.5 is an example. △
When proving a statement with universal quantifiers ∀x ∈ S, R(x), we have in

the past started the proof with the sentence: “Let x ∈ S.” This is shorthand for
saying “Let x be an arbitrary element of the set S.” When working with existence
quantifiers, we will try to avoid the word “let” and use words like “fix,” “put,” or
“set” as in the following example.

Proposition 11.2. There exists an integer n such that n3 = n2.

Proof. Fix n = 0. We see that n3 = n2 = 0, as needed.

Warning 11.3. Some mathematicians use the word “let” when handling ex-
istential statements. For instance, they might have started the previous proof
with the sentence “Let n = 0.”

In some cases a statement asks for the existence of more than one element.

Proposition 11.4. There exist a, b ∈ N such that a2 | b3 but a ∤ b.

Proof. Fix a = 8 and b = 4. Since 64 | 64 we have a2 | b3. However 8 ∤ 4, so a ∤ b.

You might wonder what to do when a statement has more than one quantifier. In
that case, you deal with each quantifier as it arises. The following proposition and
proof show how this is to be done.
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Proposition 11.5. Every odd integer is the sum of two consecutive integers.

Proof. We are proving the following statement:

∀a ∈ Z, a is odd ⇒ (∃b ∈ Z, a = b+ (b+ 1)) .

Let a ∈ Z. Assume a is odd. Hence a = 2k + 1 for some k ∈ Z.
Fix b = k. Then b + (b + 1) = k + (k + 1) = 2k + 1 = a. Hence a is the sum of

two consecutive integers.

11.B Nonconstructive existence proofs

Every existence problem in the previous section was solved by finding an explicit
example. This is also called constructing an example, or giving a constructive proof.
Sometimes it is possible to prove an object exists without constructing an example.
Here is one instance.

Proposition 11.6. One of the digits of
√
2 = 1.414213562 . . . occurs infinitely

many times.

Proof. There are only finitely many possible digits

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

but there are infinitely many decimal places.

Notice that in this example we did not actually find out which digit occurs in-
finitely often, which is why we say the proof is nonconstructive. We only proved that
at least one of the digits does show up over and over. It is not much more difficult to
show that in fact two digits must occur infinitely many times. (Sketch: If, by way of
contradiction, we assume that only one digit showed up infinitely many times, then
the decimal expansion for

√
2 would eventually just repeat that digit. This would

show that
√
2 is rational, which we previously proved it is not.) Quite surprisingly, it

is an open problem in mathematics whether three digits must occur infinitely often
in the decimal expansion of

√
2!

Here is another example, where we almost construct an example.

Proposition 11.7. There exist irrational numbers a, b such that ab is rational.

Proof. We will consider two possible cases.

Case 1: Assume
√
2
√
2
is rational. In this case we fix a = b =

√
2 and have that

ab is rational.
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Case 2: Assume
√
2
√
2
is irrational. In this case we fix a =

√
2
√
2
and b =

√
2,

and calculate

ab =

(√
2
√
2
)√

2

=
√
2
2
= 2

which is rational.

In this proof, we do not know (or care) which case is true. We just show that we
can solve the problem in either case. (If you do care, it is known that Case 2 is the
true case, but this is not easy to prove.) There does exist a constructive proof of the
previous proposition (take a =

√
2 and b = log2(9) and prove b is irrational).

We finish with one more example of how to prove existence (in a nonconstructive
way). In the proof below we use some standard theorems from calculus which we will
not prove in this textbook.

Proposition 11.8. The equation x5 + 2x− 1 = 0 has a solution in the interval
(0, 1).

Proof. The function given by the polynomial equation f(x) = x5+2x−1 is continuous
everywhere. We find that f(0) = −1 and f(1) = 2. By the Intermediate Value
Theorem, we know that f must take the intermediate value 0 for some input c ∈ (0, 1).
This number c is a solution.

11.C Uniqueness

Some problems ask for more than mere existence; they want uniqueness as well. This
means that you are asked to prove two things: first that there is an element satisfying
the given condition, and second that there are no other solutions. For example, we
can improve the previous proposition to the following:

Proposition 11.9. The equation x5 + 2x− 1 = 0 has exactly one real solution.

Proof. (Existence): We already proved, above, that the equation has at least one real
solution.

(Uniqueness): We now show that the equation can have at most one solution.
Letting f(x) = x5 + 2x − 1 we compute the derivative f ′(x) = 5x4 + 2 > 0. Thus,
by the first derivative test, the function f is strictly increasing. Hence, it can equal
0 only once.

Here is another example.

Proposition 11.10. For each integer x ∈ Z, there exists a unique integer y,
such that x < y < x+ 2.
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Proof. Let x ∈ Z.
(Existence): Fixing y = x+ 1 ∈ Z works.
(Uniqueness): Since (x + 2) − x = 2, these integers are exactly distance 2 apart.

Thus, there is at most one integer between them.

One technique for showing uniqueness is to assume there are two solutions (not
necessarily distinct), and then show that those two solutions are in fact equal. We
will demonstrate this technique in the proof of the following proposition.

Proposition 11.11. Every odd integer is uniquely the difference of two consec-
utive squares.

Proof. Let n ∈ Z be odd.
(Existence): Write n = 2k + 1 for some k ∈ Z. We have

(k + 1)2 − k2 = k2 + 2k + 1− k2 = 2k + 1 = n

so n is a difference of consecutive squares.
(Uniqueness): Assume that n = (x + 1)2 − x2 and n = (y + 1)2 − y2 for some

x, y ∈ Z. Thus, we have

(x+ 1)2 − x2 = (y + 1)2 − y2.

Expanding the squares we get

x2 + 2x+ 1− x2 = y2 + 2y + 1− y2.

In other words 2x + 1 = 2y + 1. Subtracting 1 from both sides, and cancelling the
2, we get x = y. Thus, n can be written as a difference of consecutive squares in at
most one way.

It is common to write
∃!x ∈ S, R(x)

to denote the statement “There exists a unique x ∈ S satisfying R(x).” The excla-
mation mark after ∃ denotes uniqueness.

11.D Counterexamples and disproof

Mathematicians often encounter statements for which the truth value is unknown.
After working on the problem, they might discover that the statement they were
trying to prove is actually false. Thus, they must disprove the statement by proving
its negation. Consider the statement:

∀x ∈ R, x >
1

2
x2.

Is this statement true or false?
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After a moment’s reflection, we realize it is false. So we wish to give a disproof.
In other words, we want to prove its negation:

∃x ∈ R, x ≤ 1

2
x2.

Disproof of original statement. Fix x = 0 ∈ R. We easily see that x ≤ 1
2
x2.

This type of disproof is called finding a counterexample. We showed that the
original universal statement was false by finding an example where it failed. Here is
another instance of this idea.

Example 11.12. Disprove the statement: Every x ∈ Z is odd. △

Disproof. The integer x = 2 is a counterexample.

The negation of an existential statement becomes a universal statement. Thus,
when disproving an existential statement you must show that its negation is true
everywhere in the domain. For example, the statement

∃x ∈ R, x2 < −1

is false. Here is a disproof.

Disproof. Let x ∈ R be arbitrary. We know that x2 ≥ 0 > −1.

Try to decide whether the following statement is true or false, and then give a
proof or disproof.

Given a, b ∈ Z, if a | b and b | a, then a = b.

Answer: This statement is false. Its negation is

∃a, b ∈ Z, (a | b) ∧ (b | a) ∧ (a ̸= b).

Disproof. Fix a = 2 and b = −2, which are integers. We have a | b, b | a and a ̸= b.

Advice 11.13. When asked to either prove or disprove a statement, clearly tell
the reader which of the two you have decided to try.

11.E Exercises

Exercise 11.1. Prove the following:
(a) There exist a, b ∈ Q such that ab ∈ Q.
(b) There exist a, b ∈ Q such that ab ∈ R−Q.
(c) There exist a, b ∈ R−Q such that ab ∈ R−Q.
(d) There exist a ∈ Q and b ∈ R−Q such that ab ∈ Q.
(e) There exist a ∈ Q and b ∈ R−Q such that ab ∈ R−Q.
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(f) There exist a ∈ R−Q and b ∈ Q such that ab ∈ Q.
(g) There exist a ∈ R−Q and b ∈ Q such that ab ∈ R−Q.

(Hint: For part (c), note that

√
2
√
2
·
√
2
1−

√
2
=

√
2,

and hence at least one of the two factors on the left-hand side is irrational. Alter-
natively, one can solve part (c) constructively, by proving the fact that log2(3) is
irrational.

For part (e), note that

2
√
2 · 2

1
2
−
√
2 =

√
2,

and hence at least one of the two factors on the left-hand side is irrational. Alterna-
tively, we have the equality (

2
1√
2

) 1√
2
=

√
2.

Break into cases, according to whether 2
1√
2 is rational or irrational.)

Exercise 11.2. Prove or disprove: Given x ∈ Q and y ∈ R−Q, then xy ∈ R−Q.

Exercise 11.3. Prove or disprove: Let s ∈ Z. If 6s− 3 is odd, then s is odd.

Exercise 11.4. Prove or disprove: There exists an integer x such that x2 + x is odd.

Exercise 11.5. Prove or disprove: Given any positive rational number a, there is an
irrational number x ∈ (0, a).

Exercise 11.6. Prove that for any two real numbers x < y, there exists a rational
number in the interval (x, y). In this proof you may freely use the fact that if two
real numbers are more than 1 apart, then an integer lies between them.

Idea 1: To help motivate the general proof, first consider the specific case when
y = 0.60100 . . . and x = 0.59922 . . .. They are not more than 1 apart, so you cannot
find an integer between them. However, if you multiply them both by 103 you get

103y = 601 and 103x = 599.22 . . . ,

which are more than one apart. The integer 600 lives between 103y and 103x, and so
the rational number 10−3 · 600 belongs to the interval (x, y).

Idea 2: In the previous example, how did we know that we needed to multiply by
103? The decimal expansion of y − x is 0.001888 . . . > 0.00100 . . . = 10−3.

Idea 3: Write the decimal expansion of y − x as dkdk−1 . . . d1d0.d−1d−2d−3 . . ..
Since y − x > 0, at least one of the decimal digits is nonzero; call it dℓ. Prove that
y − x > 10ℓ−1, and so 10−ℓ+1y is more than 1 away from 10−ℓ+1x.
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12 Set proofs in logic

In Section 10 we focused on performing three standard tasks involving sets:
� Prove x ∈ S.
� Prove S ⊆ T .
� Prove S = T .

In this section we work with compound statements involving sets.

12.A Implications involving set statements

Consider the statement

∀S, T, if S ⊆ T, then S ⊆ S ∩ T.

It looks like a standard implication. We will approach it directly by assuming S ⊆ T ,
and then using that assumption we will prove S ⊆ S ∩ T . Now, remember that
S ⊆ S ∩ T is also an implication; namely, ∀x, x ∈ S ⇒ x ∈ S ∩ T . So we approach
proving this implication directly as well! We make the second assumption x ∈ S,
and using it (and the previous assumption) we prove x ∈ S ∩ T . The proof will look
something like the following:

Proof outline. Let S and T be sets.
Assume S ⊆ T .

Assume x ∈ S.
...

Conclude x ∈ S ∩ T .
Conclude S ⊆ S ∩ T .

Now that we have mapped out the proof, here it is in its entirety.

Proposition 12.1. Given sets S and T , if S ⊆ T then S ⊆ S ∩ T .

Proof. Let S and T be sets. Assume S ⊆ T . We now show S ⊆ S ∩ T .
Assume x ∈ S. From our assumption S ⊆ T , we have x ∈ T . Thus x ∈ S and

x ∈ T . Hence, from the definition of intersection, x ∈ S ∩ T . As x was an arbitrary
element of S, we have shown S ⊆ S ∩ T .

Advice 12.2. When proving compound statements with multiple implications,
work step by step. For instance, suppose you want to prove a statement of the
form

A ⇒ (B ⇒ C).

Working directly, you would assume A and show B ⇒ C. But to show B ⇒ C,
you can again work directly by assuming B and then showing that C holds. So
you have two assumptions, which can be used together to show C.
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Warning 12.3. Suppose you want to prove

(A ⇒ B) ⇒ (C ⇒ D).

Working directly (twice) you have the assumptions A ⇒ B and C. Your goal is
to prove D. Note that you do not know yet that either A or B is true!

Proposition 12.1 can be strengthened into a biconditional statement as follows.

Proposition 12.4. Given sets S and T , we have S ⊆ T if and only if S = S∩T .

Before reading further, attempt to outline the proof of this proposition.

Proof Outline. Let S and T be sets.
(⇒): Assume S ⊆ T .

(⊆): We first show S ⊆ S ∩ T .
Assume x ∈ S.
...
Conclude x ∈ S ∩ T .

(⊇): We now show S ⊇ S ∩ T .
Assume y ∈ S ∩ T .
...
Conclude y ∈ S.

Conclude that S = S ∩ T .
(⇐): Assume S = S ∩ T .

(⊆): We show S ⊆ T .
Assume z ∈ S.
...
Conclude z ∈ T .

Conclude that S ⊆ T .

We leave the details for the full proof of Proposition 12.4 as an exercise.

12.B Do we always work directly?

Some compound statements involving sets should not be proved directly. For instance,
for fixed sets A and B, consider the statement:

(12.5) B ̸= A ∪B ⇒ A ̸= B.

It is usually difficult to work with unequal sets, since A ̸= B means

∃x, x ∈ A−B or x ∈ B − A.

So, instead we should try to prove (12.5) contrapositively. Here is a proof outline.



12. SET PROOFS IN LOGIC 89

Proof outline. Let A and B be sets. We work contrapositively.
Assume A = B.

(⊆): We first show B ⊆ A ∪B.
Assume x ∈ B.
...
Conclude x ∈ A ∪B.

(⊇): We now show B ⊇ A ∪B.
Assume y ∈ A ∪B.
...
Conclude y ∈ B.

Conclude B = A ∪B.

We stated above that it is usually difficult to work with unequal sets. However,
there is one situation where this piece of advice fails. Which of the following two
statements is easier to work with?

� A = ∅.
� A ̸= ∅.

The second statement is easier, because it tells us that A actually has an element.
To illustrate this fact, we will prove the following theorem.

Proposition 12.6. Let A and B be sets. If A = ∅ and B = ∅, then A∪B = ∅.

Proof. Let A and B be sets. We work contrapositively. Assume A ∪ B ̸= ∅. Hence,
we can fix some element x ∈ A ∪ B. Thus x ∈ A or x ∈ B. Therefore A ̸= ∅ or
B ̸= ∅.

Now, compare this with a direct proof!

Proof. Let A and B be sets. We work directly. Assume A = ∅ and B = ∅. We will
show A ∪B = ∅.

(⊆): We first show A ∪ B ⊆ ∅. Assume x ∈ A ∪ B. Then x ∈ A or x ∈ B. In
either case, this contradicts the fact that A = ∅ and B = ∅. Hence our assumption
was false, so A ∪B has no elements.

(⊇): We now show the reverse inclusion A ∪B ⊇ ∅. This holds vacuously.
Thus, we have shown A ∪B = ∅, as desired.

12.C Set proofs with Cartesian products

Let S and T be sets. What does x ∈ S × T mean? It means that x = (s, t) for some
s ∈ S and some t ∈ T . Just as with intersections, unions, and complements, we use
the definition of the Cartesian product to simplify a statement. We illustrate how to
prove statements about products with the following theorem.
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Theorem 12.7. Given four sets A,B,C,D, if A ⊆ C and B ⊆ D, then A×B ⊆
C ×D.

Proof. Let A, B, C, and D be sets. Assume A ⊆ C and B ⊆ D. We will show
A×B ⊆ C ×D.

Assume x ∈ A × B. Thus x = (a, b) for some a ∈ A and b ∈ B. Since A ⊆ C,
we know a ∈ C. Also since B ⊆ D we know b ∈ D. Thus x = (a, b) ∈ C × D, as
desired.

12.D Exercises

Exercise 12.1. For sets A,B,C, prove that if A ⊆ B ∩ C, then A ⊆ B. Also give
an example to show that the converse fails.

Exercise 12.2. Give a complete proof for Proposition 12.4, using the sketched out-
line.

Exercise 12.3. Consider the statement:

Let S and T be sets. Then S ⊆ T if and only if T = S ∪ T .

Outline a proof of the statement. (Give as much detail as in the outline after Propo-
sition 12.4. You do not need to prove the statement.)

Exercise 12.4. Let S and T be sets. Prove the following.
(a) If S ∩ T = T ∪ S, then S = T .
(b) If S × T = T × S and both S and T are nonempty, then S = T .

Exercise 12.5. Let S and T be sets. Prove that S = T if and only if S−T = T −S.
(Hint: For the backwards direction, work contrapositively. For any sets U and V ,
note that if U ̸= V , then either there is some element x ∈ U with x /∈ V , or vice
versa.)

Exercise 12.6. Let S and T be sets. Prove or disprove: S = T if and only if
S − T ⊆ T .

Exercise 12.7. Let S be a set. Prove that ∅ × S = ∅.
(Hint: It suffices to show that the assumption x ∈ ∅×S leads to a contradiction.)

Exercise 12.8. For sets S and T , show that S×T = ∅ if and only if S = ∅ or T = ∅.

Exercise 12.9. Consider the statement: Given sets A,B,C, if A× B ⊆ B × C and
B ̸= ∅, then A ⊆ C.

Write an outline of a proof, and then (separately) give a complete proof. Is the
conclusion true if we remove the hypothesis that B ̸= ∅?

Exercise 12.10. Prove or disprove the converse of Theorem 12.7.



Chapter IV

Proof by Induction

Without continual growth and progress, such words as improvement, achievement,
and success have no meaning. Benjamin Franklin

Mathematical induction is a proof technique that is designed to prove statements
about all natural numbers. It should not be confused with inductive reasoning in the
sciences, which claims that if repeated observations support a hypothesis, then the
hypothesis is probably true; mathematical induction gives a definitive proof.

The basic idea of mathematical induction is to use smaller cases to prove larger
ones. For instance, if one wished to prove that the open sentence

P (n) : n < 2n

is true for each positive integer n, one might first check that it is true when n = 1.
In fact, it is easy to check it for many different values of n.

Suppose we could prove that whenever P (k) is true for some positive integer k,
then P (k + 1) is true. We could use this to finish the problem as follows:

Since P (1) is true, P (2) must be true; since P (2) is true, P (3) must be true; since
P (3) is true, P (4) must be true; and so on, forever.

Induction is a technique for making clear what the phrase “and so on, forever”
means in the previous sentence. Anytime we find ourselves wanting to repeat a process
infinitely often in a proof, it is a sign that we should think about using induction.

91
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13 Mathematical induction

13.A The principle of mathematical induction

An important property of the natural numbers is the principle of mathematical in-
duction. It is a basic axiom that is used in the definition of the natural numbers, and
as such it has no proof. It is as basic a fact about the natural numbers as the fact
that if we add 1 to any natural number, we obtain a natural number (although its
statement is more complicated).

Axiom 13.1 (The Principle of Mathematical Induction). Let P (n) be an open
sentence, where the domain of n is N. Suppose that
(i) P (1) is true and
(ii) ∀k ∈ N, P (k) ⇒ P (k + 1).

Then P (n) is true for all n ∈ N.

A proof by mathematical induction proceeds by verifying that (i) and (ii) are
true, and then concluding that P (n) is true for all n ∈ N. We call the verification
that (i) is true the base case of the induction and the proof of (ii) the inductive step.
Typically, the inductive step will involve a direct proof; in other words, we will let
k ∈ N, assume that P (k) is true, and then prove that P (k + 1) follows. If we are
using a direct proof we call P (k) the inductive hypothesis.

A proof by induction thus has the following four steps.

Identify P (n): Clearly identify the open sentence P (n). If P (n) is obvious, then
this identification need not be a written part of the proof.

Base Case: Verify that P (1) is true. This will typically be done by direct
computation or by giving an example.

Inductive Step: Prove the implication P (k) ⇒ P (k + 1) for any k ∈ N. Typically
this will be done by a direct proof; assume P (k) and show P (k+1).
(Occasionally it may be done contrapositively or by contradiction.)

Conclusion: Conclude that the theorem is true by induction. As with identify-
ing P (n), this may not need to be a written part of the proof.

Remark 13.2. An intuitive way to think of mathematical induction is as a ladder
with infinitely many rungs, numbered from the bottom. Stepping on rung number n
corresponds to confirming that P (n) is true. Hypothesis (i) of mathematical induction
says that we can step onto the first rung. Hypothesis (ii) of mathematical induction
says that if we can reach rung number k, then we can reach rung number k + 1.
Together, these two hypotheses allow us to reach any rung of the ladder. ▲

The following diagram gives a visualization of the preceding remark.
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We begin at rung 1, by (i).

Since we can reach rung 1, we
can reach rung 2, by (ii).

Since we can reach rung 2, we
can reach rung 3, by (ii).

Since we can reach rung 3, we
can reach rung 4, by (ii).

Since we can reach rung 4, we
can reach rung 5, by (ii).

And so on... For any given
rung, we see that we can reach
it. P (1)

P (2)

P (3)

P (4)

P (5)

P (1) ⇒ P (2)

P (2) ⇒ P (3)

P (3) ⇒ P (4)

P (4) ⇒ P (5)

Warning 13.3. Note the importance of the base case. Without it, the inductive
step shows that we can move from one rung of the ladder to the next higher one,
but there is no evidence that we can reach the bottom of the ladder at all.
Perhaps the ladder is suspended high above the ground; the base case shows
that we can actually reach the bottom rung.

Remark 13.4. Summation notation comes up often in induction proofs. It is impor-
tant to be familiar with it. The notation

n∑
i=1

f(i)

means f(1)+f(2)+ · · ·+f(n−1)+f(n), where we evaluate f at each possible integer
i between 1 and n, and add these values together. Hence,

n+1∑
i=1

f(i) = f(1) + . . .+ f(n) + f(n+ 1)

= (f(1) + . . .+ f(n)) + f(n+ 1)

=

(
n∑

i=1

f(i)

)
+ f(n+ 1).

This fact, and variations of it, are often used in induction proofs involving summation.
▲
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We now proceed to give an example of proof by induction in which we prove a
formula for the sum of the first n natural numbers. We will first sketch the strategy
of the proof and afterwards write the formal proof.

Proposition 13.5. For each n ∈ N,
n∑

i=1

i =
n(n+ 1)

2
.

Proof Strategy. We begin by identifying the open sentence P (n). In this case, P (n)
is the equality

P (n):
n∑

i=1

i =
n(n+ 1)

2
.

The base case, verifying that P (1) holds, is done by a simple computation (plug-
ging 1 in for n).

For the inductive step, we assume P (k) and show P (k+1). Hence, we are assuming
for some k ∈ N that P (k) is true, so

k∑
i=1

i =
k(k + 1)

2
,

and we wish to show

P (k + 1):
k+1∑
i=1

i =
(k + 1)(k + 2)

2
.

Examining the statement of P (k + 1), we find that the left-hand side transforms
as follows:

k+1∑
i=1

i = 1 + 2 + · · ·+ k + (k + 1)

= (1 + 2 + · · ·+ k) + (k + 1) =

(
k∑

i=1

i

)
+ (k + 1),

where the sum on the right is the sum involved in P (k). We now use our assumption
of P (k) to simplify the sum, and complete the proof.

Now that we have sketched the proof method, let’s write a full and formal proof.

Proof. Let P (n) be the open sentence

P (n):
n∑

i=1

i =
n(n+ 1)

2
.

We work by induction to prove that P (n) is true for each n ∈ N.
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Base case: P (1) is true, since we have

1∑
i=1

i = 1 =
1(1 + 1)

2
.

Inductive step: Let k ∈ N and assume that

P (k) :
k∑

i=1

i =
k(k + 1)

2

is true. We want to show that

P (k + 1) :
k+1∑
i=1

i =
(k + 1)(k + 2)

2

is true. Starting with the left-hand side, and simplifying with the right-hand side as
a target, we find that

k+1∑
i=1

i = 1 + 2 + 3 + · · ·+ k + (k + 1)

= (1 + 2 + 3 + · · ·+ k) + (k + 1)

=

(
k∑

i=1

i

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1) (by the inductive hypothesis)

=
k(k + 1) + 2(k + 1)

2
(getting a common denominator)

=
(k + 1)(k + 2)

2
(factoring out k + 1).

So P (k + 1) is true.
Hence, by induction, P (n) is true for all n ∈ N.

Remark 13.6. It can be helpful to point out to the reader of your proofs where you
use the inductive hypothesis, as done above. Note that if you do not use the inductive
hypothesis, then you could have just proved the theorem without induction. ▲

Remark 13.7. With practice you will become better at seeing how P (k) and P (k+1)
are related (especially with sums like the one above), and these proofs will go more
smoothly for you. For instance, with practice we could have gone directly to the
equality

k+1∑
i=1

i =

(
k∑

i=1

i

)
+ (k + 1)

in the proof above. ▲
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Warning 13.8. A common mistake that students make is to consider P (k) as
a number. It is a statement, not a number. For example, in the previous proof
students might mistakenly write

P (k) =
k∑

i=1

i =
k(k + 1)

2
,

which is incorrect as it says that P (k) is equal to the number
k(k + 1)

2
. Another

incorrect use of P (k) is the following

k+1∑
i=1

i =
k∑

i=1

i+ (k + 1)

= P (k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

Note that this also arises from thinking, incorrectly, of P (k) as equal to part of
the statement that it represents.

Remark 13.9. It might appear that in an induction proof we are assuming what we
are attempting to prove. For instance, if we are trying to prove

∀n ∈ N, P (n)

by induction, then in the inductive step of the proof we will need to assume P (k). It
would indeed be a logical mistake to assume P (k) if our immediate goal is to prove
P (k).

However, that is not the case. The goal of the inductive step is not to prove P (k),
but to prove that P (k + 1) follows from P (k). Hence, in fact, we are not assuming
what we wish to prove (namely that P (n) is true for each n ∈ N). Note also that
proving

∀k ∈ N, P (k) ⇒ P (k + 1)

by itself does not prove that P (k) is true for any natural number; it just proves that
if P (k) is true for some k, then P (k + 1) must be true as well (which is why we also
need the base case to start the induction). ▲

Here is another result we can prove by induction.

Proposition 13.10. Given n ∈ N, it happens that 2n > n.

Proof. We work by induction on n ∈ N.
Base case: We see that 21 = 2 > 1.
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Inductive step: Let k ∈ N and assume 2k > k. We want to prove 2k+1 > k + 1.
We find

2k+1 = 2 · 2k

> 2 · k (by the inductive assumption)

= k + k

≥ k + 1. (since k ≥ 1)

This finishes the inductive step, so by induction we know that 2n > n for each
n ∈ N.

Induction can often be used to prove facts about finite sets. In this case, the
general technique is to induct on the size of the sets. Typically, a proposition will be
easy to prove for the empty set, or for sets with a single element. We may assume
the proposition holds for sets of size k, and let A be a set of size k + 1. Removing
one element from A yields a set of size k, to which the inductive hypothesis applies.
Then, we only need to extend the proposition to A; how we do it depends on what
exactly we wish to prove. The following theorem is a typical example.

Proposition 13.11. Let A be a finite nonempty set of real numbers. Then A
has a least element.

Proof. Let P (n) be the open sentence

P (n): Every set of n real numbers has a least element.

We work by induction to show that P (n) is true for each n ∈ N.
Base case: It is clear that any set consisting of only 1 real number has a least

element, so P (1) is true.
Inductive step: Let k ∈ N and assume P (k). In other words, assume that every

set of k real numbers has a least element. This is our inductive hypothesis; we want
to use it to prove P (k + 1).

Let A be any set consisting of k+1 real numbers. Choose one of them, and call it
a. Let B = A−{a}. We note that B has k elements, so by the inductive hypothesis,
B has a least element. Call this element b. By the definition of a least element, we
have b ≤ x for each x ∈ B. Note that since b ∈ B = A − {a}, we must have b ̸= a.
Therefore, either b < a or b > a.
Case 1. If b < a, then b ≤ x for each x ∈ B ∪{a} = A. Hence, b is the least element

of A.
Case 2. If a < b, then a < b ≤ x for each x ∈ B, and a ≤ a. Hence, a ≤ x for each

x ∈ B ∪ {a} = A, and so a is the least element of A.
In either case, A has a least element. Since A was an arbitrary set with k+1 elements,
P (k + 1) is true. This completes the inductive step.

Hence, by induction, P (n) is true for each n ∈ N. Therefore, any finite set of real
numbers has a least element.
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We now give an application of induction by proving a very important counting
principle in mathematics; the pigeonhole principle. This principle may seem like
common sense, hence all the more reason to prove it.

Theorem 13.12 (The Pigeonhole Principle). Let m and n be natural numbers,
with m > n. If m objects are placed in n bins, then two (or more) objects must
share a bin.

Proof. We prove this by induction on n ∈ N.
Let P (n) be the open sentence

P (n): For each m ∈ N, if m > n and m objects are placed in n bins, then
two (or more) objects must share a bin.

Base case: We verify that P (1) is true. If we have more than one object, and we
place them all in one bin, then all the objects must clearly share a bin.

Inductive step: Let k ∈ N and assume P (k).

We now prove P (k+1). Let m ∈ N. Assume m > k+1 and m objects are placed
into k + 1 bins. We need to show that two objects share a bin. Choose one of the
objects and call it x. We divide the proof into two cases.

Case 1. Suppose that the object x shares a bin with at least one other object. In
this case two objects clearly share a bin, so we are finished.

Case 2. The object x is in a bin by itself; no other object shares the bin with x. In
this case there are m− 1 remaining objects, none of which are in the same
bin as object x. Hence, these m − 1 objects must all be placed into the k
remaining bins. By the inductive hypothesis (that P (k) is true), we know
that two of these objects must share a bin, since m− 1 > k .

In both cases two objects must share a bin, which completes the inductive step.

Hence, by the principle of mathematical induction, P (n) is true for all n ∈ N.

Remark 13.13. The pigeonhole principle can be applied to many situations. For
instance, if we choose three integers, then two of them must have the same parity.
Here there are two bins; even and odd. If we choose three numbers, two of them
(possibly all three) must end up in the same bin, or in other words they have the
same parity.

As another example, in a class of 30 people, if each person scores between 80 and
100 percent on an exam (with no fractional scores allowed), then two people must
have received the same score since there are 21 possible scores (bins) which must
contain the 30 people. ▲

A variation on the pigeonhole principle occurs if we are assigning objects to bins
and we have fewer objects than bins. In this case, common sense tells us that some
bin will remain empty. You will be asked to prove this “common sense” statement in
Exercise 13.8.
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Warning 13.14. It is important to note that induction cannot be used to prove
“infinite” statements. It does prove infinitely many statements. For instance,
we can prove that

n∑
i=1

i =
n(n+ 1)

2

for each n ∈ N. However, since ∞ /∈ N, induction cannot be used to prove
anything about

∞∑
i=1

i.

In terms of the ladder analogy, induction proves that we can reach every rung
of the ladder, but it cannot be used to prove that we can reach the top of the
ladder (since the ladder actually has no top).

13.B Exercises

Exercise 13.1. Prove that for each n ∈ N,
n∑

i=1

(2i− 1) = n2.

Exercise 13.2. Prove that for each n ∈ N,
n∑

i=1

1

(2i− 1)(2i+ 1)
=

n

2n+ 1
.

Exercise 13.3. Prove that for each n ∈ N,
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Exercise 13.4. (a) Prove that for each n ∈ N,

n < 3n.

(b) Prove that for each n ∈ Z, n < 3n. (Hint: With part (a) in hand, you might
not need induction for part (b).)

Exercise 13.5. Let x ∈ R− {1}. Prove that for each n ∈ N,
n∑

i=0

xi =
1− xn+1

1− x
.

Exercise 13.6. Let x ∈ R and assume x > −1. Prove that for each n ∈ N,

(1 + x)n ≥ 1 + nx.



100 CHAPTER IV. PROOF BY INDUCTION

Exercise 13.7. Let S be any nonempty set of natural numbers. Prove that S has
a least element. (Hint: Use Proposition 13.11 and the fact that for any n ∈ N, any
subset of {1, . . . , n} is finite. You will not need to use induction in your proof, since
the induction is done in the proof of Proposition 13.11.)

The fact that any nonempty subset of the natural numbers has a least element is
called the well-ordering principle.

Exercise 13.8. Prove the following variation of the pigeonhole principle.
Let m ∈ N ∪ {0}, let n ∈ N, and assume m < n. If we suppose m objects are

placed in n bins, conclude that some bin does not contain any object.
(Hint: Use induction on n.)
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14 More examples of induction

In this section we will discuss two tricks related to induction.

14.A Starting induction somewhere else

Often, we wish to prove a statement of the form

P (n) is true for all integers n ≥ a

where a is a fixed integer. Note that if a = 1, this is just a proof of a statement for
all natural numbers.

Induction can be used to prove such statements. The only change is that our base
case starts at a instead of 1. We will give a proof of this fact at the end of this section,
but for now we demonstrate how this changes proofs by giving some examples.

Proposition 14.1. For all integers n ≥ 10 we have 2n > n3.

Before we start the proof, we make a few remarks. First, why are we restricting
to integers n ≥ 10? The reason is because the claim is false for some smaller integers.
The inequality is false when n = 9. (Try it!) Second, what is the open sentence P (n)?
It is just P (n) : 2n > n3. When we plug in k + 1 for n, we have

P (k + 1) : 2k+1 > (k + 1)3.

The right-hand side can be simplified a bit. We note that

(k + 1)3 = k3 + 3k2 + 3k + 1.

In the computation in the proof below we will slowly try to “peel off” each of the
terms k3, 3k2, 3k, and 1, one at a time, so that eventually we can end up with (k+1)3.

We are now ready for the formal proof.

Proof. We wish to prove that the open sentence

P (n): 2n > n3

is true for each n ≥ 10 with n ∈ N. We work by induction.
Base case: We verify that P (10) is true, as follows:

210 = 1024 > 1000 = 103.

Inductive step: Let k ∈ N with k ≥ 10. Assume that P (k) is true. So we now
know that 2k > k3. We wish to prove P (k + 1), which states that

2k+1 > (k + 1)3.
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In order to do this, we examine 2k+1 closely.

2k+1 = 2 · 2k

= 2k + 2k

> k3 + k3 (2k > k3, by inductive hypothesis)

≥ k3 + 10k2 (since k ≥ 10)

= k3 + 3k2 + 7k2 (peeling off 3k2)

≥ k3 + 3k2 + 70k (since k ≥ 10)

= k3 + 3k2 + 3k + 67k (peeling off 3k)

> k3 + 3k2 + 3k + 1 (since 67k > 1)

= (k + 1)3.

Hence, P (k + 1) is true.

Therefore, by mathematical induction, P (n) is true for each n ≥ 10.

Remark 14.2. When trying to prove the inductive step, it can sometimes be difficult
to verify that P (k + 1) follows from P (k). Notice that in the previous example we
wanted to show that 2k+1 > (k + 1)3. In order to do this, we wrote down one side
of the inequality (the left-hand side) and manipulated it in order to reach the other
side.

In the previous example we were aided by the knowledge that the right-hand side
is

(k + 1)3 = k3 + 3k2 + 3k + 1.

This gave us a target to shoot for. Moreover, the right-hand side cannot be simplified
much further, which is why we started with the left-hand side in the proof above. It
is often useful to manipulate both sides of an equation or inequality in order to work
out (on scratch paper) how to get from one side to the other. However, in the proof
we must be careful that our inequalities all go the same direction. ▲

We now introduce an important mathematical object called the factorial. Its
definition is reminiscent of induction because the factorial of an integer n is defined
in terms of the factorial of (n − 1). It is no surprise that many theorems about
factorials are proved by induction.

Definition 14.3. Given n ∈ Z≥0, we define the factorial of n, written as n! and
read as “n factorial,” to be

n! =

{
1 if n = 0,

n · (n− 1)! if n > 0.
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Example 14.4. If we wish to compute 5!, we use the formula repeatedly as follows:

5! = 5 · 4!
= 5 · 4 · 3!
= 5 · 4 · 3 · 2!
= 5 · 4 · 3 · 2 · 1!
= 5 · 4 · 3 · 2 · 1 · 0!
= 5 · 4 · 3 · 2 · 1 · 1
= 120.

In general, for n > 0 we see that

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1. △

Proposition 14.5. For each integer n ≥ 4 we have n! > 2n.

Proof. We wish to prove that the open sentence

P (n) : n! > 2n

is true for each n ≥ 4. We work by induction.
Base case: Note that 4! = 24 > 16 = 24. Hence, P (4) is true.
Inductive step: Let k ≥ 4 be an integer, and assume P (k) is true. Then we

know that k! > 2k. Now we wish to show that (k + 1)! > 2k+1. We find

(k + 1)! = (k + 1)k!

> (k + 1)2k (since k! > 2k, by the inductive hypothesis)

> 2 · 2k (since k + 1 > 4 > 2)

= 2k+1.

Hence, P (k + 1) is true. Therefore, by induction P (n) is true for each n ≥ 4.

If we wish to prove facts about finite sets, it will often be convenient to start our
induction with the base case being any set of size 0 (namely, the empty set).

Proposition 14.6. If A is a finite set, then |P(A)| = 2|A|.

Proof. Let P (n) be the open sentence

P (n): If A is a set with n elements, then |P(A)| = 2n.

We will prove that P (n) is true for each integer n ≥ 0, by induction.



104 CHAPTER IV. PROOF BY INDUCTION

Base case: P (0) is true; the only set with 0 elements is the empty set, and its
only subset is itself, so |P(∅)| = 1 = 20.

Inductive step: Assume that P (k) is true for some k ≥ 0; namely, that for any
set A with k elements, |P(A)| = 2k.

We want to prove P (k+1). Let B be a set with k+1 elements. Choose an element
of B and call it b. We divide the power set of B into two collections of subsets. Let

S = {X ∈ P(B) : b ∈ X},

and let
T = {X ∈ P(B) : b /∈ X}.

We note that T consists of the subsets of B − {b}; hence, T is just the power set
of B − {b}. Since B − {b} has k elements (one element less than B), our inductive
hypothesis tells us that |T | = 2k.

On the other hand, each element of S is uniquely the union of an element of T
with the set {b}. Hence, |S| = |T | = 2k. Since S and T have no elements in common,
the number of elements in P(B) = S ∪ T is |S| + |T | = 2k + 2k = 2 · 2k = 2k+1.
Hence, P (k + 1) is true.

Therefore, by induction we see that P (n) is true for each n ≥ 0.

We can often use induction to extend statements concerning two objects to state-
ments concerning any finite number of objects. For instance, the following proposition
is an extension of De Morgan’s law, from two terms to an arbitrary (finite) number
of terms.

Proposition 14.7. For any n ∈ N, if P1, . . . , Pn are arbitrary statements, then

¬(P1 ∨ · · · ∨ Pn) ≡ (¬P1) ∧ · · · ∧ (¬Pn).

Proof. Let Q(n) be the open sentence

For any n statements P1, . . . , Pn, we have ¬(P1 ∨ · · · ∨ Pn) ≡ (¬P1) ∧ · · · ∧ (¬Pn).

We will now work by induction on n ≥ 1.
Base case: Q(1) is just the statement ¬P1 ≡ ¬P1, which is true.
Inductive step: Let k ∈ N and assume that Q(k) is true; i.e.,

¬(P1 ∨ · · · ∨ Pk) ≡ (¬P1) ∧ · · · ∧ (¬Pk).

Then we have

¬(P1 ∨ · · · ∨ Pk+1) ≡ ¬((P1 ∨ · · · ∨ Pk) ∨ Pk+1) (associativity of ∨)
≡ ¬(P1 ∨ · · · ∨ Pk) ∧ (¬Pk+1) (De Morgan’s law)

≡ (¬P1) ∧ · · · ∧ (¬Pk) ∧ (¬Pk+1) (inductive hypothesis).

Hence, Q(k + 1) is true.
Therefore, Q(n) is true for all n ∈ N.
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14.B Many base cases

When proving a statement by induction, sometimes the proof of the inductive step
needs special cases when k is small. To avoid overcomplicating the inductive step,
instead we first prove P (n) for several small values of n, and then give a proof of the
inductive step for values of k starting at the largest special case. We demonstrate
with an example.

Theorem 14.8. For each n ∈ N, we have 2n+1 > n2.

Proof. We take P (n) to be

P (n) : 2n+1 > n2.

When n = 1, we have 21+1 = 4 > 1 = 12. When n = 2, we have 22+1 = 8 > 4 = 22.
When n = 3, we have 23+1 = 16 > 9 = 32. We will now use induction to prove that
P (n) is true for all n ≥ 3.

Base case: P (3) has already been shown to be true.
Inductive step: Now assume P (k), for some integer k ≥ 3. Hence, we know

that 2k+1 > k2. Then

2(k+1)+1 = 2 · 2k+1

> 2 · k2 (by the inductive assumption)

= k2 + k2

≥ k2 + 3k (since k ≥ 3)

= k2 + 2k + k (peeling off 2k)

> k2 + 2k + 1 (since k > 1)

= (k + 1)2.

Hence, P (k + 1) is true.
Therefore, by induction P (n) is true for each n ≥ 3. Since we have already

demonstrated P (1) and P (2), we see that P (n) is true for each n ∈ N.

Advice 14.9. To decide whether or not to do extra cases, try the inductive step
first (perhaps on scratch paper). If you need extra information (as we did above,
to replace k2 with 3k) this could be a reason to do extra base cases.

Another reason to use extra cases is if you are working with a piecewise
defined function. Doing small cases might help handle places where the piecewise
function is different.

14.C Proof of generalized induction

Here is the promised proof that induction can start at any integer.



106 CHAPTER IV. PROOF BY INDUCTION

Theorem 14.10. Let a ∈ Z, and let P (n) be an open sentence whose domain
includes the set S = {n ∈ Z : n ≥ a}. If
(i) P (a) is true and
(ii) P (k) ⇒ P (k + 1) for all k ∈ S,

then P (n) is true for all n ∈ S.

Proof. For n ∈ N, define P ′(n) = P (n + a − 1). Then we have a correspondence
between P and P ′:

P (a) P (a+ 1) P (a+ 2) P (a+ 3) P (a+ 4) P (a+ 5) P (a+ 6) · · ·
∥ ∥ ∥ ∥ ∥ ∥ ∥

P ′(1) P ′(2) P ′(3) P ′(4) P ′(5) P ′(6) P ′(7) · · ·

This correspondence makes it clear that if we can prove P ′(n) for each n ∈ N,
then we will have proved P (n) for each n ∈ S.

Now, P ′(1) = P (a) is true by (i).
Further, for each k ∈ N, we see that P ′(k) ⇒ P ′(k+1) holds since P (k+a−1) ⇒

P (k + 1 + a− 1), by (ii).
Hence, by the principle of mathematical induction, P ′(n) is true for each n ∈ N,

so P (n) is true for each n ∈ S.

Remark 14.11. In order to illustrate the connection between P (n) and P ′(n), we
describe the corresponding open sentences for Proposition 14.5. In that proposition,
it is asserted that the open sentence

P (n) : n! > 2n

is true for each n ≥ 4. Thus a = 4 and

P ′(n) = P (n+ a− 1) = P (n+ 3) : (n+ 3)! > 2n+3.

Proving that n! > 2n is true for each n ≥ 4 is the same as proving that (n+3)! > 2n+3

is true for each n ≥ 1. ▲

14.D Exercises

Exercise 14.1. Prove that n! > 3n for each natural number n > 6.

Exercise 14.2. Prove that if n is any natural number greater than 5, then n! > n3.

Exercise 14.3. Prove that for each n ∈ N, we have 3n ≥ n3.
(Hint: Demonstrate this by direct calculation for n = 1, 2, 3. Then use induction

to complete the proof for n ≥ 3, with n = 3 as your base case.)

Exercise 14.4. Prove that for any n ∈ N with n ≥ 2, if P1, . . . , Pn are statements,
then

¬(P1 ∧ · · · ∧ Pn) ≡ (¬P1) ∨ · · · ∨ (¬Pn).
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Exercise 14.5. Prove that for any n ∈ N, if x1, . . . , xn ∈ R, then∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|xi|.

(Note that for n = 2 this is just Theorem 8.21, the triangle inequality.)

Exercise 14.6. The Fibonacci numbers are a collection of natural numbers labeled
F1, F2, F3, . . . and defined by the rule

F1 = F2 = 1,

and for n > 2,
Fn = Fn−1 + Fn−2.

For instance, F3 = F2 + F1 = 2 and F4 = F3 + F2 = 2 + 1 = 3.
(a) Write down the first fifteen Fibonacci numbers.
(b) Prove by induction that for each n ≥ 1,

n∑
i=1

Fi = Fn+2 − 1.

(c) Prove by induction that for each n ≥ 1,

n∑
i=1

F 2
i = FnFn+1.

Exercise 14.7. Using the definition of the Fibonacci numbers from the previous
problem, prove by induction that for any integer n > 12 that Fn > n2.

(Hint: One possible idea for a proof is to let P (n) be the open sentence

P (n) : Fn > n2 and Fn−1 > (n− 1)2.

Use induction to prove that P (n) is true for all n ≥ 14. This then implies that
Fn > n2 for all n ≥ 13.)
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15 Strong induction

15.A The definition of strong induction

Sometimes, when trying to do a proof by induction, the inductive step is not feasible
because P (k) does not provide enough information to conclude P (k+1). In this case,
a variation on induction called “strong induction” is often useful.

The idea of strong induction is very intuitive. Recall the ladder analogy. If we
can climb to the kth rung, we just need to know that we can climb to the k + 1st
rung. However, we have more information available. If we have climbed up to the
kth rung, then we have also climbed all the steps below! It is possible to make use of
this extra information by making a stronger inductive hypothesis. In the inductive
step, instead of merely assuming P (k) we instead assume the stronger statement
Q(k) = P (1)∧P (2)∧ . . .∧P (k). In other words, we assume that we climbed each of
the steps from the first to the kth.

The only difference between a proof by “normal” induction and “strong” induc-
tion is that, in the inductive step, we make the stronger assumption Q(k) above.
Everything else is precisely the same—we still need a base case, and in the inductive
step we still want to conclude by showing P (k + 1).

Because these two proof techniques are so similar it is not necessary to use the
word “strong” in such a proof, unless you want to emphasize this fact to the reader.

15.B Strong induction by example

Consider the following situation. There are five cities that are (conveniently) named
A, B, C, D, and E. Each pair of distinct cities is connected by a single one-way road.
For instance, one possible collection of such roads is given by the following diagram,
where each city is represented by a dot and each road is represented by a line with
an arrow indicating the direction of the road.

A

B C

D E

In this diagram, we can travel directly from A to C, but not from C to A.
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A natural question one might ask is whether or not it is possible to find a path
through each of the cities, without ever revisiting a city. In this diagram, one such
path passing through all the cities is B → A → C → E → D. Others are A → C →
B → E → D, and B → D → C → E → A, and E → D → A → C → B. This shows
that for the specific combination of one-way roads given in the diagram above there
are several paths.

Does the answer to our question change if we change the directions of the one-way
roads? What if we change the number of cities?

To answer these new questions we need to set up some notation. Let S be a finite
set of cities. We will call a collection of one-way roads, with a single road connecting
each pair of distinct cities in S, a system of one-way roads for S. If there is some
path through the cities, which follows that system of one-way roads and visits each
city exactly once, we will call it a valid path through the cities.

We are now ready to answer our questions!

Proposition 15.1. If S is any finite nonempty set of cities with a system of
one-way roads, then there is a valid path through the cities.

Proof. Let P (n) be the open sentence: “If S is a set of n cities with a system of
one-way roads, then there is a valid path through those cities.” We work by (strong)
induction to show that P (n) is true for each n ≥ 1.

Base Case: Let n = 1. In this case, starting in the single city, we don’t need to
go anywhere to say that we have visited all the cities. Hence, P (1) is true.

Inductive Step: Assume that for some k ∈ N, we know that P (1), P (2), . . . , P (k)
are each true. (This is the only place where our proof would look different from a
standard induction. Instead of merely assuming P (k) is true, we have assumed all
the steps from the first to the kth are true.) From this information, we will try to
prove P (k + 1).

To that end, let U be a set of k+1 cities with a system of one-way roads connecting
them. As U is nonempty, we may fix one of the cities in U , call it X. There are a
total of k cities remaining that are not equal to X. We divide these k cities into two
disjoint sets:

S = {Y ∈ U − {X} : the road between X and Y runs toward X}

and

T = {Y ∈ U − {X} : the road between X and Y runs away from X}.

Let k1 = |S| and let k2 = |T |. We note that 0 ≤ k1 ≤ k and 0 ≤ k2 ≤ k, and that U
is the disjoint union of the three sets S, T , and {X}. In particular, k1 + k2 = k.

Note that the cities in S are connected by a system of one-way roads; namely,
the roads in U that run between cities in S. A similar remark holds for T . We now
examine three cases.
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Case 1. Assume k1 = 0. In this case, we have k2 = k. Since P (k) is true, there
is a valid path for the cities in T . Starting at X, then travelling to the first city in
this path, and continuing along the path, we obtain a valid path in U .

Case 2. Assume k2 = 0. This case is similar to case 1, except that we put X at
the end of the path instead of the beginning.

Case 3. Assume k1, k2 ̸= 0. Then since 1 ≤ k1 < k and 1 ≤ k2 < k, we see that
both P (k1) and P (k2) are true by the (strong) inductive hypothesis. Hence, there is
a valid path for S and a valid path for T . Traversing the first path we end at a city
in S. From there we may travel to X. We then travel to the first city in the valid
path for T . We finish by traversing this path for T . This yields a valid path for U .

By (strong) induction, P (n) is true for each n ∈ N.

Note that in the first two cases of the proof above, we only needed to know that
P (k) is true. Thus, in those cases, normal induction would work. However, in the
third case we needed to use the fact that the theorem was true for networks of cities
and roads with an arbitrary number of cities smaller than k+1, not just for networks
with exactly k cities.

Example 15.2. Let U = {A,B,C,D,E} and consider the following system of one-
way roads for U (which is different from the system we considered previously).

A

B C

D E

By choosing a city, say X = C, we divide the remaining cities, as in the previous
proof, into two subsets S = {B,E} and T = {A,D}. Note that there is a valid path
for S (namely, B → E), and there is a valid path for T (namely, A → D). So, the
valid path our proof would construct is the path B → E → C → A → D. In this
case, our inductive step would be using P (2) twice to get us to P (5).

Alternatively, if we chooseX = E, then S = {A,B,D} and T = {C}. Between the
cities of S we find the valid path B → A → D, and the valid path between the cities
of T is the singleton path C. The total valid path is then B → A → D → E → C.
For this choice of X, our inductive step uses P (3) and P (1) to get us to P (5). △
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It may be a useful exercise for the student to go back to the system of roads
introduced at the beginning of Subsection 15.B and, using the proof method above,
see which valid paths are constructed for each X. Also, it may be useful to note
which values of P (i) are being used to conclude P (5), for each choice of X. Can you
find a valid path which does not arise from the inductive proof?

15.C More examples of strong induction

Our next example of strong induction will be given in the proof of the following:

Proposition 15.3. Every natural number can be written as a sum of distinct
integers, each of which is a power of 2.

Before we begin the proof, we want to make a few remarks which will help explain
what we are trying to prove.

Remark 15.4 (Sums of one object). When mathematicians say that a number can
be written as a sum they allow the possibility of adding only one object. Hence, the
number 8 = 23 can be considered as a sum of a single power of two. ▲

Remark 15.5 (Meaning of distinct). In English, the word “distinct” is often used
to mean “special” or “distinguished.” In mathematics, the word has a very precise
meaning, which is quite different; a list of objects is called distinct if no two of the
objects are equal.

For instance, there are several ways to write the number 6 as a sum of powers of
two. We have

6 = 20 + 20 + 20 + 20 + 20 + 20 = 21 + 20 + 20 + 20 + 20

= 21 + 21 + 20 + 20 = 21 + 21 + 21 = 22 + 20 + 20 = 22 + 21.

Note that only the last way (6 = 4 + 2) gives 6 as a sum of distinct powers of 2 (all
the rest have repetition). ▲

Remark 15.6 (Base 2). We illustrate the theorem for the first few natural numbers.

1 = 20, 2 = 21, 3 = 21+20, 4 = 22, 5 = 22+20, 6 = 22+21, 7 = 22+21+20.

In each case, we have written n as a sum of distinct powers of two. Mathematicians
call this representing a number in binary (or base 2). Most current cultures write
numbers in base 10, but other bases can be very important, such as base 16 (or
hexadecimal), for computing. ▲

We are now ready to begin the proof. Try to figure out why the proof will fail if,
in the inductive step, we only assume P (k).
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Proof. Let P (n) be the open sentence

P (n): n can be written as a sum of distinct integers, each a power of 2.

Let Q(n) be the open sentence

Q(n): P (1) ∧ · · · ∧ P (n).

We work by (strong) induction to show P (n) is true for each n ∈ N.
Base case: P (1) is true, since 1 = 20.
Inductive step: Let k ∈ N, and assume Q(k). In other words, assume that every

integer from 1 to k can be written as a sum of distinct powers of 2. We wish to use
this assumption to prove P (k+1), i.e., that k+1 can be written as a sum of distinct
powers of two.

We will examine two cases.
Case 1. If k + 1 is odd, then k is even. By our inductive hypothesis, k can be

written as a sum of distinct powers of 2. Since only one power of two is
odd (namely 20 = 1) and k is even, all of these powers of two must be even.
Adding 20 = 1 to the collection, we still have a collection of distinct powers
of two, and they now add up to k + 1.

Case 2. If k + 1 is even, then k + 1 = 2a for some a ∈ N. Now 1 ≤ a ≤ k, so a can
be written as a sum of distinct powers of two, by our inductive hypothesis.
Increasing each of these exponents by one gives us a collection of powers of
two, all distinct, that add to 2a = k + 1.

We have thus proved that Q(k) ⇒ P (k + 1). Hence, by the principle of mathe-
matical induction P (n) is true for each n ∈ N.

In order to further illustrate how the proof works, we give an example of the proof
in action. In the proof, if we have an odd number, we subtract 1. If we have an even
number, we divide by 2. We stop when we hit the base case. Thus we have:

11 −→ 10 −→ 5 −→ 4 −→ 2 −→ 1.

Now, writing 1 = 20 we work backwards through this chain, either adding 1 or
multiplying by 2 (to undo what we originally did in the chain above). Eventually we
end up with a binary expansion for 11, as follows:

20 −→ 21 −→ 22 −→ 22 + 20 −→ 23 + 21 −→ 23 + 21 + 20.

Thus, we have 11 = 23 + 21 + 20 .
Try this yourself, by writing the number 14 in binary. Note that our inductive

step uses P (7) to help us obtain P (14).

15.D Formalizing strong induction

One might wonder if, just as for induction, we need to assume strong induction as
an axiom. The answer is no, because strong induction is really standard induction in
disguise. In the following theorem we will prove strong induction using induction on
a new sentence Q(n).
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Theorem 15.7. Let P (n) be an open sentence, where the domain of n is N. If
(i) P (1) is true and
(ii) for each k ∈ N, (P (1) ∧ P (2) ∧ . . . ∧ P (k)) ⇒ P (k + 1),

then P (n) is true for all n ∈ N.

Proof. Assume (i) and (ii) above. Let Q(n) be the open sentence

Q(n): P (1) ∧ P (2) ∧ . . . ∧ P (n).

Note that Q(k+1) ≡ Q(k)∧P (k+1). Additionally, we see easily that since Q(k) ⇒
P (k + 1) for each k ∈ N by (ii), we have Q(k) ⇒ Q(k) ∧ P (k + 1), so that Q(k) ⇒
Q(k + 1). Applying the principle of mathematical induction to Q(n), we see that
Q(n) is true for all natural numbers. This immediately implies that P (n) is true for
all natural numbers.

Remark 15.8. When using strong induction, typically you will not explicitly write
out what Q(n) is. It is much more common when proving the inductive step to say
something like “Assume P (i) for all integers i in the range 1 ≤ i ≤ k.” Sometimes it
will be convenient to say “Assume that P (i) is true for all natural numbers less than
or equal to k.” Or even just “Assume P (1), P (2), . . . , P (k) are each true.” ▲

15.E Where to start?

Strong induction can start at any integer, just as induction can. The formal state-
ment merges Theorems 14.10 and 15.7, as below. (The proof is similar to that of
Theorem 14.10 and will be omitted.)

Theorem 15.9. Let a ∈ Z and let P (n) be an open sentence whose domain
includes the set S = {n ∈ Z : n ≥ a}. For n ∈ S, let Q(n) be the open sentence

Q(n) : P (a) ∧ · · · ∧ P (n).

If
(i) P (a) is true and
(ii) Q(k) ⇒ P (k + 1) for each k ∈ S,

then P (n) is true for each n ∈ S.

We demonstrate how such proofs work with two examples.

Proposition 15.10. Let n be any integer greater than 5. Any square can be
subdivided into n squares.
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Proof. Let P (n) be the open sentence

P (n): A square can be subdivided into n squares.

We work by induction on n ≥ 6.
Base case: We can verify that P (6) is true. We also verify that P (7) and P (8) are

true in the diagrams below. (We do these extra base cases to help with the inductive
step.)

In addition, we have also given a picture showing how to subdivide a square into
4 smaller squares; we will use this in our proof.

n = 4 n = 6 n = 7 n = 8

Inductive step: Let k ≥ 6, and assume that P (ℓ) is true for 6 ≤ ℓ ≤ k. We wish
to prove that P (k+ 1) is true. If k = 6 or k = 7, we have already seen that P (k+ 1)
is true, so we may assume that k ≥ 8.

Since k ≥ 8, we have that k − 2 ≥ 6. Hence, by our inductive assumption, since
6 ≤ k − 2 ≤ k, we know that P (k − 2) is true. In other words, we know that we
can subdivide a square into k − 2 squares. Starting with this subdivision, we further
subdivide the upper-rightmost square into 4 squares. This adds three squares to the
subdivision. Thus, we have subdivided the square into k − 2 + 3 = k + 1 squares.
Hence, P (k + 1) is true.

Therefore, by mathematical induction, P (n) is true for all n ≥ 6.

To see this proof in action, we demonstrate how to subdivide a square into 20 squares.
Start from the subdivision into 8 squares, and repeatedly divide the upper-rightmost
square into 4 smaller squares at each stage.

n = 11 n = 14 n = 17 n = 20

We see easily how we could extend these diagrams to demonstrate the result for
n = 23, 26, 29, 32, . . . (although the upper-right square would quickly become too
small to see).

To motivate our last example of a statement that can be proved by strong induc-
tion, consider the following problem.
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Postage Stamp Problem: Given several denominations of postage stamps,
what possible postage can be paid precisely?

Note that only a nonnegative number of each stamp can be used. (You can’t use
a negative number of stamps!) We will demonstrate this idea with a specific example.
Suppose that your local post office has stamps with two denominations: 5 cents and
7 cents. What other denominations can you get using these two types of stamps?

You can pay 21 cent postage using three 7 cent stamps. You can also pay 22 cent
postage, with three 5 cent stamps and one 7 cent stamp. However, 23 cent postage
is not possible using those two denominations. To see this, first note that we cannot
use more than three 7 cent stamps. This leaves four other options. However, none of
23− 0(7) = 23, 23− 1(7) = 16, 23− 2(7) = 9, or 23− 3(7) = 2 is a multiple of 5.

In the following proposition, we prove that every postage above 23 cents is pos-
sible. The main idea will be that if we can get five consecutive denominations, then
by adding enough 5 cent stamps we can reach all other higher denominations.

Proposition 15.11. Prove that every integer n > 23 can be written as

n = 5x+ 7y

for some integers x, y ≥ 0.

Proof. We will let

P (n) : For some nonnegative integers xn and yn, we have n = 5xn + 7yn.

Here, we made the dependence of the integers x and y on n explicit, because we will
later be handling multiple different values of n, at the same time.

We have the following equations:

24 = 5 · 2 + 7 · 2 25 = 5 · 5 + 7 · 0
26 = 5 · 1 + 7 · 3 27 = 5 · 4 + 7 · 1
28 = 5 · 0 + 7 · 4.

The first equation shows us that P (24) is true, by taking x24 = 2 and y24 = 2.
Similarly, P (25), P (26), P (27), and P (28) are true. (The reason we did so many
cases will become apparent in the inductive step below.) We proceed by (strong)
induction on n ≥ 24.

Base cases: We have seen that P (24), . . . , P (28) are all true.
Inductive step: Assume that for some k ≥ 28, all of P (24), . . . , P (k) are true.
Since k ≥ 28, we have k− 4 ≥ 24. Hence, P (k− 4) is true; in other words, we can

write k − 4 = 5xk−4 + 7yk−4 for some integers xk−4, yk−4 ≥ 0. Then adding a 5 cent
stamp yields

k + 1 = k − 4 + 5 = 5xk−4 + 7yk−4 + 5 = 5(xk−4 + 1) + 7yk−4.

Taking xk+1 = xk−4 + 1 > xk−4 ≥ 0 and taking yk+1 = yk−4, we see that P (k + 1) is
true.

Hence, by induction P (n) is true for each n ≥ 24.
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15.F Exercises

Exercise 15.1. Prove by induction that for each integer n > 5, it is possible to sub-
divide an equilateral triangle into n equilateral triangles. (For example, a subdivision
into 6 equilateral triangles is given below.)

Exercise 15.2. For the network of nine cities with one-way roads below, find a
route that visits all nine cities. Do this using the method found in the proof of
Proposition 15.1, letting X be the city denoted by A.

(Note that there are many routes that solve the problem, but only one that arises
from letting X = A in the proof of Proposition 15.1.)

A

B

C

D

EF

G

H

I

Exercise 15.3. (a) Prove that every integer n > 13 can be written as n = 3xn+8yn
for some integers xn, yn ≥ 0 (where xn and yn depend on n).

(b) Prove that 13 cannot be written as 3x+ 8y for any integers x, y ≥ 0.

Exercise 15.4. Let n ∈ N. Prove (by induction) that n = 2knmn for some nonnega-
tive kn ∈ Z and some odd mn ∈ N. (Again, kn and mn may depend on n.)

Exercise 15.5. Prove that for each natural number n > 43, we can write

n = 6xn + 9yn + 20zn
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for some nonnegative integers xn, yn, zn. Then prove that 43 cannot be written in this
form.

(Hint: Write 44, 45, 46, 47, 48, and 49 in the given form. Use induction to prove
that any larger number can be written in the given form.)

Exercise 15.6. Find the largest postage that cannot be paid exactly with 4, 10, and
15 cent stamps. Prove that your answer is correct. (This proof will include showing
not only that the postage that you find cannot be achieved, but also that every larger
postage can be achieved. The correct solution is smaller than 30.)

Exercise 15.7. Recall the definition of the Fibonacci numbers from Exercise 14.6.
Prove that every positive integer is a sum of one or more distinct Fibonacci numbers.
(Hint: Given a positive integer k+1, we can find some m so that Fm ≤ k+1 < Fm+1.
Write k + 1 = Fm + (k + 1 − Fm), and show that k + 1 − Fm is either 0 or (by the
inductive hypothesis) a sum of distinct Fibonacci numbers, each smaller than Fm.)
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16 The Binomial Theorem

16.A Binomial coefficients and Pascal’s triangle

Binomial coefficients show up throughout mathematics. As we will see, they are the
coefficients of xk in the expansion of (x + 1)n. They also allow us to count certain
collections of objects in a finite set. These binomial coefficients have many amazing
properties, some of which we will prove by use of mathematical induction.

Definition 16.1. Let n, k ∈ Z. We define the binomial coefficient as

(
n

k

)
=


n!

k!(n− k)!
if 0 ≤ k ≤ n,

0 otherwise.

We read the symbol (
n

k

)
as “n choose k.”

Example 16.2. We may compute(
7

3

)
=

7!

3!(7− 3)!
=

7 · 6 · 5 · 4 · 3 · 2 · 1
(3 · 2 · 1)(4 · 3 · 2 · 1)

=
7 · 6 · 5
3 · 2 · 1

= 7 · 5 = 35.

In Exercise 16.1 you will prove that for any n ≥ 0,(
n

0

)
=

(
n

n

)
= 1 and

(
n

1

)
=

(
n

n− 1

)
= n. △

Remark 16.3. It is not obvious from Definition 16.1 that the binomial coefficient is
an integer, but it will follow from the properties that we describe below.

We read
(
n
k

)
as “n choose k” because the binomial coefficient

(
n
k

)
counts the

number of ways to choose k objects from among n objects. See Theorem 16.6 for a
proof of this fact. ▲

We now state a fundamental property of the binomial coefficients.

Theorem 16.4. Let n, k ∈ Z, with n ≥ 0. Then(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
.
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Before proving Theorem 16.4, we demonstrate how to use it to build Pascal’s
triangle, which is a useful computational mnemonic for the binomial coefficients. See
Figure 16.5. Here, the top row is row 0, and row n corresponds to the values of

(
n
k

)
,

with
(
n
0

)
being the leftmost dark entry in each row. The arrows indicate how

(
5
1

)
and(

5
2

)
add to give

(
6
2

)
. Note that each entry (except on the top row) is the sum of the

two closest entries in the row above it.

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 2 1 0 0 0 0

0 0 0 1 3 3 1 0 0 0

0 0 0 1 4 6 4 1 0 0 0

0 0 1 5 10 10 5 1 0 0

0 0 1 6 15 20 15 6 1 0 0

0 1 7 21 35 35 21 7 1 0

0 1 8 28 56 70 56 28 8 1 0

1 9 36 84 126 126 84 36 9 1

Row 0
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Figure 16.5: Pascal’s triangle

We now prove Theorem 16.4.

Proof. We will use properties of the factorial function here. In particular, we note
that (k + 1)! = (k + 1) · k!, and (n − k)! = (n − k) · (n − k − 1)! (when 0 ≤ k < n).
We will use these facts to obtain a common denominator in the fractions defining the
binomial coefficients

(
n
k

)
and

(
n

k+1

)
.

We break the proof into five cases, doing the easiest cases first.
Case 1. Assume k = n. Then both

(
n
k

)
and

(
n+1
k+1

)
are 1, and

(
n

k+1

)
= 0.

Case 2. Assume k > n. Then all three binomial coefficients in the formula are 0.
Case 3. Assume k = −1. Then

(
n
k

)
= 0 but

(
n

k+1

)
=
(
n+1
k+1

)
= 1.

Case 4. Assume k < −1. Then all three binomial coefficients in the formula are 0.
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Case 5. Assume 0 ≤ k < n. Then 0 < k + 1 ≤ n, and all three binomial coefficients
in the formula are defined by the rule involving factorials. Hence,(

n

k

)
+

(
n

k + 1

)
=

n!

k!(n− k)!
+

n!

(k + 1)!(n− k − 1)!

=
n!(k + 1)

(k + 1)!(n− k)!
+

n!(n− k)

(k + 1)!(n− k)!

=
n!(k + 1) + n!(n− k)

(k + 1)!(n− k)!

=
n!(n+ 1)

(k + 1)!(n− k)!

=
(n+ 1)!

(k + 1)!((n+ 1)− (k + 1))!

=

(
n+ 1

k + 1

)
.

We can now use mathematical induction to give an interpretation of the binomial
coefficients in terms of counting subsets.

Theorem 16.6. If n, k ∈ Z, then the binomial coefficient
(
n
k

)
counts, for any

fixed set of cardinality n, the number of subsets of cardinality k.

Proof. If n < 0, there are no sets of cardinality n, so the theorem holds in that case.
We will now deal with the case n ≥ 0 by induction. Let P (n) be the open sentence

P (n): For each k ∈ Z, the binomial coefficient

(
n

k

)
counts, for any fixed

set of cardinality n, the number of subsets of cardinality k.

Base case: We verify that P (0) is true. For k ̸= 0, there are no subsets of
cardinality k of the empty set, matching the value

(
0
k

)
= 0. For k = 0 there is one

subset of cardinality k of the empty set, matching the value
(
0
0

)
= 1. Hence, P (0) is

true.
Inductive step: Let m ≥ 0 be an integer and assume that P (m) is true. (We use

m here because k already has a meaning.) Thus, for each k ∈ Z, any set of cardinality
m has

(
m
k

)
subsets of cardinality k.

Let S be a set consisting of m + 1 elements. Choose one of them and call it x.
Let k ∈ Z. If k is negative, then

(
m+1
k

)
= 0 is the number of k element subsets of

S. Similarly, if k = 0, then
(
m+1
k

)
= 1 is the number of k element subsets of S.

Therefore, in what follows, we may assume that k > 0.
We will count subsets T of cardinality k in S by counting the subsets with x ∈ T

separately from those with x /∈ T and then adding the two counts together.
Any subset T of cardinality k with x ∈ T corresponds to the set T − {x} which

has exactly k − 1 elements. We have T − {x} ⊆ S − {x}. Since |S − {x}| = m the
inductive hypothesis says that there are

(
m
k−1

)
such subsets.
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Any subset T of cardinality k with x /∈ T is a k-element subset of S−{x}. Again,
the inductive hypothesis applies, and says that there are

(
m
k

)
such subsets.

Adding these, the number of subsets of cardinality k in S is(
m

k − 1

)
+

(
m

k

)
=

(
m+ 1

k

)
by Theorem 16.4. This completes the inductive step.

Therefore, by mathematical induction P (n) is true for each n ≥ 0.

Theorem 16.6 gives an easy way to prove that the binomial coefficients are all
integers, a fact that is not at all obvious from the definition.

Theorem 16.7. Let n, k ∈ Z. Then the binomial coefficient
(
n
k

)
is an integer.

Proof. By Theorem 16.6,
(
n
k

)
counts the number of k-element subsets in a set of size

n. Hence, it must be an integer.

16.B Proof of the Binomial Theorem

With basic facts about the binomial coefficients established, we are now ready to
prove the Binomial Theorem.

Theorem 16.8 (Binomial Theorem). Let x, y be variables and let n ≥ 0 be an
integer. Then

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Proof. We prove the theorem by induction on n ≥ 0. Let P (n) be the open sentence

P (n): (x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

We note that P (0) is true, since (x+ y)0 = 1 and

0∑
k=0

(
0

k

)
x0−kyk =

(
0

0

)
x0y0 = 1,

Now suppose that P (m) is true for some m ≥ 0. Then we know that

(x+ y)m =
m∑
k=0

(
m

k

)
xm−kyk.
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Multiplying this first by x we obtain

x(x+ y)m =
m∑
k=0

(
m

k

)
xm−k+1yk

=

(
m

0

)
xm+1y0 +

(
m

1

)
xmy1 + . . .+

(
m

m

)
xym(16.9)

and multiplying by y we obtain

y(x+ y)m =
m∑
k=0

(
m

k

)
xm−kyk+1

=

(
m

0

)
xmy1 + . . .+

(
m

m− 1

)
xym +

(
m

m

)
x0ym+1.(16.10)

Adding equations (16.9) and (16.10), we obtain

(x+ y)m+1 = (x+ y)(x+ y)m = x(x+ y)m + y(x+ y)m

=

(
m

0

)
xm+1y0 +

(
m

1

)
xmy1 + . . .+

(
m

m

)
xym

+

(
m

0

)
xmy1 + . . .+

(
m

m− 1

)
xym +

(
m

m

)
x0ym+1

=

(
m

0

)
xm+1y0 +

((
m

1

)
+

(
m

0

))
xmy + · · ·

+

((
m

m

)
+

(
m

m− 1

))
xym +

(
m

m

)
x0ym+1

=

(
m+ 1

0

)
xm+1y0 +

(
m+ 1

1

)
xmy + · · ·

+

(
m+ 1

m

)
xym +

(
m+ 1

m+ 1

)
x0ym+1

=
m+1∑
k=0

(
m+ 1

k

)
xm+1−kyk

This finishes the inductive step.

16.C Exercises

Unless otherwise noted, exercises in this section should not be done using induction.

Exercise 16.1. Use the definition of the binomial coefficient to prove that for each
integer n ≥ 0, (

n

0

)
=

(
n

n

)
= 1 and

(
n

1

)
=

(
n

n− 1

)
= n.
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Exercise 16.2. Prove that for any n, k ∈ Z,(
n

k

)
=

(
n

n− k

)
.

Exercise 16.3. Let n, j, k ∈ Z. Using the definition of the binomial coefficient, prove
that (

n

j

)(
n− j

k

)
=

(
n

k

)(
n− k

j

)
.

(Hint: You must deal with the three cases where j < 0, k < 0, and j + k > n, as well
as the remaining case.)

Exercise 16.4. Prove that for any integer n ≥ 0,

n∑
k=0

(
n

k

)
= 2n.

Exercise 16.5. Prove that for any n ∈ N,
n∑

k=0

(−1)k
(
n

k

)
= 0.

Exercise 16.6. Determine the coefficient of x5y3 in the expansion of (2x+ 3y)8.
(Warning: It is not just

(
8
5

)
.)

Exercise 16.7. Use the definition of the binomial coefficient to prove that for any
n, k ∈ Z,

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

Exercise 16.8. Do the following:
(a) Find the values of

(
2n
n

)
for each n ∈ {0, 1, 2, 3, 4}. (Notice that these are the

binomial coefficients that appear in the “middle” of Pascal’s triangle.)
(b) Prove that for n ∈ N, the “middle” binomial coefficient(

2n

n

)
is an even integer. (Hint: Use Theorem 16.4 and Exercise 16.2.)

Exercise 16.9. Let n, k ∈ Z.
(a) Use induction to prove that for n > 8,(

n

k

)
< 2n−2 for each k ∈ Z.

(b) Use induction to prove that for n > 7,(
n

k

)
< (n− 3)! for each k ∈ Z.
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Chapter V

Theory of the Integers

Mathematics is the queen of the sciences and number theory is the queen of mathe-
matics. Carl Friedrich Gauss

One of the oldest surviving mathematical texts is Euclid’s Elements, a collection
of 13 books. This work, dating back to several hundred years BC, is one of the earliest
examples of logical reasoning in mathematics still available for us to read. Although
most of the books are devoted to theorems concerning geometry (many of which you
may have seen in some form in a high school geometry class), books seven and nine
deal with the arithmetic of the integers. In this chapter we will study some of the
material found in these two books.

In particular, Euclid dealt with the topics of divisibility and greatest common
divisors. It is remarkable that, thousands of years before the advent of electronic
computers, Euclid wrote down a very efficient algorithm for computing GCDs that is
still used essentially without change in modern computer systems.

In addition, Euclid defines prime numbers, proves that there are infinitely many
primes, and proves the Fundamental Theorem of Arithmetic, which states that every
natural number greater than 1 has a unique factorization into prime numbers.

The results that we present in this chapter have thus stood the test of time and
have been studied by mathematicians over millennia. Besides being important and
useful results on their own, they form a significant part of the common heritage of
mathematics.

125
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17 Divisibility

17.A Divisibility and common divisors

We now prove several facts about divisibility, some of which we took for granted in
previous sections (often treating them as axioms).

Theorem 17.1. Let a and b be nonzero integers. If a | b, then |a| ≤ |b|.

Proof. Assume that a | b. Then b = ak for some k ∈ Z. Note that k ̸= 0, so |k| ≥ 1.
We conclude that

|b| = |ak| = |a||k| ≥ |a|.

Corollary 17.2. Let a, b ∈ Z be nonzero. If a | b and b | a then a = ±b.

Proof. Assume that a | b and b | a. Then by Theorem 17.1, |a| ≤ |b| and |b| ≤ |a|.
Hence, |a| = |b|, so a = ±b.

Theorem 17.3. Let b ∈ Z with b ̸= 0. There are finitely many integers that
divide b.

Proof. If a ∈ Z divides b, then |a| ≤ |b| by Theorem 17.1. Hence, a ∈ {−|b|, . . . , |b|}.
This set is finite, so there are only finitely many possibilities for a.

Example 17.4. If b = 12, the divisors of b are

{−12,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 12}. △

Definition 17.5. A common divisor of two integers a and b is an integer c such
that c | a and c | b.

Example 17.6. If a = 12 and b = 18, then the common divisors of a and b are ±1,
±2, ±3, and ±6. △

Theorem 17.7. Let a and b be integers, not both 0. The set of common divisors
of a and b has a largest element.

Proof. Without loss of generality, let a ̸= 0. The set of divisors of a is finite and
includes the set of common divisors of a and b, so the set of common divisors is finite.
Since it is finite and nonempty (as 1 is an element), this set has a largest element.
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Definition 17.8. The greatest common divisor, or GCD, of two integers a and
b (not both zero) is the largest common divisor of a and b. We will write the
greatest common divisor of a and b as GCD(a, b).

Example 17.9. If a = 12 and b = 18, the list of divisors of a is

{−12,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 12}

and the list of divisors of b is

{−18,−9,−6,−3,−2,−1, 1, 2, 3, 6, 9, 18}.

The set of numbers common to both of these sets (their intersection) is

{−6,−3,−2,−1, 1, 2, 3, 6}.

Hence, the greatest common divisor of 12 and 18 is 6. △

Example 17.10. Let a ∈ Z be nonzero. Then every divisor of a is less than or
equal to |a|, and in fact |a| is a divisor of a. In addition, |a| is a divisor of 0. Hence,
GCD(a, 0) = |a|. △

Remark 17.11. Many mathematicians write (a, b) for GCD(a, b). We will avoid that
notation in this book since it already has two other meanings (as an open interval
and as an ordered pair).

Some take GCD(0, 0) = 0. We will also do so when convenient. ▲

We finish this subsection by stating a standard result about the GCD (the proof
is left to the motivated reader).

Lemma 17.12. Let a, b ∈ Z. We have both
� GCD(a, b) = GCD(b, a) and
� GCD(a, b) = GCD(|a|, |b|).

17.B The division algorithm

A fundamental property of the integers that relates addition and multiplication is
the division algorithm. The fact that we can divide integers and get a unique quo-
tient and remainder is the key to understanding divisibility, congruence, and modular
arithmetic.

Theorem 17.13 (The Division Algorithm). Let n, d ∈ Z with d ̸= 0. Then
there are unique integers q, r such that

n = qd+ r

and 0 ≤ r < |d|.
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In order to organize the proof of this theorem we first prove uniqueness of the
quotient and remainder as a lemma before proceeding with the remainder of the
proof. A portion of the proof is left for the reader in Exercise 17.8.

Lemma 17.14. Let n, d, q, r, q′, r′ ∈ Z with d ̸= 0. If n = qd+ r = q′d+ r′ with
0 ≤ r, r′ < |d|, then q = q′ and r = r′.

Proof of Lemma. Suppose that n = qd+r = q′d+r′ with 0 ≤ r < |d| and 0 ≤ r′ < |d|.
Without loss of generality, we may assume that r ≤ r′. Then we have

(17.15) (q − q′)d = r′ − r.

Note that since r′ < |d| and r ≥ 0 we have 0 ≤ r′− r ≤ r′ < |d|, so that |r′− r| < |d|.
However, by (17.15), we know d | (r′ − r). Hence, by Theorem 17.1, we see that it
must be the case that r′ − r = 0, so that r′ = r. Since d ̸= 0, (17.15) now implies
that q = q′.

We will prove the existence of q and r only in the case when n ≥ 0 and d > 0.
The other cases of the proof (when n is negative, or when d is negative) will be left
to the exercises (see Exercise 17.8).

Partial proof of Theorem 17.13. Fix d > 0. We work by induction to prove that

P (n): There are integers qn, rn such that n = qnd+ rn and 0 ≤ rn < d

is true for each n ≥ 0.

Base Case: We note that taking q0 = r0 = 0, we have 0 = q0d + r0, and
0 ≤ r0 < d. Hence, P (0) is true.

Inductive Step: Assume that P (k) is true for some k ≥ 0; in other words, there
are integers qk and rk such that k = qkd + rk, with 0 ≤ rk < d. Then we have that
k+1 = qkd+ rk +1. Note that 0 ≤ rk < rk +1 ≤ d. We now break the proof up into
cases, depending on whether rk + 1 = d or not.

Case 1: If rk + 1 < d, then we see that P (k + 1) is true (with qk+1 = qk and
rk+1 = rk + 1).

Case 2: If rk + 1 = d, then k + 1 = qkd + d = (qk + 1)d + 0, so P (k + 1) is true
(with qk+1 = qk + 1 and rk+1 = 0).

Hence, by induction, P (n) is true for all n ≥ 0 and d > 0.
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Advice 17.16. This proof of the division algorithm does not immediately give
us an easy way to find the quotient and remainder. However, finding q and r is
a simple task using standard long division with remainder, as taught in many
elementary schools. Although we will not review long division, we demonstrate
the work to compute q and r for n = 978 and d = 13.

13 978
75

91

68
65

3

Hence, we find that q = 75 and r = 3, so that 978 = 75 · 13 + 3.

17.C Computing the GCD

Listing all the divisors of a and b is a very inefficient way of computing the GCD.
We will now give a very efficient algorithm to compute GCD(a, b). It is based on the
following theorem.

Theorem 17.17 (The GCD-switching Theorem). Let a, b, c, x ∈ Z and assume
that a = xb+ c. Then GCD(a, b) = GCD(b, c).

Proof. If b = 0, the theorem is obviously true. So assume b ̸= 0. Let S be the set of
common divisors of a and b. Let T be the set of common divisors of b and c. We will
show that S = T . Once this is shown, the largest element of S must be the same as
the largest element of T , and the theorem will be proved.

(S ⊆ T ): Assume that d ∈ S. Then d | a and d | b. Now c = a − xb, so we must
have d | c. Hence, d is a common divisor of b and c, so d ∈ T . Thus, S ⊆ T .

(T ⊆ S): Now assume that d ∈ T . Then d | b and d | c. Since a = xb + c, we see
that d | a. Hence, d is a common divisor of a and b, so d ∈ S. Therefore, T ⊆ S.

Hence, S = T .

Advice 17.18. The previous theorem does not require that c < |b|, so it ap-
plies in situations which can be more general than the division algorithm. The
following example gives just one instance of how useful this theorem can be.

Example 17.19. Let n ∈ Z. We will compute the possible GCDs for the numbers
3n+ 1 and n− 2. Notice that

3n+ 1 = 3(n− 2) + 7.
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Thus, by the GCD-switching theorem, we have GCD(3n+1, n− 2) = GCD(n− 2, 7).
The only possibilities are 1, 7.

Can both possibilities happen? Yes, but it depends on the value of n. If n = 1
then GCD(3n + 1, n − 2) = GCD(4,−1) = 1. If n = 2 then GCD(3n + 1, n − 2) =
GCD(7, 0) = 7. △

17.D The Euclidean algorithm

We now describe an algorithm that very efficiently computes GCD(a, b). This algo-
rithm will involve nothing more than repeated applications of the division algorithm;
in particular, it does not involve computing divisors of a and b. After describing the
algorithm, we will prove that it gives the correct answer.

Algorithm 17.20. Given two integers a, b not both 0, assume that a ̸= 0 and
that |a| ≥ |b| (if either of these does not hold, swap a and b so that both hold).

If b = 0, then the GCD(a, b) = |a|, and we are finished.
Otherwise, apply the division algorithm multiple times, as follows.

Divide a by b a = q1b + r1 with 0 ≤ r1 < |b|.
Divide b by r1 b = q2r1 + r2 with 0 ≤ r2 < r1
Divide r1 by r2 r1 = q3r2 + r3 with 0 ≤ r3 < r2

...
...

...
Divide rn−1 by rn rn−1 = qn+1rn + rn+1 with 0 ≤ rn+1 < rn.

Continue to divide until we get a remainder rn+1 = 0 (we can’t go any further,
since we can’t divide by 0).

If r1 = 0, then GCD(a, b) = |b| and we are finished.
If rn+1 = 0 for n ≥ 1, then GCD(a, b) = rn and we are finished.

To show that an algorithm works correctly there are two things that need to
be demonstrated. First, the answer that the algorithm computes must be correct.
Second, the algorithm must terminate after finitely many steps; it does us no good if
the algorithm takes forever to compute an answer. We will demonstrate that both of
these facts hold true.

First, the algorithm must terminate since we have a strictly decreasing sequence
of nonnegative integers |b| > r1 > r2 > r3 > r4 > · · · ≥ 0. This sequence can certainly
not have length more than |b|+ 1.

Now we show that the output is correct. Notice that if b = 0, then the algorithm
completes by asserting GCD(a, b) = |a|. By Example 17.10, this is the correct answer.

Next, consider the case when r1 = 0. The algorithm asserts that the GCD is |b|.
By Theorem 17.17, we have

GCD(a, b) = GCD(b, r1) = GCD(b, 0) = |b|.
Finally, choose n ∈ N so that rn+1 is 0. Then we have the following sequence of

equalities, from Theorem 17.17.

GCD(a, b) = GCD(b, r1) = GCD(r1, r2) = · · · = GCD(rn, rn+1).
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Using Example 17.10 once again, we obtain

GCD(rn, rn+1) = GCD(rn, 0) = rn.

The algorithm asserts the same answer.

For experienced computer programmers, you may recognize that the algorithm
can be written recursively; we give a recursive version here.

Algorithm 17.21. Given two integers a, b, assume that a ̸= 0. We will also
assume that |a| ≥ |b| (if not, switch a and b). Perform the following steps.
(1) If b = 0, then GCD(a, b) = |a|, and we are done.
(2) Use the division algorithm to find a = qb+ r with q, r ∈ Z and 0 ≤ r < |b|.
(3) At this point, we know that GCD(a, b) = GCD(b, r). Use the algorithm to

compute GCD(b, r).

Example 17.22. Suppose that we wish to compute the GCD of 39 and 57. We
perform our divisions as follows

57 = 1 · 39 + 18

39 = 2 · 18 + 3

18 = 6 · 3 + 0

The last nonzero remainder is 3, so the GCD of 39 and 57 is 3. △

Example 17.23. We will find GCD(1073, 1537).

1537 = 1 · 1073 + 464

1073 = 2 · 464 + 145

464 = 3 · 145 + 29

145 = 5 · 29 + 0

The last nonzero remainder is 29, so the GCD of 1073 and 1537 is 29. △

Remark 17.24. Notice that the number of divisions is actually significantly less
than |b|. In fact, it can be shown (although we will not prove it) that the number of
divisions required is always less than 5 log10 |b|, which is actually slightly less than 5
times the number of digits in |b|. Hence, for example, if b is a four digit number, no
more than 20 divisions will ever be needed. ▲
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17.E Exercises

Exercise 17.1. For the given values of n and d, compute the values of q and r
guaranteed by the division algorithm.
(a) Let n = 17, d = 5.
(b) Let n = 17, d = −5.
(c) Let n = −17, d = 5.
(d) Let n = −17, d = −5.
(e) Let n = 256, d = 25.
(f) Let n = 256, d = −25.
(g) Let n = −256, d = 25.
(h) Let n = −256, d = −25.

Exercise 17.2. Let a be an integer. Recall that a is even if there is some k ∈ Z such
that a = 2k, and a is odd if there is some ℓ ∈ Z such that a = 2ℓ + 1. Prove the
following statements, which we took for granted previously. (Hint: Use the division
algorithm with d = 2.)
(a) Every integer is even or odd.
(b) No integer is both even and odd.

Exercise 17.3. Write out all the divisors of 60 in a list, and then all the divisors of
42 in a separate list. Write the common divisors in a third list, and find the GCD.
(All the lists should be ordered from least to greatest.)

Exercise 17.4. Use the Euclidean algorithm to compute the following GCDs.
(a) GCD(60, 42).
(b) GCD(667, 851).
(c) GCD(1855, 2345).
(d) GCD(589, 437).

Exercise 17.5. Recall that the Fibonacci numbers are defined by the relations F1 =
1, F2 = 1, and for n > 2 the recursion Fn = Fn−1 + Fn−2.

Prove by induction that for each n ∈ N we have GCD(Fn+1, Fn) = 1.

Exercise 17.6. Let n ∈ Z. Prove that GCD(2n+ 1, 4n+ 3) = 1.

Exercise 17.7. Let n ∈ Z. Prove that GCD(6n+ 2, 12n+ 6) = 2.

Exercise 17.8. Complete the proof of Theorem 17.13 as follows.
(a) Using the fact that the theorem is true for nonnegative n and positive d, prove

the theorem for arbitrary n and positive d. (Hint: If n < 0, then −n > 0.
Use the proven case of the division algorithm to write −n = qd + r. Then
n = (−q)d−r. If r = 0, we are done; otherwise, we need to make an adjustment
to get the remainder between 0 and d.)

(b) Using the fact that the theorem is true for positive d, prove the theorem for
negative d.
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18 The extended Euclidean algorithm

18.A The GCD as a linear combination

We now recall the result of Exercise 13.7.

Theorem 18.1. Every nonempty subset of the natural numbers has a least ele-
ment.

We will use this theorem to prove an important and useful statement about
GCD(a, b). The following definition will help us to state the result.

Definition 18.2. An (integral) linear combination of two integers a and b is a
number of the form ax+ by where x, y ∈ Z.

Example 18.3. Let a = 16 and b = 21. We will list some of the linear combinations
of a and b.

We see that 37 is a linear combination of 16 and 21, since

37 = 16 + 21 = a+ b = a · 1 + b · 1.

We see that 0 = a · 0 + b · 0 is a linear combination of 16 and 21. (Will 0 be an
integral linear combination of any two integers a and b?)

What is the smallest linear combination of a and b? (By smallest, we will mean
in the ordering on the integers.) There isn’t a smallest combination! For instance

a · (−100) + b · (−100) = −3700.

We can form negative numbers which can be as “small” as we like.
However, there is a smallest positive linear combination of a and b . We see that

1 = 16 · 4 + 21 · (−3).

There are no positive integers smaller than 1, so this is indeed the smallest. △

Example 18.4. When performing the division algorithm, the remainder is a linear
combination of the numerator and denominator. Indeed,

r = n− qd = n · 1 + d · (−q). △

Theorem 18.5. Let a and b be integers, not both equal to 0. The smallest
positive integral linear combination of a and b is GCD(a, b).
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Proof. Let S be the set of positive integral linear combinations of a and b. In other
words,

S = {ax+ by : x, y ∈ Z, ax+ by > 0}.

It is clear that S is a subset of the natural numbers, since its elements are positive
integers. In addition, S is nonempty since it contains at least one of the following:

a = a · 1 + b · 0, −a = a · (−1) + b · 0, b = a · 0 + b · 1, −b = a · 0 + b · (−1).

Hence S has a least element, which we call s. Fix some x, y ∈ Z so that s = ax+ by.
Note that s > 0.

Let d = GCD(a, b). Then d | a and d | b, so by Theorem 7.15, d | ax + by, and we
have that d | s. Hence, d ≤ s.

Now we use the division algorithm to write a = qs+ r with 0 ≤ r < s. Then

r = a− qs = a− q(ax+ by) = a(1− qx) + b(−qy)

is an integral linear combination of a and b. If r were positive, then r would be an
element of S that is smaller than s (which would contradict the minimality of s).
Hence, r must be 0. Therefore a = qs and we see that s | a. A similar argument
shows that s | b. Since s is a common divisor of a and b, it cannot be larger than the
greatest common divisor d. Hence, s ≤ d.

Combining the facts that d ≤ s and s ≤ d, we see that d = s.

Using Theorem 18.5, one can show that the linear combinations of a and b are
exactly the integer multiples of GCD(a, b), see Exercise 18.4.

Example 18.6. Let a = 6 and b = 9. The theorem asserts that 3 = GCD(6, 9)
should be the smallest positive linear combination of a and b.

We see that 3 = 6(−1)+9(1) is indeed a linear combination. If we had 2 = 6x+9y,
then since 3 | 6 and 3 | 9, we would have 3 | 2, a contradiction. Similarly, 1 cannot be
a linear combination of a and b. Therefore 3 is indeed the smallest positive linear
combination and is the GCD.

Note that −15 = 3 · (−5) is a multiple of 3 = GCD(6, 9). Hence, as indicated in
the sentence preceding this example, we expect −15 to be a linear combination of 6
and 9. Note that

−15 = 3 · (−5) = (6(−1) + 9(1)) · (−5) = 6(5) + 9(−5)

is indeed a linear combination of 6 and 9. △

18.B Calculating the GCD as a linear combination

Now that we know that GCD(a, b) can be written as an integral linear combination
of a and b, the natural question is how to compute x and y so that

GCD(a, b) = ax+ by.
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We begin by performing the Euclidean algorithm for a and b, and solving each equa-
tion for the remainder.

a = q1b+ r1 r1 = a− q1b

b = q2r1 + r2 r2 = b− q2r1
...

...

rn−3 = qn−1rn−2 + rn−1 rn−1 = rn−3 − qn−1rn−2

rn−2 = qnrn−1 + rn rn = rn−2 − qnrn−1

The bottom right equation then expresses rn as a linear combination of the previous
two remainders, rn−1 and rn−2. We replace rn−1 in this equation by the integral linear
combination expressed in the equation on the preceding line, so

rn = rn−2 − qnrn−1 = rn−2 − qn(rn−3 − qn−1rn−2)

= (1 + qnqn−1)rn−2 + (−qn)rn−3.

We now perform a similar replacement of rn−2 by the linear combination of rn−3 and
rn−4, found on the preceding line. Repeating this process until we use all of the
equations in the right column, we have rn written as a linear combination of a and b.

We demonstrate how this works with a couple of examples.

Example 18.7. We find GCD(493, 391), and write it as 493x+391y for some x, y ∈ Z.
We perform the Euclidean algorithm, and solve each of the resulting equations for

the remainder.

493 = 1 · 391 + 102 102 = 493− 1 · 391
391 = 3 · 102 + 85 85 = 391− 3 · 102
102 = 1 · 85 + 17 17 = 102− 1 · 85
85 = 5 · 17 + 0

The last nonzero remainder is 17, so we know that GCD(493, 391) = 17.

Now we see that 17 = 102 − 1 · 85, from the bottom right equation. Looking at
the preceding equation, we see an expression for 85 that we plug into this equation,
so

17 = 102− 1 · ( 85 )

= 102− 1 · (391− 3 · 102)
= 102− 1 · 391 + 3 · 102
= 4 · 102− 1 · 391.
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Going one equation higher, we see an expression for 102; namely, 102 = 493− 1 · 391.
We plug this into our expression for 17,

17 = 4 · ( 102 )− 1 · 391
= 4 · (493− 1 · 391)− 1 · 391
= 4 · 493− 4 · 391− 1 · 391
= 4 · 493− 5 · 391,

and we now have expressed

GCD(493, 391) = 17 = 493 · 4 + 391 · (−5)

as a linear combination of 493 and 391. △

Advice 18.8. Probably the most difficult part of this algorithm is the temp-
tation to oversimplify the expression for the GCD. Taken to the extreme, each
expression for 17 above can be simplified to equal 17. It is important to keep
track of the remainders (perhaps by underlining them) and treat them as if they
were variables rather than numbers.

Example 18.9. We will now find the GCD of 221 and 136, and write it as an integral
linear combination of 221 and 136.

We perform the Euclidean algorithm, and solve each of the resulting equations for
the remainder. In order to remind ourselves to treat the original numbers and the
remainders as if they were variables, we will underline them.

221 = 1 · 136 + 85 85 = 221− 1 · 136
136 = 1 · 85 + 51 51 = 136− 1 · 85
85 = 1 · 51 + 34 34 = 85− 1 · 51
51 = 1 · 34 + 17 17 = 51− 1 · 34
34 = 2 · 17 + 0

The last nonzero remainder is 17, and we have 17 = 51 − 1 · 34 (from the bottom
equation on the right). The previous equation is 34 = 85 − 1 · 51. Substituting for
34, we obtain

17 = 51− 1 · ( 34 )

= 51− 1 · (85− 1 · 51)
= 51− 1 · 85 + 1 · 51
= 2 · 51− 1 · 85,

where we have been careful to treat underlined numbers as variables, and not combine
them with other numbers.



18. THE EXTENDED EUCLIDEAN ALGORITHM 137

The equation we use to substitute for 51 is 51 = 136− 1 · 85.

17 = 2 · ( 51 )− 1 · 85
= 2 · (136− 1 · 85)− 1 · 85
= 2 · 136− 2 · 85 − 1 · 85
= 2 · 136− 3 · 85

Finally, we have 85 = 221− 1 · 136. Substituting in for 85 we obtain the following:

17 = 2 · 136− 3 · ( 85 )

= 2 · 136− 3 · (221− 1 · 136)
= 2 · 136− 3 · 221 + 3 · 136
= 5 · 136− 3 · 221.

Hence, GCD(221, 136) = 17 = 136 · 5 + 221 · (−3). △

18.C Relative primality

The fact that GCD(a, b) can be written as an integral linear combination of a and b
has many important consequences. In particular, we saw in the proof of Theorem 18.5
that GCD(a, b) is in fact the smallest positive integral linear combination of a and b.
This yields the following theorem.

Theorem 18.10. Let a, b ∈ Z. Then GCD(a, b) = 1 if and only if 1 = ax + by
for some x, y ∈ Z.

Proof. If GCD(a, b) = 1, Theorem 18.5 tells us that 1 = ax+ by for some x, y ∈ Z.
Conversely, if 1 = ax+by for some x, y ∈ Z, then 1 is the smallest positive number

that can be written as an integral linear combination of a and b (since there are no
positive integers smaller than 1). Hence, 1 = GCD(a, b).

We give a special name to a pair of numbers that have GCD equal to 1.

Definition 18.11. Let a, b ∈ Z. If GCD(a, b) = 1, then we say that a and b are
relatively prime.

Example 18.12. Since GCD(15, 7) = 1, the numbers 15 and 7 are relatively prime.
On the other hand, GCD(5, 30) = 5, so 5 and 30 are not relatively prime. △

We now prove two useful properties of relatively prime integers.

Theorem 18.13. Let a, b, c ∈ Z. If a | bc and GCD(a, b) = 1, then a | c.
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Proof. Let a, b, c ∈ Z. Assume that a | bc and GCD(a, b) = 1. Since a | bc, we see that
bc = ak for some k ∈ Z. Also, for some x, y ∈ Z, we have 1 = ax + by. Multiplying
this last equation by c, we obtain

c = c · 1 = c(ax+ by) = (ac)x+ (bc)y = (ac)x+ (ak)y = a(cx+ ky).

Hence, since cx+ ky ∈ Z, we see that a | c.

As a nice application of this theorem we have the following:

Example 18.14. If 2 | 3x, then, since GCD(2, 3) = 1, we see that 2 |x. (Previously
we proved the implication “if 3x is even then x is even” contrapositively.) △

The next theorem gives us sufficient conditions under which we can expect the
product of two numbers to divide into another number.

Theorem 18.15. Let a, b, c ∈ Z. If a | c and b | c and GCD(a, b) = 1, then ab | c.

Proof. Let a, b, c ∈ Z. Assume that a | c and b | c and GCD(a, b) = 1. Then for some
k, ℓ, x, y ∈ Z, we have c = ak, c = bℓ, and 1 = ax+ by. Multiplying this last equation
by c, we get

c = cax+ cby = (bℓ)ax+ (ak)by = ab(xℓ+ ky).

Since xℓ+ ky ∈ Z, we see that ab | c.

Example 18.16. If 2 |x and 3 |x, we see that 6 |x, since GCD(2, 3) = 1. △

Warning 18.17. Note that neither of the previous two theorems is true if we
replace the assumption GCD(a, b) = 1 with a ∤ b. For the first theorem, taking
a = 4, b = 6, and c = 2, we have that 4 | (6 · 2), and 4 ∤ 6, but it is not the case
that 4 | 2.

For the second theorem, taking a = 12, b = 18, and c = 36, we see that both
a and b divide 36, but ab ∤ 36. (Can you find simpler counterexamples?)

18.D Exercises

Exercise 18.1. For each pair of numbers a and b below, calculate GCD(a, b) and
find x, y ∈ Z such that GCD(a, b) = ax+ by.
(a) Take a = 15 and b = 27.
(b) Take a = 29 and b = 23.
(c) Take a = 91 and b = 133.
(d) Take a = 221 and b = 377.

Exercise 18.2. Let a, n ∈ Z. Assume that GCD(a, n) = 1. Prove that there is some
b ∈ Z such that ab ≡ 1 (mod n).

(Hint: Use Theorem 18.10.) This result says that there is an element b which acts
like the reciprocal of a, modulo n.
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Exercise 18.3. Let a, b ∈ Z, with b ̸= 0, and let d = GCD(a, b).
(a) Prove or disprove the equality GCD(a, b/d) = 1.
(b) Prove or disprove: If c is a positive common divisor of a and b, and c = ax+ by

for some x, y ∈ Z, then c = d. (Hint: Can you show that c ≤ d? Can you show
that d ≤ c?)

Exercise 18.4. Let a, b, n ∈ Z, and put d = GCD(a, b). Prove that d|n if and only
if n is a linear combination of a and b.

Exercise 18.5. Let a, b, c, d ∈ Z. Assume that GCD(a, b) = 1. Prove that if c | a and
d | b, then GCD(c, d) = 1.

Exercise 18.6. The following steps lead one through a proof of the existence and
uniqueness of the lowest terms representation of a rational number.
(a) Let a, b ∈ Z, not both zero, and let d = GCD(a, b). Prove that

GCD

(
a

d
,
b

d

)
= 1.

(Hint: Use Theorem 18.10.)
(b) Prove that any rational number a/b (with a, b ∈ Z and b ̸= 0) can be represented

as a fraction r/s (with r, s ∈ Z and s ̸= 0) satisfying GCD(r, s) = 1. (Hint: Fix
d = GCD(a, b). Define r and s in terms of a, b, and d, and use part (a).)

(c) Prove that in part (b) we can also guarantee that s > 0. (Hint: Modify the
definitions of r and s if needed.)

(d) Prove that every rational number has a unique representation as in part (c).
This is the lowest terms representation of the rational number. (Hint: Assume
that r/s = r′/s′ with
(1) r, r′, s, s′ ∈ Z,
(2) s, s′ > 0, and
(3) GCD(r, s) = 1 = GCD(r′, s′).
Prove that s = s′, and then that r = r′.)

Exercise 18.7. Let a, b be positive integers. A common multiple of a and b is an
integer n such that a |n and b |n. The least common multiple of a and b, written
LCM(a, b), is the smallest positive common multiple of a and b.
(a) Determine the LCM of 12 and 18.
(b) Determine the LCM of 21 and 35.
(c) Prove that LCM(a, b) = ab

d
, where d = GCD(a, b).

(Hint: Show that ab/d is a common multiple of a and b. Then show that it
divides (and is thus no larger than) every other positive common multiple of
a and b. You may wish to factor a = a′d and b = b′d and use the fact (from
Exercise 18.6(a)) that GCD(a′, b′) = 1.)
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19 Prime numbers

Now that we have a good understanding of divisibility in the integers we are prepared
to define and study the multiplicative building blocks of the integers. As far as
multiplication is concerned, prime numbers are the “atoms” from which other integers
are formed.

19.A Definition of prime numbers

Definition 19.1. A prime number is an integer p > 1 such that the only positive
divisors of p are 1 and p. An integer n > 1 that is not prime is said to be
composite.

Example 19.2. We know that all positive divisors of a positive integer n are between
1 and n, so we may check whether a given integer is prime. The integer 2 is prime,
since there are no integers between 1 and 2. The integer 3 is prime, since it is not
divisible by 2. Similarly 5 is prime, since it is not divisible by 2, 3, or 4. Note that 4
is not prime, since it is divisible by 2.

The first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73. △

If a number is composite, then it has a positive factor besides itself and 1. We
expand a bit on this fact in the following theorem.

Theorem 19.3. Let a ∈ Z with a > 1. If a is composite, then there are positive
integers b and c, both strictly between 1 and a, such that a = bc.

Proof. Since a is not prime, it has a positive divisor b with 1 < b < a. So a = bc for
some c ∈ Z. Clearly c is positive, and c not equal to 1 since a ̸= b. Hence, c > 1.

On the other hand, by Theorem 17.1, since c|a we have c ≤ a. But c ̸= a since
b ̸= 1, so 1 < c < a.

We note the following useful fact about prime numbers.

Theorem 19.4. Let p be a prime number and let a ∈ Z. Then

GCD(p, a) =

{
p if p | a,
1 if p ∤ a.

Proof. We know that GCD(p, a) must be a positive divisor of p, so it must be 1 or
p. If p | a then p is clearly the largest common divisor; similarly, if p ∤ a, then 1 is the
largest common divisor.
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When we combine Theorem 19.4 with Theorem 18.13 we obtain the following
important description of prime numbers. The implication (1) ⇒ (2) in the following
theorem is known as Euclid’s Lemma, since Euclid proved it in the Elements.

Theorem 19.5. Let a ∈ Z with a > 1. The following are equivalent:
(1) a is a prime number.
(2) For any b, c ∈ Z, if a | bc, then a | b or a | c.

Proof. (1) ⇒ (2): Assume that a is a prime number, and that a | bc and a ∤ b. Then
GCD(a, b) = 1, so by Theorem 18.13 we see that a | c.

(2) ⇒ (1): Working contrapositively, suppose that a is not prime, so that (1) is
false. Then a is composite, so a = bc for some integers b, c between 1 and a. Now
a | bc and a ∤ b and a ∤ c (since b and c are positive and smaller than a). Hence, (2) is
false.

In Exercise 19.2 you will use induction to prove the following extension of Euclid’s
Lemma.

Theorem 19.6. Let p be a prime number, let n be a natural number, and let
a1, . . . , an ∈ Z. If

p | a1a2 · · · an
then p | ai for some 1 ≤ i ≤ n.

19.B Divisibility by primes

We know that if a number is composite, then it has a factorization into smaller
numbers. One might wonder if it is possible to guarantee that these smaller numbers
must also be composite. In other words, is it possible to find a number that is so
composite that all of its factors are composite? The following theorem answers that
question (in the negative).

Theorem 19.7. Every integer larger than 1 is divisible by a prime number.

Proof. Let a > 1 be an integer. The set

S = {b ∈ Z≥2 : b | a}

is finite and nonempty (since a is an element), so it has a least element p. By
Exercise 19.3, p is prime.

Next, we prove that every positive integer is a product of primes. Note that in
this theorem we allow the possibility that a number (namely 1) can be a product of
zero primes, or (if it is prime) a product of a single prime.
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Theorem 19.8. Let a ∈ N. Then a is a product of primes.

Proof. We proceed by strong induction on n ≥ 1. Let P (n) be the open sentence

P (n) : n is a product of primes.

We wish to prove that P (n) is true for all n ≥ 1.
Base Case: We note that P (1) is true, since 1 is a product of zero primes.
Inductive Step: Suppose, for some k ≥ 1, that P (1), . . . , P (k) are each true. In

other words, assume each integer from 1 to k is a product of primes.
We now break the proof into cases depending on whether k + 1 is prime or com-

posite.
Case 1. Suppose k + 1 is prime. Then P (k + 1) is true; k + 1 is a product of the

single prime k + 1.
Case 2. Suppose k+1 is composite. Then we may factor k+1 = bc, with 1 < b, c <

k + 1 (so 2 ≤ b, c ≤ k). Hence, by our inductive hypothesis, P (b) and P (c)
are both true; both b and c are products of primes. Hence, the product bc
is a product of primes, so P (k + 1) is true.

Therefore, by induction the theorem is true.

This theorem can be greatly strengthened; we will now prove that every integer
not only has a prime factorization, but that its prime factorization is unique. The
importance of this theorem is evident from its name: The Fundamental Theorem of
Arithmetic.

Theorem 19.9 (The Fundamental Theorem of Arithmetic). If n ∈ N is greater
than 1, then n has a factorization into primes

n = p1p2 · · · pr

(for some r ∈ N) with p1 ≤ p2 ≤ · · · ≤ pr, and this factorization is unique.

Proof. We have already seen that n can be written as a product of one or more primes.
We order the primes so that they are in nondecreasing order. All that remains to be
proved is the uniqueness statement, which we will prove by strong induction.

Let P (n) be the open sentence

P (n): n has a unique factorization into prime numbers.

Base Case: Clearly, P (2) is true; 2 is prime, so the only way to factor it into
2 = p1 · · · pr is to have r = 1 and p1 = 2. A similar argument works for any prime p;
hence P (p) is true.

Inductive Step: Assume that P (2), . . . , P (k) are each true for some k ≥ 2. In
other words, assume each integer from 2 to k has a unique prime factorization. We
wish to prove that P (k + 1) is true. We divide the proof into two cases.
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Case 1: If k + 1 is prime, then P (k + 1) is true as explained above.
Case 2: If k + 1 is not prime, assume that

k + 1 = p1p2 · · · pm = q1q2 · · · qℓ

has two prime factorizations, with p1, p2, . . . , pm, q1, q2, . . . , qℓ all prime, and such that
p1 ≤ p2 ≤ · · · ≤ pm and q1 ≤ q2 ≤ · · · ≤ qℓ. Note that p1 | k + 1, so

p1 | q1q2 · · · qℓ.

Hence, by Exercise 19.2, we have that p1 | qi for some i. Since qi is prime and p1 ̸= 1,
we must have p1 = qi. This yields q1 ≤ qi = p1.

By a similar argument p1 ≤ q1. Thus, p1 = q1.
Now, (k + 1)/p1 = p2 · · · pm = q2 · · · qℓ. Since 2 ≤ (k + 1)/p1 ≤ k, we see

that (k + 1)/p1 has a unique factorization into primes, by our inductive hypothesis.
Hence, m = ℓ and each pi = qi for i from 2 to m. Since p1 = q1, we see that the
two factorizations that we had for k + 1 were identical. Hence, k + 1 has a unique
factorization into primes, and P (k + 1) is true.

Thus, by induction, every integer greater than 1 has a unique factorization into
primes.

Remark 19.10. We note that typically the factorization of a number into primes
will be simplified by combining copies of the same prime together. For instance, if we
wish to factor 720, rather than writing 720 = 2 · 2 · 2 · 2 · 3 · 3 · 5 we might write

720 = 24 · 32 · 5.

This is a more compact representation of the factorization. Using this convention, we
can restate Theorem 19.9 as saying that every integer n > 1 can be uniquely written
as

n = pa11 pa22 · · · pakk =
k∏

i=1

paii ,

with k ∈ N, each pi prime, p1 < p2 · · · < pk, and with each ai ∈ N. (Note that the
symbol

∏k
i=1 works just like the symbol

∑k
i=1, except for multiplication instead of

addition.) A factorization of this form has a special name as in the next definition. ▲

Definition 19.11. Let n > 1 be an integer. The prime factorization

n =
k∏

i=1

paii

with k ∈ N, with p1 < · · · < pk each prime, and with each ai ∈ N, is called the
canonical factorization of n.
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Example 19.12. The canonical factorization of 5040 is 24 ·32 ·51 ·71. In the notation
of Definition 19.11 we have p1 = 2, a1 = 4, p2 = 3, a2 = 2, p3 = 5, a3 = 1, p4 = 7,
and a4 = 1. △

Remark 19.13. The statement of the Fundamental Theorem of Arithmetic is not
constructive. It provides no algorithm for actually finding a prime factorization. The
theorem does guarantee that whatever (correct) method we use to find a factorization
will yield the same answer as any other method.

One simple method of finding a prime factorization is trial division. Given a
number n, start with k = 2 and divide to check if n is divisible by k. If it is, add
k to the list of factors of n, replace n by n/k, and repeat the process by finding the
factors of n/k. (Stop if n/k = 1.) If n is not divisible by k, replace k by k + 1 and
repeat the process.

We demonstrate this method by finding the prime factorization of 45. First, 45 is
not divisible by 2. Hence, we check whether it is divisible by 3. It is, so we add 3 to
the list of prime factors, and replace 45 by 15. Now 15 is divisible by 3, so we add 3
again to the list of prime factors, and replace 15 by 15/3 = 5. Now 5 is not divisible
by 3 or by 4, but it is divisible by 5, so we add 5 to the list of prime factors, and
replace 5 by 5/5 = 1. We are now done. The prime factorization of 45 is 3 · 3 · 5.

The method just described is a very inefficient method of factoring and can in fact
(with just a little thought) be improved greatly. However, factoring integers seems to
be an inherently difficult problem. The search for efficient factorization techniques is
an ongoing research effort, even today. ▲

19.C The infinitude of primes

Thousands of years ago, the ancient Greeks knew that there were infinitely many
primes. We give here an adaptation of the proof given by Euclid of this fact. What
we will prove is actually that no finite set of primes includes the set of all primes.
This clearly implies that the set of all primes must be infinite.

Theorem 19.14. There are infinitely many prime numbers.

Proof. Let S be any finite set of prime numbers. Let

N = 1 +
∏
p∈S

p.

Then N ≥ 2 so N is divisible by some prime q by Theorem 19.7.
Using the division algorithm to divide N by any prime p ∈ S leaves a remainder of

1, so no prime in S divides N . Hence, q must be a prime that is not in S. Therefore,
S cannot be the set of all primes.

Since no finite set of primes consists of all the primes, there must be infinitely
many primes.
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Remark 19.15. We can test this proof in specific situations by selecting any finite
set of primes that we wish to consider, and constructing a prime not in that set. For
instance, let S = {2, 3, 5, 7, 11}. Then N = 2311. In this case, N is prime and N /∈ S.

Now suppose that S = {2, 3, 5, 7, 11, 13, 17, 19}. Then N = 9699691 = 347 ·27953.
Both 347 and 27953 are primes not in S. ▲

19.D Exercises

Exercise 19.1. For each of the following integers n, give its canonical prime factor-
ization.

(a) n = 27. (b) n = 3072. (c) n = 60.

Exercise 19.2. Let p be a prime number and let n ∈ N. Let P (n) be the open
sentence

if p divides any product of n integers, then p divides one of those integers.

Prove by induction that P (n) is true for each n ∈ N. (Hint: The case n = 2 is
Theorem 19.5. For the inductive step, when showing P (k+ 1) you should assume its
premise, namely that p|a1 · · · akak+1, for some a1, . . . , ak+1 ∈ Z.)

Exercise 19.3. Let n > 1 be a natural number. Prove that the smallest divisor d of
n that is greater than 1 is prime.

Exercise 19.4. The goal of this exercise is to prove that there are infinitely many
primes which are congruent to −1 modulo 3. We will do this in a series of steps.
(a) Prove that, with only one exception, every prime number is congruent to either

1 or −1 modulo 3.
(b) Prove that for any n ∈ N and any a1, . . . , an ∈ Z, if ai ≡ 1 (mod 3) for each

1 ≤ i ≤ n, then the product a1a2 · · · an is also congruent to 1 modulo 3. (Use
induction.)

(c) Suppose that N ∈ N, and N ≡ −1 (mod 3). Prove that N is divisible by some
prime p such that p ≡ −1 (mod 3). (Hint: Working by way of contradiction,
assume that no prime factor of N is congruent to −1 modulo 3. What happens
if all the prime factors are congruent to 1 modulo 3? What happens if one of
the prime factors is the exceptional prime from part (a)?)

(d) Prove that there are infinitely many primes p that are congruent to −1 modulo
3. (Hint: Let {p1, . . . , pn} be any finite set of primes that are congruent to −1
modulo 3. Mimic the proof of Theorem 19.14, using −1+3(p1p2 · · · pn) in place
of N .)

Exercise 19.5. Prove that there are infinitely many primes p such that

p ≡ −1 (mod 4).

(Hint: Do steps (a) through (d) of the previous exercise with 3 replaced by 4 every-
where.)
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Chapter VI

Relations

Assumptions are the termites of relationships. Henry Winkler

Studying relationships between objects can yield important information about
the objects themselves. For the real numbers, we study inequalities; for sets, we
study inclusion; for the integers, we study divisibility and congruences. All of these
relationships, whether between real numbers, sets, or integers, will be seen to be
special cases of the concept of a relation introduced in this chapter.

Because it encompasses so many different examples, the concept of a relation has
very broad applicability, but this level of generality limits what we can prove. Any
theorems proved about relations must be true for a wide variety of relationships. For
this reason, mathematicians have singled out several types of relations for special
study. Among these special relations are equivalence relations, which we will study
later in this chapter, and functions, which we will study in the next chapter.

By studying special types of relations, the theorems that we can prove will be
much more interesting. The relations that we study have been chosen to be widely
applicable, while simultaneously providing us with a rich collection of theorems.

147
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20 Properties of relations

20.A What is a relation?

There are many relations that occur in mathematics. For instance, < on the real
numbers is a relation. Inclusion, ⊆, is a relation on sets. Divisibility on the natural
numbers is a relation. The following definition of a relation encompasses all of these
examples and others.

Definition 20.1. Let A and B be sets. A relation from A to B is a subset
R ⊆ A×B. For arbitrary elements a ∈ A and b ∈ B we will write aRb to mean
(a, b) ∈ R.

In the case when A = B, we say R is a relation on A.

This definition is very general; in fact, it is so general that many examples of
relations may have no mathematical significance. Nevertheless, some relations are
very important. We give a number of examples.

Example 20.2. Let A = {1, 2, 3} and B = {x, y, z}. Set R = {(1, y), (3, x)}. Then
we have 1Ry and 3Rx, but not 1Rz (so we write 1̸Rz). In fact, besides 1 relating to
y and 3 relating to x, no element of A relates to any element of B (under the relation
R given in this example). △

Example 20.3. Let A = B = N, and let R = {(a, b) ∈ N × N : a − b = 2}. Then
3R1 and 5R3, but 1̸R3 and 5̸R1. △

Example 20.4. We can define relations on sets of words. Indeed, let W be the set
of all words in the English language. Let

R = {(α, β) ∈ W ×W : α and β have the same length}.

Under this relation, two words are related to each other exactly when they have the
same length. Thus “tree” is related to “yaks,” but “awesome” is not related to “gum.”
We might name this relation the “have the same length” relation. △

Sometimes we can define relations using symbols other than R. For instance:

Example 20.5. Let A = {1, 2, 3, 4, 5}, and let B = P(A). We define a relation from
A to B using the following set of ordered pairs:

R = {(a,X) ∈ A×B : a ∈ X}.

Since X is a set, it makes sense to ask whether a is an element of X.
In this case, if we take a = 2 and X = {1, 2, 3} we see that aRX. However, with

a = 2 and X = {1, 4, 5}, we have a̸RX.
Given a ∈ A and X ∈ B, we see that aRX if and only if a ∈ X. Thus, we could

have used the symbol “∈” instead of “R.” △
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The following example exhibits a construction of a relation in a way that will be
important to us in later sections.

Example 20.6. Let A = {1, 2, 3, 4, 5}. We break A up into pieces by letting S =
{{1, 2}, {3, 4}, {5}}. (There were many different ways we could have broken A into
pieces; this is just one of them.) We now define a relation R on A by

R = {(a, b) ∈ A× A : for some X ∈ S, both a ∈ X and b ∈ X}.

Let’s test whether or not 1 is related to 2. Take a = 1 and b = 2. Note that a
and b are both in {1, 2} ∈ S. Hence, there is some X (namely X = {1, 2}) that is an
element of S such that a ∈ X and b ∈ X, so we see that 1R2.

If we take a = 1 and b = 4, there is no element X ∈ S such that a ∈ X and b ∈ X,
so (1, 4) /∈ R. If we work through all the possible elements of A× A, we find that

R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)}. △

There are many different ways to define a relation. One option is to simply list
all the possible ordered pairs in R. Another option we have seen is to write R using
set-builder notation. For instance, we defined the “have the same length” relation this
way. Sometimes set-builder notation is too clunky, and so we express the definition
of the relation in words. The following example shows how this is commonly done.

Example 20.7. Recall the relation defined in Example 20.3,

R = {(a, b) ∈ N× N : a− b = 2}.

To define the same relation, we could have instead said the following:

Let R be a relation on N, defined by aRb if a− b = 2.

This is shorthand for the more complete sentence: “Let R be the relation on the
natural numbers, N, defined as the set of ordered pairs (a, b) ∈ N × N satisfying
a − b = 2.” When we define a relation R by a condition (such as a − b = 2) that
condition tells us exactly when we should expect a to relate to b. △

Warning 20.8. As with any definition, when we define a relation R with the
word “if,” the proper interpretation is “if and only if.” For instance, in the
previous example, the definition really means “aRb if and only if a − b = 2.”
This is a standard convention of mathematical language that can take some
getting used to.

Example 20.9. Let A = R, and define a relation on A by xRy if x− y is negative.
If we wish to express R in set-builder notation, we could write

R = {(x, y) ∈ R× R : x− y is negative}.

Because R×R is just R2 we can graph the set R in the coordinate plane, as follows.
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x

y

Notice that xRy means the same thing as x < y. In fact, this is the mathematical
relation “less than,” and it is usually just denoted by the symbol “<” rather than
being called R. △

Often, for commonly used relations, we will find that there is a standard symbol.
If there is not, we might use a nonstandard symbol, in which case we must be careful
to define what the symbol means.

Some other standard symbols for relations on the real numbers are

≤, ≥, >, =, ̸= .

In Exercise 20.2 you will be asked to graph the set R ⊆ R×R corresponding to each
of these relations.

We end with one more example of a relation that is denoted with a standard
symbol.

Example 20.10. Let A be the set of all compound sentences formed from P and Q.
Define a relation R on A by xRy if x is logically equivalent to y. This relation R is
usually written ≡. △

20.B Properties of relations on a set A

We now study different properties that relations on a set A can have. These properties
(especially the first three) have proven to be very useful; relations that satisfy these
properties tend to be more mathematically interesting than other relations.

Definition 20.11. Let R be a relation on a set A.
(1) We say that R is reflexive if: ∀a ∈ A, aRa.
(2) We say that R is symmetric if: ∀a, b ∈ A, aRb ⇒ bRa.
(3) We say that R is transitive if: ∀a, b, c ∈ A, ((aRb) ∧ (bRc)) ⇒ (aRc).
(4) We say that R is antisymmetric if: ∀a, b ∈ A, ((aRb) ∧ (bRa)) ⇒ a = b.
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Example 20.12. Consider the “equality” relation on C. Which of the four properties
above hold for this relation?

It is reflexive, since given any a ∈ C we know a = a. It is also symmetric, since
given a, b ∈ C if a = b then b = a. It is transitive; for given a, b, c ∈ C if we assume
a = b and b = c, then a = c. Finally, it is antisymmetric. (Can you fill in the proof?
Let a, b ∈ A. Assume a = b and b = a. Conclude a = b.) △

Example 20.13. Consider the relation < on R. We will show that < is not reflexive,
is not symmetric, is transitive, and is antisymmetric.

(Not reflexive): Fix 0 ∈ R. We have 0 ≮ 0.
(Not symmetric): Fix 0, 1 ∈ R. We have 0 < 1 but 1 ≮ 0.
(Transitive): Let a, b, c ∈ R. Assume a < b and b < c. It follows that a < c.
(Antisymmetric): Let a, b ∈ R. Assume a < b and b < a. This is impossible,

so the implication is vacuously true. △

Example 20.14. Let A = {1, 2, 3, 4}. Define a relation R on A by

R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4)}.

We will prove that R is reflexive, symmetric, and transitive, but not antisymmetric.
We can do this by just checking every possibility.

(Reflexive): To see that R is reflexive, we note that each of the four elements of
A relates to itself; this is because (1, 1), (2, 2), (3, 3), and (4, 4) are in R.

(Symmetric): To see that R is symmetric, we note that for any pair in R,
reversing the order of the elements in the pair yields another pair in R; for example,
(1, 2) ∈ R, and reversing the elements, (2, 1) is also in R. (What if a = 1 and b = 4?
In that case the implication is vacuously true, since the premise is false.)

(Transitive): Transitivity is harder to see. Technically, you have 4 options for
each of a, b, and c, giving a total of 64 cases. Most of those cases involve a false
premise (hence are vacuously true). Let’s do a case that is not vacuous. Notice that
(1, 2) ∈ R. In addition, there are three elements c such that (2, c) ∈ R, namely
c = 1, 2, 3. Since each of (1, 1), (1, 2), and (1, 3) are in R, we see that whenever
(1, 2) ∈ R and (2, c) ∈ R, we have (1, c) ∈ R. Repeating this process with each
element of R in place of (1, 2), we see that R is transitive.

(Not antisymmetric): Fix a = 1 and b = 2 in R. We find 1R2 and 2R1, but
1 ̸= 2. △

Remark 20.15. Notice that when a relation R is given explicitly by a set, it can be
difficult to check transitivity. As we will see in the following examples, transitivity is
often easier to check when R is defined by a rule. ▲

Example 20.16. Let R be the relation on R given by aRb if b − a ∈ [0,∞). This
relation is really just ≤, so we will write it using that symbol. Let’s check each of the
four properties.

(Reflexive): Let a ∈ R. We have a ≤ a.
(Not symmetric): Fix a = 0 and b = 1 in R. We have 0 ≤ 1 but 1 ≰ 0.
(Transitive): Let a, b, c ∈ R. Assume a ≤ b and b ≤ c. Then a ≤ c.
(Antisymmetric): Let a, b ∈ R. Assume a ≤ b and b ≤ a. This forces a = b. △
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In the examples above we either proved a property holds or it fails. Thus, we
have been using the negations of each of the properties. The following table lists all
of the negations. (We leave it as an easy exercise to identify which row corresponds
to which property.)

Definition Negation

∀x ∈ A, xRx ∃x ∈ A, x̸Rx
∀x, y ∈ A, xRy ⇒ yRx ∃x, y ∈ A, xRy ∧ y ̸Rx

∀x, y, z ∈ A, xRy ∧ yRz ⇒ xRz ∃x, y, z ∈ A, xRy ∧ yRz ∧ x̸Rz
∀x, y ∈ A, (xRy ∧ yRx) ⇒ x = y ∃x, y ∈ A, xRy ∧ yRx ∧ x ̸= y

Example 20.17. Let U be a nonempty set, and let S = P(U). We can define a
relation R on S by ARB if A ⊆ B (where A,B ∈ S are subsets of U). Then R is
easily seen to be reflexive (since every set is a subset of itself), transitive (since A ⊆ B
and B ⊆ C implies A ⊆ C), and antisymmetric (since A ⊆ B and B ⊆ A implies
A = B), but not symmetric. (Can you prove this last statement?) △

Example 20.18. Let A be any nonempty set, and let R = ∅ be the empty relation
on A. We note that R is not reflexive (since, for a ∈ A, we have a̸Ra). On the
other hand, R is symmetric, transitive, and antisymmetric, since the implications
defining these properties are vacuously true for R (since no elements of A are related
by R). △

Example 20.19. Let A be any nonempty set, and let R = A × A. Then, for any
a, b ∈ A, we have aRb. The relation R is easily seen to be reflexive, symmetric, and
transitive. It is antisymmetric if and only if |A| = 1. △

Example 20.20. Let A = N, and for a, b ∈ N, define aRb if, for some x ∈ N,
ax = b. Note that saying that aRb is the same as saying that a | b; this relation is just
divisibility, so we will write a | b instead of aRb. Before reading further, try to decide
which of the four properties hold for this relation.

(Reflexive): Given any a ∈ N, we know a | a (because a · 1 = a).
(Transitive): If a | b and b | c then a | c, see Proposition 7.13.
(Antisymmetric): In addition, R is antisymmetric, since a | b and b | a implies

that a = b. (See Corollary 17.2. Note that the relation in this example is defined
on N, not Z. The divisibility relation on Z is not antisymmetric; take a = 1 and
b = −1.)

(Not symmetric): Note that 1 | 2 but 2 ∤ 1. △

20.C Exercises

Exercise 20.1. Let A = {1, 2, 3, 4, 5, 6} and let

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (2, 6), (3, 5), (4, 5), (4, 6)}.



20. PROPERTIES OF RELATIONS 153

(a) Give an example of elements a, b ∈ A such that aRb.
(b) Give an example of elements a, b ∈ A such that a̸Rb.
(c) For a ∈ A, let Sa = {x ∈ A : aRx}. Thus, Sa is the set of elements to which a

relates. Write down the six sets S1, . . . , S6.
(d) For a ∈ A, let Ta = {x ∈ A : xRa}. Thus, Ta is the set of elements which

relate to a. Write down the six sets T1, . . . , T6.

Exercise 20.2. For the relations R from R to R defined below, write R as a set using
set-builder notation, and graph R as a subset of R2.
(a) Define R by xRy if x ≤ y.
(b) Define R by xRy if x ≥ y.
(c) Define R by xRy if x > y.
(d) Define R by xRy if x = y.
(e) Define R by xRy if x ̸= y.

Exercise 20.3. Define a relation R on R by xRy if xy < 0.
(a) Describe R as a set using set-builder notation.
(b) Graph R as a subset of R× R.
(c) Determine whether R is reflexive, symmetric, transitive, and/or antisymmetric.

(Give complete proofs.)

Exercise 20.4. Define a relation R on R by xRy if x− y ∈ Z.
(a) Describe R as a set using set-builder notation.
(b) Graph R as a subset of R× R.
(c) Determine whether R is reflexive, symmetric, transitive, and/or antisymmetric.

(Give complete proofs.)

Exercise 20.5. Define a relation R on Z by aRb if a− b is even.
(a) Describe R as a set using set-builder notation.
(b) Prove that R is reflexive, symmetric, and transitive.
(c) Prove that R is not antisymmetric.
(d) For which integers b is it the case that 1Rb?

Exercise 20.6. For each part, give an example of a relation R on the set A = {1, 2, 3}
with the specified properties. Write R as a set of ordered pairs.
(a) R is reflexive, symmetric, and transitive.
(b) R is reflexive and symmetric, but not transitive.
(c) R is reflexive and transitive, but not symmetric.
(d) R is reflexive, not symmetric, and not transitive.
(e) R is not reflexive, but is symmetric and transitive.
(f) R is not reflexive and not transitive, but is symmetric.
(g) R is not reflexive and not symmetric, but is transitive.
(h) R is not reflexive, not symmetric, and not transitive.

Exercise 20.7. Let A = {1, 2, 3, 4, 5} and let S = {{1, 2, 3}, {3, 4}, {5}}. Define

R = {(a, b) ∈ A× A : for some X ∈ S, both a ∈ X and b ∈ X}.

(See Example 20.6 for a similar construction.)
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(a) Write out the elements of R.
(b) Is R reflexive? Symmetric? Transitive? (Give complete proofs.)

Exercise 20.8. Let A = {1, 2, 3, 4, 5} and let S = {{1, 2}, {4, 5}}. Define

R = {(a, b) ∈ A× A : for some X ∈ S, both a ∈ X and b ∈ X}.

(See Example 20.6 for a similar construction.)
(a) Write out the elements of R.
(b) Is R reflexive? Symmetric? Transitive? (Give complete proofs.)
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21 Equivalence relations

Knowing that we have a relation R on a set A tells us very little about either R or A.
We can find many examples of relations on A, but without further information there
is very little that we can say about a relation.

Placing conditions (such as “reflexive”, “symmetric”, and so forth) on a relation
reduces the number of examples that we can find, but increases the amount that we
know and can prove about each example.

One class of relations that has proven useful to mathematicians is the class of
equivalence relations. Equivalence relations have enough conditions that we can prove
useful theorems about them, but they are general enough that there are many exam-
ples of them in all areas of mathematics.

21.A Definition and examples

The definition of an equivalence relation is as follows:

Definition 21.1. Let R be a relation on a set A. We say that R is an equivalence
relation if R is reflexive, symmetric, and transitive.

Equality is the prototypical example of an equivalence relation, but there are many
more examples.

Example 21.2. Let A = {1, 2, 3, 4}. Define a relation R on A by

R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4)},

as in Example 20.14. We have seen that R is reflexive, symmetric, and transitive.
Hence, R is an equivalence relation. △

Example 21.3. Let A = Z and for a, b ∈ A, we let aRb if a and b have the same
parity. One easily checks that this relation is reflexive (an integer has the same parity
as itself), symmetric (if a and b have the same parity, then so do b and a), and
transitive (if a and b have the same parity, and b and c have the same parity, then a
and c have the same parity). Hence, R is an equivalence relation. △

Example 21.4. Let A = R and for a, b ∈ A, we let aRb if |a| = |b|. Again, one
checks easily that this is reflexive (|a| = |a|), symmetric (|a| = |b| clearly implies that
|b| = |a|), and transitive (if |a| = |b| and |b| = |c|, then |a| = |c|). Hence R is an
equivalence relation. △

Example 21.5. Let A be the set of all triangles. For a, b ∈ A, we let aRb if a is
similar to b. (Recall from geometry that two triangles are similar if they have the
same interior angles.). One sees easily that this is an equivalence relation. △
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In many cases, equivalence relations are written using symbols other than R to
indicate that two elements are related. A common symbol to use for a generic equiv-
alence relation is ∼, which can be read “is equivalent to.” Other symbols that might
be used to represent equivalence relations include ≡, ∼=, ≈, ≊, ≃, ≏. Using these
symbols for a relation that is not an equivalence relation can cause confusion. Note
that these symbols can have many different meanings, so if you use them it is impor-
tant to say what they mean. For instance, ≡ could mean congruence modulo n or
it could mean logical equivalence (or it could have another meaning) depending on
where it occurs.

Example 21.6. Let A = R × R. Define a relation ∼ on A by (a, b) ∼ (c, d) if
a2 + b2 = c2 + d2. We check that ∼ is an equivalence relation.

Note that for (a, b) ∈ R× R, we have a2 + b2 = a2 + b2. Hence, (a, b) ∼ (a, b), so
∼ is reflexive.

Suppose that (a, b) ∼ (c, d). Then a2 + b2 = c2 + d2, so c2 + d2 = a2 + b2, and
(c, d) ∼ (a, b). Hence, ∼ is symmetric.

Finally, assume that (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then a2 + b2 = c2 + d2 and
c2 + d2 = e2 + f 2, so a2 + b2 = e2 + f 2, and we see that (a, b) ∼ (e, f). Hence ∼ is
transitive.

Therefore, ∼ is an equivalence relation. △

Example 21.7. Let P , Q, R be statements and let A be the set of all compound
statements formed from P , Q, and R. For a, b ∈ A, we let a ≡ b if a is logically
equivalent to b. One may check that ≡ is an equivalence relation. △

Example 21.8. Let A = {1, 2, 3, 4, 5} and let S = {{1, 2}, {3, 4}, {5}}.
Define a relation R on A by

(21.9) R = {(a, b) ∈ A× A : for some X ∈ S, both a ∈ X and b ∈ X}.

This is the same relation that we constructed in Example 20.6, where we saw that

(21.10) R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)}.

We will now prove that R is an equivalence relation. We note two facts about S that
will be important: (1) every element of A is a member of some element of S, and
(2) the elements of S are disjoint sets; no two of them share an element of A. We
will prove that R is an equivalence relation using (21.9), rather than the explicit list
(21.10).

(Reflexive): Let a ∈ A. There is some X ∈ S such that a ∈ X. Hence,
(a, a) ∈ R, so aRa. Therefore, R is reflexive.

(Symmetric): Let a, b ∈ A and assume aRb. Then (a, b) ∈ R, so for some X ∈ S
we have a, b ∈ X. Hence, b, a ∈ X, so (b, a) ∈ R, and we see that bRa. Therefore R
is symmetric.

(Transitive): Let a, b, c ∈ A and assume aRb and bRc. Then there is someX ∈ S
such that a, b ∈ X, and there is some Y ∈ S such that b, c ∈ Y . Since the elements
of S are disjoint, b ∈ X and b ∈ Y implies that X = Y . Therefore, both a and c are
in X, and aRc. Therefore R is transitive. △
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21.B Equivalence classes

The properties of equivalence relations are chosen to mimic properties of equality.
Often when we have an equivalence relation it is useful to gather together elements
that are related under the equivalence relation and to treat them as if they were equal.
Forming equivalence classes is the tool that performs this gathering.

Definition 21.11. Let A be a set and let ∼ be an equivalence relation on A.
For an element a ∈ A, we define the equivalence class of a by

[a] = {x ∈ A : a ∼ x}.

The element a is called a representative of the class [a].

Other common notations for the equivalence class of a are a, â, or ã. These
symbols are used to represent the equivalence classes for many different equivalence
relations; thus, if you use one of these notations, you must define it. Similarly, if
you see such symbols in mathematical writing, you should look to see how they are
defined.

Example 21.12. Let A = {1, 2, 3, 4} and define a relation R on A by

R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4)}.

We saw in Example 20.14 that R is an equivalence relation. We now determine its
equivalence classes.

First, [1] consists of all elements x ∈ A such that 1Rx. Examining R, we find that
1R1, 1R2, 1R3, and 1̸R4. Hence, [1] = {1, 2, 3}.

Now [2] consists of all elements x ∈ A such that 2Rx. Examining R, we find that
2R1, 2R2, 2R3, and 2̸R4. Hence, [2] = {1, 2, 3}.

Similarly, [3] = {1, 2, 3}.
Finally, [4] = {4}, since the only x ∈ A with 4Rx is x = 4.
We note that there are two equivalence classes in A, namely [1] = [2] = [3] =

{1, 2, 3} and [4] = {4}. These classes divide the set A into two subsets, as in the
diagram below.

1

2

3

4
△

Example 21.13. Let A = {1, 2, 3, 4, 5, 6}, and define a relation ∼ on A by

R =

{
(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3),
(4, 2), (4, 4), (5, 5), (5, 6), (6, 5), (6, 6)

}
.

Then R is an equivalence relation. We will determine the equivalence classes of R.
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To determine [1], we look for all of the ordered pairs (1, x) ∈ R. We see that the
only x’s which work are 1 and 3. Hence, [1] = {1, 3}.

Similarly, [2] = {2, 4}, [3] = {1, 3}, [4] = {2, 4}, [5] = {5, 6}, and [6] = {5, 6}. We
note that there are three equivalence classes, since [1] = [3], [2] = [4] and [5] = [6].
Because A is finite, we can easily draw a picture illustrating how the equivalence
classes divide A into three pieces.

1

2

3

4

5

6
△

Example 21.14. Let A = Z, and let ∼ be the relation defined on A by a ∼ b if a and
b have the same parity. We saw in Example 21.3 that ∼ is an equivalence relation.
We will compute the equivalence classes.

The equivalence class [0] consists of all numbers having the same parity as 0.
Hence, [0] = {even integers}. The equivalence class [1] consists of all numbers having
the same parity as 1. Hence, [1] = {odd integers}.

Notice that if a is any even integer, [a] = {even integers} = [0], and if a is any
odd integer, [a] = {odd integers} = [1]. Hence, in this case, there are exactly two
equivalence classes, each containing infinitely many elements. Each class also has
infinitely many representatives. For instance, · · · = [−2] = [0] = [2] = [4] = · · · . △
Example 21.15. Let A = R, and for a, b ∈ A, we let a ≏ b if |a| = |b|. We saw
in Example 21.4 that ≏ is an equivalence relation. For a ∈ A, we will denote the
equivalence class of a by [a].

We see that [0] = {x ∈ R : 0 ≏ x} = {x ∈ R : |0| = |x|}. There is only one such
value of x, namely x = 0. Hence, [0] = {0}.

Now, [1] = {x ∈ R : 1 ≏ x} = {x ∈ R : |1| = |x|}, or in other words the
real numbers with absolute value 1. There are two such numbers: 1 and −1. Hence,
[1] = {1,−1}.

Moving to negative numbers, [−2] = {x ∈ R : −2 ≏ x} = {x ∈ R : |−2| = |x|},
or in other words, the real numbers with absolute value 2. There are two such
numbers: 2 and −2. Hence, [−2] = {2,−2}.

In general, if a ∈ R and a ̸= 0, we see that [a] = {a,−a}.
We see that there are infinitely many different equivalence classes in R, each

having one or two elements. △
We conclude by stating a very simple theorem that is really just a restatement of

the definition of an equivalence class. Nevertheless, the restatement is quite useful to
help us recall how to tell whether an element is in an equivalence class.

Theorem 21.16. Let ∼ be an equivalence relation on a set A and let a, b ∈ A.
Then a ∼ b if and only if b ∈ [a].

Proof. Assume that a ∼ b. Then, by the definition of [a], we have b ∈ [a].
Assume that b ∈ [a]. Then, by the definition of [a], we have a ∼ b.
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21.C Exercises

Exercise 21.1. Let A = {1, 2, 3} and let R be the relation on A given by

R = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.

Is R reflexive? Symmetric? Transitive? Antisymmetric? Is R an equivalence relation?
(Give proofs.)

Exercise 21.2. Give an example of an equivalence relation R on the set A =
{1, 2, 3, 4, 5} that has exactly two equivalence classes. Explicitly write out the re-
lation R as a set of ordered pairs.

Exercise 21.3. LetR be an equivalence relation on the set A = {1, 2, 3, 4, 5}. Assume
that 1R3 and 3R4. Given these conditions, which ordered pairs must belong to R?
(Hint: There are at least 11 such elements.)

Exercise 21.4. Let A = {1, 2, 3, 4, 5} and let S = {{1, 2}, {3, 4}, {5}}. Define

R = {(a, b) ∈ A× A : for some X ∈ S, both a ∈ X and b ∈ X}

as in Example 21.8. We have seen that R is an equivalence relation. What are the
equivalence classes of R?

Exercise 21.5. Let A = R− {0}. Define a relation ∼ on A by a ∼ b if ab > 0.
(a) Prove that ∼ is an equivalence relation on A.
(b) Determine the equivalence classes of ∼.

Exercise 21.6. Let A be the set of humans with English names. Define a relation
≈ on A by α ≈ β if α and β have the same first letter in their first names. (For
instance, anyone named “Eugene” is related by ≈ to anyone named “Elizabeth”.)
(a) Prove that ≈ is an equivalence relation on A.
(b) Determine the equivalence classes of ≈.

Exercise 21.7. Let A be a set. Let R be a reflexive, symmetric, and antisymmetric
relation on A. Prove that R is equality on A. (In other words, prove that for any
x, y ∈ A, we have xRy if and only if x = y.)
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22 Equivalence classes and partitions

In this section we prove that an equivalence relation allows us to break up a set
into jigsaw-like pieces that one can fit together to give the entire set. Conversely,
we will prove that if you break a set into jigsaw pieces, then one can define a cor-
responding equivalence relation. We saw an example of this earlier, with the set
A = {1, 2, 3, 4, 5, 6}. The equivalence relation

R =

{
(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3),
(4, 2), (4, 4), (5, 5), (5, 6), (6, 5), (6, 6)

}
corresponded to breaking A into the equivalence classes pictured below.

1

2

3

4

5

6

This correspondence holds for arbitrary equivalence relations, as we will prove in
this section.

22.A Properties of equivalence classes

The following theorem provides some useful criteria for determining whether two
equivalence classes are equal.

Theorem 22.1. Let ∼ be an equivalence relation on a set A, and for any x ∈ A
denote the equivalence class of x by [x]. For any x, y ∈ A, the following are
equivalent:
(1) x ∼ y (the elements are related).
(2) [x] ∩ [y] ̸= ∅ (the classes intersect nontrivially).
(3) [x] = [y] (the classes are equal).

Proof. We prove the equivalence by proving three implications: (1)⇒(3), (3)⇒(2),
and (2)⇒(1). This will prove that we can move from any one condition to any other.

(1)⇒(3): Assume x ∼ y. By symmetry we also have y ∼ x. We wish to show
[x] = [y]. We will prove this equality by showing both inclusions.

First we will show [x] ⊆ [y]. Let z ∈ [x]. We then know x ∼ z. Since y ∼ x and
x ∼ z, by transitivity we obtain y ∼ z. Hence z ∈ [y], and we have shown [x] ⊆ [y].

The other inclusion, [y] ⊆ [x], is proved similarly.
(3)⇒(2): Now assume [x] = [y]. By the reflexive property, x ∼ x. Thus x ∈ [x] =

[y]. Hence [x] ∩ [y] ̸= ∅ since x is in the intersection.
(2)⇒(1): Finally, assume [x]∩ [y] ̸= ∅. Fix z ∈ [x]∩ [y]. We then have x ∼ z and

y ∼ z. By symmetry and transitivity, x ∼ y.
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This theorem, along with Theorem 21.16 from the previous section, allows us to
prove three central properties for equivalence classes. Let A be a set and let ∼ be an
equivalence relation on A. The following all hold:

(1) (Nonempty pieces) No equivalence class is empty.

Proof. Let [x] be an equivalence class. Since x ∼ x by the reflexive property,
we then have x ∈ [x].

(2) (Covering) Every element of A is an element of some equivalence class.

Proof. An arbitrary element a ∈ A belongs to the equivalence class [a] (again,
by the reflexive property).

(3) (Disjoint pieces) Any two classes are either disjoint or equal.

Proof. Since (2) implies (3) in Theorem 22.1, two classes that are not disjoint
are equal.

We can think of these three conditions as describing how to break a set into jigsaw
pieces. First, none of the pieces should be empty. (Empty jigsaw pieces would just
fall out of the box, and they wouldn’t be missed anyway!) Second, when you put all
of the pieces together, you should get the entire puzzle (in this case, the entire set
A). Third, none of the pieces should overlap (else they don’t fit together into a jigsaw
puzzle).

We have proved that these three facts about equivalence classes are necessary.
In the next subsection, we will show that they are sufficient to describe a (unique)
equivalence relation with the same equivalence classes.

22.B Partitions and equivalence classes

The three facts mentioned at the end of the previous subsection help us to define the
concept of a partition, as follows:

Definition 22.2. Let A be a set. A collection P of subsets of A is called a
partition of A if the following three conditions hold:

(Nonempty pieces) No set in P is empty.
(Covering) Every element of A is a member of some element of P .
(Disjoint pieces) Any two distinct elements of P are disjoint.

The elements of P are called the parts of the partition.

Example 22.3. Let A = {1, 2, 3}. Then the following are partitions of A:

P1 = {{1, 2, 3}},
P2 = {{1, 2}, {3}},
P3 = {{1, 3}, {2}},
P4 = {{2, 3}, {1}},
P5 = {{1}, {2}, {3}}.
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If we wish to represent these five partitions graphically, we can do so as below in
which the set A = {1, 2, 3} is represented as a circle. The parts of the partition are
separated by line segments.

1

32

P1

1

32

P2

1

32

P3

1

32

P4

1

32

P5

Careful examination shows that there are no other partitions of A.
Each of the following collections is not a partition of A. Try to figure out what is

wrong in each case before reading the answers below.
(1) {∅, {1, 2}, {3}}
(2) {{1, 3}}
(3) {{1, 2}, {2, 3}}
(4) {{1, 2}, {3, 4}}
(5) {1, 2, 3}
Here are the reasons each of the sets above is not a partition of A:

(1) This collection fails the “nonempty pieces” condition, since one of the pieces is
empty.

(2) This collection fails the “covering” condition, since we are missing 2.
(3) This collection fails the “disjoint pieces” condition, since the two distinct pieces

overlap.
(4) This collection does not consist of subsets of A. (It would be a partition for the

new set B = {1, 2, 3, 4}.)
(5) This collection is not a set of sets. (It would be a partition with an extra pair

of set braces around it, and would then equal P1 above.)
△

Example 22.4. Let’s partition N into four parts. One such partition would be the
following:

P = {{1}, {2}, {3}, {x ∈ N : x ≥ 4}}.
Three of the pieces are very small, and the other piece is infinite.

Another possibility would be the following, somewhat more natural, example.
Given n ∈ N let Sn = {x ∈ N : x ≡ n (mod 4)}. Our new partition is

P ′ = {S1, S2, S3, S4}.

This is a partition because every natural number is congruent to exactly one of the
four numbers 1, 2, 3, 4. △

Example 22.5. There are fifteen different partitions of the set A = {1, 2, 3, 4}. We
do not list them all, but mention that there is one partition with one part, seven
partitions with two parts, six partitions with three parts, and one partition with
four parts. As an example, {{1, 2}, {3, 4}} is a partition of A with two parts, and
{{1}, {2}, {3, 4}} is a partition of A with three parts. △
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The following theorem asserts that from an equivalence relation we can build a
partition.

Theorem 22.6. Let ∼ be an equivalence relation on a set A. For any a ∈ A,
denote its equivalence class by [a]. Then the set

P = {[a] : a ∈ A}

is a partition of A.

Proof. We already proved above that the set of equivalence classes satisfies all three
of the defining conditions for a partition.

The next two examples will demonstrate how we pass from an equivalence relation
to a partition.

Example 22.7. Let A = {1, 2, 3} and let R be the relation defined by

R = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.

We can easily confirm that R is an equivalence relation. The equivalence classes are
[1] = {1} and [2] = {2, 3} = [3]. Hence, the set of equivalence classes is {{1}, {2, 3}},
which is the partition P4 from Example 22.3. △

Example 22.8. Consider the “same parity” relation on Z. The two equivalence
classes are the sets of even integers and odd integers. This partitions Z into two
disjoint sets. △

The next theorem allows us to pass from a partition to an equivalence relation,
thereby reversing the direction of the previous theorem.

Theorem 22.9. Let P be a partition of a set A. There is an equivalence relation
∼ on A such that the equivalence classes of ∼ are precisely the parts of P .

Proof. Let P be a partition of A. Define the relation ∼ on A by a ∼ b if a and b are
both in a common part of P . We will show that ∼ is an equivalence relation.

First note that if A is empty (so that P is also empty), then symmetry and
transitivity hold vacuously, while reflexivity holds since there is nothing to check. So,
hereafter we assume A is nonempty.

(Reflexive): Let a ∈ A. By the covering property, a is an element of some part
of P . Hence, a ∼ a, so ∼ is reflexive.

(Symmetric): Let a, b ∈ A and assume a ∼ b. Thus, there is some part X ∈ P ,
such that a ∈ X and b ∈ X. Hence, b, a ∈ X, so b ∼ a. Thus, ∼ is symmetric.

(Transitive): Let a, b, c ∈ A and assume a ∼ b and b ∼ c. So a, b ∈ X and
b, c ∈ Y , where X and Y are parts of P . Since b is an element of both X and Y , we
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must have X = Y (by the disjoint pieces property), so a, c ∈ X, and hence a ∼ c.
Thus, ∼ is transitive, and this finishes the proof that ∼ is an equivalence relation.

Finally, we will prove that the equivalence classes of ∼ are exactly the parts of
P . For any a ∈ A there is exactly one part X ∈ P with a ∈ X (by the covering
and disjoint pieces conditions). By the definition of ∼, the elements of [a] are exactly
the elements of X, so [a] = X. Hence, the equivalence classes of ∼ are parts of P .
Conversely, we show that the parts of P are equivalence classes. Given a part X ∈ P ,
it is nonempty. So fix a ∈ X. By the same argument above we obtain [a] = X, so it
is an equivalence class.

Together, Theorems 22.6 and 21.3 tell us that partitions of a set A and equivalence
relations on A correspond to each other; every partition gives an equivalence relation
and every equivalence relation gives a partition. The following example demonstrates
this fact concretely.

Example 22.10. We partition Z into three pieces, in the following way:

P = {{0}, {x ∈ Z : x < 0}, {x ∈ Z : x > 0}}.

In other words, we partition Z into its zero, negative, and positive pieces.
What is the corresponding equivalence relation? It is the “two elements are related

if they are both positive, both zero, or both negative” relation. More formally,

R = {(x, y) ∈ Z× Z : x, y ∈ Z>0 or x = y = 0 or x, y ∈ Z<0}. △

22.C Transversals of equivalence relations

On occasion it is important to be able to refer to representatives of equivalence classes.
When we pick one representative for each class, the collection of those representatives
has a special name.

Definition 22.11. Let ∼ be an equivalence relation on a set A. A transversal
of ∼ is a set S ⊆ A, such that S consists of exactly one representative of every
equivalence class of ∼.

Example 22.12. Let A = {1, 2, 3, 4, 5} and let

R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)}.

Then R is an equivalence relation on A. The equivalence classes of R are

[1] = [2] = {1, 2}, [3] = {3}, [4] = [5] = {4, 5}.

Then the set {1, 3, 5} is a transversal, since it consists of a single element from each
equivalence class. Other transversals are {1, 3, 4}, {2, 3, 4}, and {2, 3, 5}. △
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Example 22.13. Define a relation ∼ on R by a ∼ b if a − b ∈ Z. Thus, two real
numbers are related by ∼ if they are an integer apart from one another. So, for
instance, π is related to π − 3. We will show that ∼ is an equivalence relation, and
that the set [0, 1) is a transversal of ∼.

(Reflexive): Let a ∈ R. We have a− a = 0 ∈ Z, and so a ∼ a.
(Symmetric): Let a, b ∈ R, and assume a ∼ b. Thus, a − b ∈ Z, so b − a =

−(a− b) ∈ Z, and b ∼ a.
(Transitive): Let a, b, c ∈ R. Assuming a ∼ b and b ∼ c, then we know that

a− b, b− c ∈ Z. Adding, we find that a− c = (a− b) + (b− c) ∈ Z, so a ∼ c.
Hence, ∼ is an equivalence relation.
We now proceed to show that [0, 1) is a transversal of∼. Define the floor of x, writ-

ten ⌊x⌋, to be the unique integer such that ⌊x⌋ ≤ x < ⌊x⌋+ 1. Thus, ⌊x⌋ is obtained
by “rounding down,” even when x is negative. (So ⌊5.6893⌋ = 5, ⌊−3.49583⌋ = −4,
and ⌊π⌋ = 3.) The quantity x− ⌊x⌋ is called the fractional part of x and is in [0, 1).

First, every element of R is related to its fractional part, since xminus its fractional
part x− ⌊x⌋ is the integer ⌊x⌋. This shows that some element from each equivalence
class is a member of [0, 1). Finally, if a, b ∈ [0, 1) with a ̸= b, then a ̸∼ b, since
0 < |a− b| < 1, so a− b /∈ Z. Thus, no more than one element from any equivalence
class belongs to [0, 1). △

Advice 22.14. There are typically two steps to proving that a given set T is a
transversal of an equivalence relation ∼ on a set A.

First, you need to prove that every element of A is related to at least one
element of T . Often this can be done by giving an explicit construction; for any
element a of A, construct an element t ∈ T such that a ∼ t.

Second, you need to prove that every element of A is related to at most
one element of T . This can be done directly, by assuming, for t1, t2 ∈ T , that
a ∼ t1 and a ∼ t2, and proving that t1 must equal t2; it can also be done
simply by showing that any two elements of T that are related to each other are
actually equal. (The reader should convince themselves that either of these two
statements suffices.)

Example 22.15. Let ∼ be the relation on R×R defined by (a, b) ∼ (c, d) if a+ d =
b+ c. We will show that ∼ is an equivalence relation and give a transversal of ∼.

(Reflexive): Let (a, b) ∈ R× R. Then (a, b) ∼ (a, b) since a+ b = a+ b.
(Symmetric): Let (a, b), (c, d) ∈ R × R. Assume that (a, b) ∼ (c, d). Then

a+ d = b+ c. If follows that c+ b = a+ d, and we see that (c, d) ∼ (a, b).
(Transitive): Let (a, b), (c, d), (e, f) ∈ R × R. Assume that (a, b) ∼ (c, d) and

(c, d) ∼ (e, f). Then a+ d = b+ c and c+ f = d+ e. Adding these equations, we see
that a+ d+ c+ f = b+ c+ d+ e. Subtracting c+ d from both sides of this equality,
we see that a+ f = b+ e, so (a, b) ∼ (e, f).

Hence, ∼ is reflexive, symmetric, and transitive, so it is an equivalence relation.
Let T = {(0, d) : d ∈ R}. We will show that T is a transversal for ∼.
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Let (a, b) ∈ R×R. Then (0, b−a) ∈ T , and (a, b) ∼ (0, b−a), since a+(b−a) = b+0.
Hence, every element of R× R is related to at least one element of T .

Now, suppose that (0, d1) ∼ (0, d2). Then 0 + d2 = d1 + 0, hence d1 = d2. So
(0, d1) = (0, d2). This shows that no element of R × R is related to more than one
element of T . Therefore T is a transversal. △

22.D Exercises

Exercise 22.1. Let A = {1, 2, 3, 4}. List one partition of A with one part, seven
partitions of A with two parts, six partitions of A with three parts, and one partition
of A with four parts. This gives a total of fifteen partitions of A. (There are no more,
but you do not need to prove this.)

Exercise 22.2. Let A be a set with |A| = 10, and let ∼ be an equivalence relation
on A. Denote the equivalence classes of ∼ by [x], for each x ∈ A. Suppose that we
have elements a, b, c ∈ A with |[a]| = 3, |[b]| = 5, and |[c]| = 1.
(a) Are any of a, b, and c related by ∼?
(b) How many equivalence classes for ∼ are there in A?

Exercise 22.3. Define a relation ∼ on R2 by (a, b) ∼ (c, d) if a2 + b2 = c2 + d2. We
saw in Example 21.6 that ∼ is an equivalence relation.
(a) Describe the equivalence class [(3, 4)], both as a set and geometrically.
(b) For an arbitrary element (a, b) ∈ R2, describe [(a, b)].
(c) Prove that the set [0,∞)× {0} is a transversal of ∼.

Exercise 22.4. Let W be the set of all words in the English language. Define a
relation on W by α ≈ β if α and β have the same first letter.
(a) Prove that ≈ is an equivalence relation.
(b) Let [α] be the equivalence class of α ∈ W . For α = “cat”, list six elements of

[α].
(c) How many equivalence classes are there in W for ≈?
(d) Describe a transversal of ≈. (You do not need to write it down in full.)

Exercise 22.5. Let A be a set with n elements. Define a relation ∼ on P(A) by
X ∼ Y if |X| = |Y |, for any X, Y ∈ P(A).
(a) Prove that ∼ is an equivalence relation.
(b) Describe the equivalence classes for ∼.
(c) How many equivalence classes are there for ∼?
(d) Describe a transversal of ∼.
(e) How many elements of P(A) are in each equivalence class?

Exercise 22.6. Let A = {1, 2, . . . , 10}. For each i ∈ A, define

Si = {X ∈ P(A) : i is the least element of X}

Let P = {{∅}, S1, . . . , S10}.
(a) Prove that P is a partition of P(A). (Hint: Are the parts of P empty? Disjoint?

Is every element of P(A) in some part?)
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(b) Let ∼ be the equivalence relation on P(A) corresponding to P . How many
equivalence classes does ∼ have?

(c) Write down a transversal of ∼.
(d) Determine the equivalence class [{8, 9, 10}] by listing its elements.
(e) How large is the equivalence class [{2, 3, 4}]? (Do not write down all of its

elements.)

Exercise 22.7. Give another proof of Theorem 22.1, by proving that (1) implies (2),
that (2) implies (3), and that (3) implies (1). Note that your proof should not use
any theorems after or including Theorem 22.1; it should only use basic properties of
equivalence relations and equivalence classes.

Exercise 22.8. In this exercise we will show that an equivalence relation is uniquely
determined by its equivalence classes, as follows: Let A be any set. Let ∼ and ≈ be
two equivalence relations on A. Show that if their equivalence classes are the same,
then the relations are the same. (In other words, conclude that for all a, b ∈ A, we
have a ∼ b if and only if a ≈ b.)

(Hint: For ease of notation, write the equivalence classes for ∼ using [a], and the
equivalence classes for ≈ using a.)
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23 Integers modulo n

In this section we will study integer congruence and prove it is an equivalence relation.

23.A Review of integer congruence

Recall the definition of congruence modulo n (Definition 8.11).

Definition 23.1. Let a, b, n ∈ Z. We say that a ≡ b (mod n) if n | (a− b).

We read a ≡ b (mod n) as “a is congruent to b modulo n” or “a is congruent to b
mod n.” This defines a relation on Z. (Two elements are related if they are congruent
modulo n.) We refer to the relation as “congruence modulo n.”

Theorem 23.2. Congruence modulo n is an equivalence relation on Z.

Proof. (Reflexive): Let a ∈ Z. We have n | 0, so n | (a− a). Hence, a ≡ a (mod n),
and so congruence modulo n is reflexive.

(Symmetric): Let a, b ∈ Z, and assume a ≡ b (mod n). Then n | (a − b), so
(a − b) = nk for some k ∈ Z. This implies that b − a = n(−k), so n | (b − a), and
b ≡ a (mod n). Hence, congruence modulo n is symmetric.

(Transitive): Let a, b, c ∈ Z, and assume both a ≡ b (mod n) and b ≡ c
(mod n). Then a− b = nk and b− c = nℓ for some k, ℓ ∈ Z. Then

a− c = (a− b) + (b− c) = nk + nℓ = n(k + ℓ),

so a ≡ c (mod n). Hence, congruence modulo n is transitive.

23.B Congruence classes modulo n

Having verified that congruence modulo n is an equivalence relation, we can utilize
our knowledge of equivalence relations from the previous sections. In particular, we
can talk about equivalence classes under the relation of congruence modulo n.

For instance, congruence modulo 3 is an equivalence relation. The set of integers
that are congruent to 0 modulo 3 is

{. . . ,−6,−3, 0, 3, 6, 9, . . .}.

This is the equivalence class of 0, under the relation “congruence modulo 3,” which
is also the equivalence class of 3, 6, −3, and so forth. We will see in a moment that
there are only two other equivalence classes, which are

{. . . ,−5,−2, 1, 4, 7, . . .}

and
{. . . ,−4,−1, 2, 5, 8, . . .}.

We will now set up the notation to prove this in much greater generality.
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Definition 23.3. An equivalence class in Z under the relation congruence mod-
ulo n is called a congruence class modulo n. The congruence class of a ∈ Z will
be denoted a.

Given a, b ∈ Z, we see by Theorem 22.1 that a = b if and only if a ≡ b (mod n).
We know by Theorem 22.6 that the equivalence classes for an equivalence relation

on Z form a partition of Z. We will now proceed to determine the congruence classes
mod n and the number of distinct classes. To do this we will make use of the division
algorithm. In the following theorem we restrict to the case n ∈ N, since allowing n
to be 0 would make the theorem false (why?) and allowing n to be negative would
require absolute values in the statement.

Theorem 23.4. Let n ∈ N. There are n congruence classes modulo n, namely
the classes

0, 1, 2, . . . , n− 1.

For any a ∈ Z, we have
a = {a+ kn : k ∈ Z}.

Proof. We first prove that the only congruence classes are the ones listed in the
theorem. Let a ∈ Z. By the division algorithm a = qn + r for some q, r ∈ Z and
0 ≤ r < n. Thus a − r = qn, so a ≡ r (mod n). Hence, a = r is one of the n
congruence classes listed in the theorem.

It remains to show that no two congruence classes listed in the theorem are equal.
Suppose that i, j ∈ Z, with 0 ≤ i < n and 0 ≤ j < n such that i ̸= j. We will show
that i ̸= j, by showing that i ̸≡ j (mod n). Assume, without loss of generality, that
0 ≤ j < i < n. Then 0 < i− j < n, and since there are no multiples of n between 0
and n, we see that n ∤ i− j. Hence i ̸≡ j (mod n), so i ̸= j.

Finally, we note that for any a ∈ Z,

a = {x ∈ Z : x ≡ a (mod n)}
= {x ∈ Z : x− a = kn for some k ∈ Z}
= {x ∈ Z : x = a+ kn for some k ∈ Z}
= {a+ kn : k ∈ Z}

as claimed.

The set of congruence classes modulo n is so important that we give it a special
symbol.

Definition 23.5. Let n ∈ N. We define Zn to be the set

{0, 1, 2, . . . , n− 1}

of congruence classes modulo n.
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We note the following facts about Zn:
(a) |Zn| = n.
(b) Every element of Z is a member of exactly one element of Zn.
(c) Every element of Zn is an infinite subset of Z.

Example 23.6. The set Z4 has four elements. They are written 0, 1, 2, 3. Each
of these elements, even though it looks like a number, is really an infinite set. For
instance,

1 = {. . . ,−7,−3, 1, 5, 9, . . .}. △

Remark 23.7. We have said that the n elements 0, . . . , n− 1 are the only elements
in Zn. There are many other integers, in fact infinitely many, which are not elements
of the set {0, 1, . . . , n− 1}. What happens to their congruence classes?

The proof of Theorem 23.4 shows that for every integer a ∈ Z, the congruence
class a is the same as one of the classes r with 0 ≤ r < n. We can think of a and r
as different names for the same congruence class. For instance, in Z6 the congruence
class 1 has many different representatives:

· · · = −11 = −5 = 1 = 7 = 13 = 19 = · · · . ▲

23.C Operations on Zn

Even though the elements of Zn are sets (not numbers), we still want to treat these
elements as if they were numbers. In fact, you have probably already done this
without realizing it. For instance, when you add clock times together you are doing
arithmetic in Z12. When you use the fact that “odd plus even equals odd” you are
doing arithmetic in Z2.

The following theorem will help us make a sensible definition of addition and
multiplication on the set Zn.

Theorem 23.8. Let n ∈ N. For a, b, c, d ∈ Z, if a ≡ b (mod n) and c ≡ d
(mod n), then
(1) a+ c ≡ b+ d (mod n) and
(2) ac ≡ bd (mod n).

Proof. Suppose that a ≡ b (mod n) and that c ≡ d (mod n). Then a − b = nk and
c− d = nℓ for some k, ℓ ∈ Z.

In order to prove that (1) holds, we examine (a+ c)− (b+ d) and find

(a+ c)− (b+ d) = (a− b) + (c− d) = nk + nℓ = n(k + ℓ),

so a+ c ≡ b+ d (mod n). Hence, (1) is true.
To prove that (2) holds, we note that a = b+ nk and c = d+ nℓ. Multiplying, we

find that

ac = (b+ nk)(d+ nℓ) = bd+ bnℓ+ nkd+ n2kℓ = bd+ n(bℓ+ kd+ nkℓ).

Thus ac− bd = n(bℓ+ kd+ nkℓ), so ac ≡ bd (mod n). Hence, (2) is true.
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The next example demonstrates how using this theorem can help simplify com-
putations modulo n.

Example 23.9. We have that 28 ≡ 2 (mod 26) and 29 ≡ 3 (mod 26). Hence,
according to the theorem, 28 · 29 ≡ 2 · 3 (mod 26). Indeed, computation shows that

28 · 29− 2 · 3 = 812− 6 = 806 = 26 · 31.

Multiplying 2 and 3 is much easier than multiplying 28 and 29. Thus, finding 28 · 29
modulo 26 is very easy. You just multiply 2 · 3 = 6. △

The upshot of this theorem is that when adding and multiplying, if we are only
interested in what the result is modulo n, then we only need to worry about what the
inputs are modulo n. Motivated by this, we make a definition of what it means to
add and multiply congruence classes mod n. (The following definition may be strange
at first. If so, work through the examples which follow.)

Definition 23.10. Let n ∈ N. Given X, Y ∈ Zn, then X = a and Y = b for
some a, b ∈ Z. We define

X + Y = a+ b,

and
X · Y = a · b,

where the + and · on the right denote addition and multiplication of integers.

Warning 23.11. It is important to notice that on the left-hand side of the
equations in this definition, the + and · symbols are not the usual addition and
multiplication of integers. They are telling us how to add and multiply elements
of Zn, which are sets rather than just numbers. The definition shows that these
operations are closely related to addition and multiplication on the integers, but
they are not the same!

We will illustrate this definition by working modulo 7 and modulo 11. In these
examples, when we work in Zn we will always write our results as r with 0 ≤ r < n,
even though we may use numbers larger than n during the computations.

Example 23.12. Let n = 7. We perform the following computations in Z7:

5 + 6 = 5 + 6 = 11 = 4,

1 + 6 = 1 + 6 = 7 = 0,

5 · 6 = 5 · 6 = 30 = 2,

3 · 5 = 3 · 5 = 15 = 1.

If we want to add two equivalence classes, we choose representatives, add the repre-
sentatives, and then simplify (in this case modulo 7). △
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Example 23.13. We perform the following calculations in Z11.

5 + 6 = 5 + 6 = 11 = 0,

1 + 6 = 1 + 6 = 7,

5 · 6 = 5 · 6 = 30 = 8,

3 · 5 = 3 · 5 = 15 = 4.

If we want to add two equivalence classes, we choose representatives, add the repre-
sentatives, and then simplify (in this case modulo 11). △

Warning 23.14. It is important to note that it is not obvious that the defini-
tions of multiplication and addition in Zn make sense. We have defined X + Y
for X, Y ∈ Zn by choosing integers a, b with X = a and Y = b, and defining
X + Y = a+ b. However, other choices of integers would be possible. Suppose
that we had chosen (possibly different) representative c and d with X = c and
Y = d. Then our definition would claim that X + Y = c+ d. If the result of
addition depends on an arbitrary choice, then we do not have a good definition.

Fortunately, in this case, Theorem 23.8 comes to our rescue. If we have
X = a = c and Y = b = d, then we know that a ≡ c (mod n) and b ≡ d
(mod n). Hence, a + b ≡ c + d (mod n), by Theorem 23.8, so a+ b = c+ d.
Hence, our choices made no difference in the definition of X + Y .

When we have a definition that appears to depend on arbitrary choices,
but for which the arbitrary choices can be shown to make no difference in the
definition, we say that the object being defined is well-defined. In other words,
we have shown that addition on Zn is well-defined.

Example 23.15. We write the complete addition and multiplication tables for Z6.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

In these tables we wrote every entry using 0, 1 . . . , 5. We can do this because S =
{0, 1, . . . , 5} is a transversal for the equivalence classes. We could have used any other
transversal such as {1, 2, 3, 4, 5, 6}, {−2,−1, 0, 1, 2, 3}, or even {−10,−5, 0, 5, 10, 15}
(but it is best to keep things simple).

We notice some interesting facts about multiplication and addition in Zn that are
different from addition and multiplication in Z.

If a is an integer and a + a = 0, then a must equal 0. However, in Z6 we have
3 + 3 = 0 even though 3 ̸= 0.

If a, b ∈ Z with a · b = 0, then either a = 0 or b = 0. However, in Z6 we have
2 · 3 = 0 even though neither 2 nor 3 is equal to 0. △
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This example shows that we cannot take facts about addition or multiplication in
Zn for granted. We must prove those facts about addition and multiplication which
we wish to use in Zn, rather than just assuming they hold. In the exercises you will
prove some basic facts about operations in Zn that do match our intuition from Z.
We demonstrate with an example.

Example 23.16. Let n ∈ N. We will prove that for eachX ∈ Zn, we haveX+0 = X.
Let X ∈ Zn. Then for some a ∈ Z, we have X = a. (Note that we could take

0 ≤ a < n, but we do not need this extra information.) We find

X + 0 = a+ 0 = a+ 0 = a = X. △

23.D Exercises

Exercise 23.1. Let n ∈ N and a ∈ Z. Prove that 0 ∈ a if and only if n | a.

Exercise 23.2. Compute the following. Write the results as r, with r ∈ Z nonnega-
tive and as small as possible.
(a) 6 + 7 in Z9.
(b) 6 · 7 in Z9.
(c) 59 · 119 in Z30.
(d) 6 · 5 + 85 in Z7.

(e) 2
10

in Z5. (By an we mean a · a · · · a︸ ︷︷ ︸
n times

).

Exercise 23.3. Create addition and multiplication tables for Z5. Be sure to write
each entry of the tables as one of 0, 1, 2, 3, or 4.

Exercise 23.4. Let n ∈ N. Prove the following facts about addition and multiplica-
tion in Zn.
(a) For all X, Y ∈ Zn, X + Y = Y +X.
(b) For all X, Y ∈ Zn, X · Y = Y ·X.
(c) For all X ∈ Zn, X · 0 = 0.
(d) For all X ∈ Zn, X · 1 = X.
(e) For all X ∈ Zn, X · 2 = X +X.
(f) For all X ∈ Zn, there is some Y ∈ Zn such that X + Y = 0.
(g) For all X, Y, Z ∈ Zn, (X + Y ) · Z = (X · Z) + (Y · Z).

Exercise 23.5. Demonstrate that for each X ̸= 0 in Z5, there is some Y ∈ Z5 such
that X ·Y = 1. (Hint: Use the multiplication table that you created in Exercise 23.3.)

Exercise 23.6. Is it true that for each X ̸= 0 in Z6, there is some Y ∈ Z6 such that
X · Y = 1?

Exercise 23.7. In this exercise we generalize what was done in the previous two
exercises.
(a) If n ∈ N is composite, prove that there are elements a, b ∈ Zn with a · b = 0

even though a, b ̸= 0.
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(b) If n ∈ N is prime, prove that given a, b ∈ Zn, if a · b = 0, then a = 0 or b = 0.
(Hint: Euclid’s Lemma, Theorem 19.5.)

(c) If n ∈ N is prime, prove that for any nonzero a ∈ Zn, there exists b ∈ Zn with
a · b = 1. (Hint: First prove that if a ̸= 0 then GCD(a, n) = 1. Then write 1 as
a linear combination of a and n.)



Chapter VII

Functions

Greatness is not a function of circumstance. Greatness, it turns out, is largely a
matter of conscious choice, and discipline. James C. Collins

Functions play an important role in mathematical applications to physics, engi-
neering, biology, economics, etc. If you have taken algebra and calculus, then you
evaluated functions, graphed functions, and determined derivatives and integrals of
functions. However, the precise definition of what a function is may have been some-
what vague.

In this chapter we will make precise exactly what modern mathematicians mean by
a function. The definition will allow us to study functions on sets much more general
than real numbers. We will see examples of functions defined on the real numbers,
the integers, the natural numbers, congruence classes, power sets, and other sets.

We will also discuss various properties of functions. The properties that we study
have been chosen for their usefulness; they show up throughout higher mathematics.

As you progress in mathematics, you will find that an important tool in studying
any class of mathematical objects is the study of functions between the objects. The
definitions and techniques that we learn in this chapter will prepare you for this study.

175
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24 Defining functions

The main purpose of this section is to formally define what we mean by a function.
We will also give examples.

24.A What is a function?

Recall that we have defined a relation from a set A to a set B to be a subset of A×B.
We now define a function from A to B as a relation that satisfies certain conditions.

Definition 24.1. Let A and B be sets. A function from A to B is a relation f
from A to B (i.e., a subset of A×B), such that each a ∈ A is a first coordinate
of exactly one element of f . In other words

∀a ∈ A,∃! b ∈ B, (a, b) ∈ f.

We call A the domain of f , and we call B the codomain of f .

To specify that f is a function from A to B, we may write “Let f : A → B be a
function.”

Example 24.2. Let A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5}. Define a relation f by

f = {(1, 2), (2, 2), (3, 4), (4, 1)}.

We see that f is a function, because each of the four elements of A is a first coordinate
of exactly one ordered pair in f .

It is sometimes useful to visualize a function via a diagram. For instance, the
function f described above could be visualized in the following diagram.

B

1

2

3

4

5
A

1

2

3

4

Here, we draw an arrow from a ∈ A to b ∈ B if (a, b) ∈ f . So there is an arrow from
1 ∈ A to 2 ∈ B, since (1, 2) ∈ f .

Note that since f is a function, we have exactly one arrow emanating from each
element of the domain. There is no such restriction on the codomain; some elements
of the codomain may have multiple arrows pointing at them and others may have no
arrows pointing at them. △
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Example 24.3. Let A = {a, b, c, d, e} and B = {1, 2, 3}. Define a relation f by

f = {(a, 1), (b, 1), (c, 3), (d, 3), (a, 2)}.

This relation f fails to be a function for two reasons: First, the element a ∈ A is the
first coordinate of two different ordered pairs, namely (a, 1) and (a, 2). Second, the
element e ∈ A is not the first coordinate of any ordered pair in f .

We can see these failures if we draw a diagram of the relation f .

A

a

b

c

d

e B

1

2

3

The element a has two arrows emanating from it; the element e has none. △

Since a function f from A to B is a relation from A to B, for a ∈ A and b ∈ B
such that (a, b) ∈ f we could write a f b. However, for functions we typically use a
different notation.

Definition 24.4. Let f : A → B be a function. We write

f(a) = b

to mean that (a, b) ∈ f . In other words, f(a) is the second coordinate of the
unique ordered pair having a as its first coordinate.

When f(a) = b, we say that b is the image of a under the function f .

Example 24.5. Let A = {1, 2, 3, 4} and B = {5, 6, 7, 8}. Let f : A → B be the
function

f = {(1, 5), (2, 6), (3, 7), (4, 8)}.
Then we may write f(1) = 5, f(2) = 6, f(3) = 7, and f(4) = 8. We say that
the image of 4 under f is 8. If it is understood that f is the only function under
consideration, we could just say that the image of 4 is 8 (since there is no possibility
of confusion about which function we mean). △

In many cases that we encounter, we will be able to define a function f : A → B
by some kind of mathematical formula. If we wish to do this, we would want to give
a rule that would tell us the value of f(a) for any given element a ∈ A.

Example 24.6. Let f : A → B be the function defined in Example 24.5. Rather
than defining f by listing all of its ordered pairs, we might define f as follows:

For each a ∈ A, we have f(a) = a+ 4.
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This tells us that f(1) = 1+4 = 5, so (1, 5) ∈ f . Also f(2) = 2+4 = 6, so (2, 6) ∈ f ,
and f(3) = 3 + 4 = 7, so (3, 7) ∈ f . Finally, f(4) = 4 + 4 = 8, so (4, 8) ∈ f .

Another way to describe this function by a formula would be to say that

f = {(a, a+ 4) : a ∈ A}. △

Example 24.7. Define a function f : R → R by f(x) = x2 for each x ∈ R. We may
find the images of various real numbers under this function; f(2) = 4, f(

√
3) = 3,

and so on. Note that for any real number x, the output x2 is also a real number, so
the function does in fact go from R to R. Note that as a set

f = {(x, x2) : x ∈ R},

and we graph this set below; the graph is called the graph of the function.

−2 −1 1 2
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2
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x

y

△

Warning 24.8. When defining a function f : A → B by a formula, as above, it
is very important to verify that for each element of A, the output of the formula
is actually an element of B. If even one of the values is not an element of B,
then f is not a function from A to B.

Example 24.9. Suppose we try to define a function f : R → Z by the formula
f(x) = x2 for all x ∈ R. We have exactly the same rule as in the previous example,
but now, for many real numbers x, the image of x under f is not in Z. For instance,
f(0.5) = 0.25 /∈ Z. Hence, f is not a function from R to Z. △

Sometimes we will wish to determine if two functions are equal. For this, we will
use the following definition.

Definition 24.10. Two functions f and g are equal if they have the same
domain, the same codomain, and they are equal as sets of ordered pairs.

Example 24.11. If we define f : Z → Z by f(x) = 2x, and we define g : Z → R
by g(x) = 2x, then f and g consist of the same set of ordered pairs (namely, the
set {(x, 2x) : x ∈ Z}), but they have different codomains, so they are not the same
function. △
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Example 24.12. If we define f : Z → Z by f(x) = 2x + 2, and we define g : Z → Z
by g(x) = 2(x + 1), then is it the case that these functions are equal? Yes. First,
they have the same domain, Z. Second, they have the same codomain, Z. Third,
they have the same ordered pairs, since f(x) = 2x + 2 = 2(x + 1) = g(x) for each
x ∈ Z. △

24.B Piecewise defined functions

The rule or formula defining a function need not be a simple one-line mathematical
formula. Sometimes we will wish to define a function f : A → B by one formula on
one part of A and by another formula on another part of A. For instance, the absolute
value function is defined on R as

|x| =

{
x if x ≥ 0,

−x if x < 0.

This is a piecewise defined function.
We will make this precise in the following theorem, and give other examples af-

terward.

Theorem 24.13. Let A and B be sets, and suppose that {P,Q} is a partition
of A with two parts. If we are given a function g : P → B and a function
h : Q → B, then f = g ∪ h defines a function f : A → B.

Remark 24.14. The rule for f is

f(a) =

{
g(a) if a ∈ P ,

h(a) if a ∈ Q.

See Exercise 24.7 for a more general version of this theorem. ▲

Proof. We may consider g as a subset of P ×B, which is a subset of A×B, and h as
a subset of Q × B, which is a subset of A × B. Hence, both g and h (considered as
collections of ordered pairs) are subsets of A × B. In fact, g = {(x, g(x)) : x ∈ P}
and h = {(x, h(x)) : x ∈ Q}. Let

f = g ∪ h.

Then f is a subset of A × B, so f is a relation from A to B. To see that f is a
function, it suffices to check that each element of A is the first coordinate of exactly
one ordered pair in f .

To that end, let a ∈ A. Since A is partitioned into two parts, there are two cases;
either a ∈ P or a ∈ Q. Without loss of generality, we may assume a ∈ P . We know
that a is the first coordinate of exactly one ordered pair in g, namely (a, g(a)) (using
the fact that g : P → B is a function). On the other hand, a is not the first coordinate
of any ordered pairs in h (since every ordered pair in h has first coordinate in Q, and
a /∈ Q). Hence, (a, g(a)) is the one and only ordered pair in f that has first coordinate
a. Since a was an arbitrary element of A, we see that f is a function.
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The following example involves finite sets. You might try drawing the arrows
yourself to check that the diagram in the example is correct.

Example 24.15. Let A = P ∪ Q, where P = {1, 2, 3} and Q = {4, 5, 6}, and let
B = {1, 2, 3}. Then {P,Q} is a partition of A. If we define g : P → B by g(x) = 4−x,
and we define h : Q → B by h(x) = x− 3, we see that

g = {(1, 3), (2, 2), (3, 1)}

is a function from P to B and

h = {(4, 1), (5, 2), (6, 3)}

is a function from Q to B. By the theorem we may define a function f : A → B by
the rule

f(a) =

{
4− a if a ∈ {1, 2, 3},
a− 3 if a ∈ {4, 5, 6}.

Graphically, we have the following diagram, where the top three arrows indicate the
function g, and the bottom three arrows are h.

1

2

3

4

5

6

1

2

3

A

B

P

Q

As a collection of ordered pairs, we see that f is given by

f = g ∪ h = {(1, 3), (2, 2), (3, 1), (4, 1), (5, 2), (6, 3)}. △

Example 24.16. Question: What is wrong with the following piecewise defined
function? Try to define f : R → R by

f(x) =

{
x2 + 2 if x ≥ 0,

−1 if x ≤ 0.

Answer: It has two different values at 0, and hence is not a function. The
problem is that the two domains “x ≥ 0” and “x ≤ 0” are not a partition of R (they
overlap). △
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Warning 24.17. Typically, we don’t need to explicitly state that conditions
given to define a piecewise defined function will partition the domain (usually
because this fact is obvious). We must, however, be careful that the conditions
really do define a partition.

In the following example, the conditions in the piecewise defined function implic-
itly define a partition on the domain. We have no need to explicitly name the parts
of the partition.

Example 24.18. We can define a function f : Z → Z by

f(x) =

{
3x+ 1 if x is odd,
x

2
if x is even.

Note that when x is even then x/2 ∈ Z, so this really does give a function with
codomain Z. We have, for instance, f(1) = 4, f(2) = 1, and so forth. △

It is easy to generalize Theorem 24.13 to partitions of A with more than two parts.
You will do this in Exercise 24.7. For now, we give an example.

Example 24.19. We can define a function f : R → R by

f(x) =


−1 if x < −1

0 if −1 ≤ x ≤ 1

1 if 1 < x

Note that the conditions on x partition R. The partition is

{{x ∈ R : x < −1}, {x ∈ R : −1 ≤ x ≤ 1}, {x ∈ R : 1 < x}}.

We graph this function below, with the portions given by the separate conditions in
different colors.

−2 −1 1 2

−1

1

x

y

△

To end this subsection, we define a special kind of (piecewise defined) function,
which is useful in many parts of mathematics.
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Definition 24.20. Let A be a set and let S be a subset of A. The characteristic
function of S, denoted χ

S : A → {0, 1}, is the function defined by the rule

χ
S(a) =

{
1 if a ∈ S

0 if a /∈ S

We can view this situation, as depicted below.

AS A

S

0

1

The elements in S are mapped to 1, and everything else is mapped to 0. The
function χ

S indicates (by the 1 or 0 output, thought of as a “yes/no”) whether an
element belongs to S or not.

Advice 24.21. It can be useful to think of the characteristic function as a metal
detector. It beeps (gives an output of 1) when you are near elements of S (the
metal), but is silent (gives an output of 0) outside S.

Notice that the notation χ
S does not indicate the domain of the characteristic

function. The domain is typically either understood from context or explicitly
stated, for instance by saying “χS : A → {0, 1}”.

Example 24.22. Let A = R and let S = [0, 1] be the closed interval from 0 to 1.
The graph of χS : R → {0, 1} is

−2 −1 1 2

1

x

y

△

24.C Well-defined functions

Sometimes when defining a function by a rule, the rule depends upon a choice we
make. The following is an example.

Example 24.23. Define a function f : Z5 → Z5 by

f(a) = a2.
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Where are we making a choice? We choose a representative a ∈ Z for the congruence
class a. Thus, our rule really is: choose a representative for the class, square the
representative, and then take the class corresponding to this square.

For f to be a function, we must make sure that the output does not depend on
the choice of representative that we make. For instance, the congruence class 3 is the
same as the congruence class 8. Do we get the same output using the representative
3 as we do with 8? Yes, 32 = 9 = 4, and similarly 82 = 64 = 4.

We will now show that this works in general. Let a, b ∈ Z, and assume that
a = b. We then know that a ≡ b (mod 5). Multiplying this equation by itself (using
Theorem 23.8(2)), we find that a2 ≡ b2 (mod 5), so a2 = b2. Hence, we see that

f(a) = a2 = b2 = f(b).

As a set of ordered pairs, we may write f as

f = {(0, 0), (1, 1), (2, 4), (3, 4), (4, 1)}.

Note that in order for the definition of f to make sense, it is important that the ordered
pair (8, 64) is equal to the pair (3, 4), since their first coordinates are equal. △

We now give two examples where we try to define a function by a rule, but the
rule does depend on a choice we make, and thus does not define a function.

Example 24.24. Let’s try to define the “numerator function” f : Q → Z by the rule
f(n/d) = n. In other words, this rule tells us that if we plug in a fraction like 1/2,
we should get as an output the integer 1.

Unfortunately this is not a function, because we can write the same fraction with
two different numerators. For instance 1/2 = 2/4, however we have f(1/2) = 1 and
f(2/4) = 2, thus f(1/2) ̸= f(2/4).

(The modified rule “take the numerator of a fraction n/d, when the fraction is in
lowest terms with d > 0” does yield a function, because there are not two different
ways of writing a fraction in lowest terms.) △

Example 24.25. Suppose we try to define a function f : Z3 → Z by

f(a) = a.

We find the following ordered pairs in f :

f = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), . . .}.

Note, however, that 0 = 3 (since we are in Z3), so f possesses two distinct ordered
pairs, (0, 0) and (0, 3) that both have 0 as a first coordinate. We say that this f is
not a well-defined function. △

Definition 24.26. Suppose that we try to define a function f : A → B by a
rule. If the rule produces multiple images for a single element of A, then we say
that f is not a well-defined function. If the rule for f produces a single image
for each element of A, then we say that f is a well-defined function.
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Advice 24.27. When given a rule, it is usually unnecessary to check that it
produces a well-defined function. Most mathematical operations produce a fixed
result for a given input.

The key indicator which determines whether you should check that a function
is well-defined is that the elements of the domain can be written in different ways
when plugged into the rule, such as when working with equivalence classes.

Example 24.28. Here is another example of a rule that does not yield a well-defined
function. Look for how elements in the domain can be represented in multiple ways.

Suppose a professor wishes to assign grades to his class in a nontraditional way.
He takes X = {students in the class} and Y = {A,B,C,D, F}, and decides to assign
grades by a rule g : X → Y given by

g(student) =


The first letter of the
student’s name

if the result is in {A,B,C,D},

F otherwise.

How would students react to this? Amelia Andrews would be overjoyed. Robert
Smith would likely say “Call me Bob.” What grade would John Adams receive?
Since the professor has not made clear whether the grade is determined by the first
or the last name, John could make a case that he should receive either an A or an F
(he would probably argue for the former).

In this case, the proposed function that the professor wishes to use is not well-
defined. It depends on a choice of which name to use for the student. △

Warning 24.29. Note that if a proposed rule for a function f does not produce
a well-defined function, we would be incorrect to say that “the function f is not
well-defined,” since f is, in fact, not a function. We should instead say “the rule
defining f does not produce a well-defined function,” “the proposed function is
not well-defined,” “f is not a well-defined function,” or something similar (as
long as we do not call f a function).

Example 24.30. In this example we will be working both modulo 6 and modulo 3,
so we need different notations for the different equivalence classes. As usual, we will
denote congruence classes modulo 6 by a, where a ∈ Z. For this example, we will
denote congruence classes modulo 3 by [a], where a ∈ Z. If we define

f : Z3 → Z6

by f([a]) = a and
g : Z6 → Z3

by g(a) = [a], one of f and g is a function and the other is not a function. Which is
which?
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We first prove that g is a well-defined function. Let a, b ∈ Z, and assume that
a = b, so that a ≡ b (mod 6). Hence, a − b = 6k = 3(2k) for some k ∈ Z. This
implies that a ≡ b (mod 3), so [a] = [b]. Therefore, g(a) = [a] = [b] = g(b), and we
see that g is well-defined. Its definition does not depend on the representative we
take for the congruence class.

Next we prove that f is not a well-defined function. Since 1 ≡ 4 (mod 3), we have
that [1] = [4]. However, using the rule above gives f([1]) = 1 ̸= 4 = f([4]). Hence,
the output of f does depend on the representative that we take for [1]. Therefore, f
is not well-defined. △

24.D Exercises

Exercise 24.1. Which of the following relations are functions from the set A =
{1, 2, 3, 4} to the set B = {1, 2, 3, 4, 5}?
(a) f1 = {(1, 3), (2, 3), (3, 3), (4, 3)}.
(b) f2 = {(1, 2), (2, 3), (3, 5), (4, 6)}.
(c) f3 = {(1, 2), (2, 3), (2, 4), (4, 5)}.
(d) f4 = {(1, 2), (1, 3), (2, 3), (3, 4), (4, 1)}.
(e) f5 = {(1, 2), (2, 3), (4, 5)}.
(f) f6 = {(1, 2), (1, 2), (2, 3), (3, 4), (4, 1)}. (Hint: Do repetitions matter?)

Exercise 24.2. In some textbooks it is claimed that f : R → R given by the rule
f(x) = 1/x is a function. Technically this is incorrect because the rule is not defined
at x = 0, and so the largest available domain should be R − {0}. Find the largest
domain for the following functions (supposedly defined from R to R):
(a) f(x) = sin(x).
(b) g(x) = tan(x).
(c) h(x) = ln(x).
(d) p(x) =

√
1− x.

(e) q(x) = 3
√
x/(2 + x).

Exercise 24.3. Let A be a finite set and let B be any set. Let f : A → B be a
function. Considering f as a set of ordered pairs, prove that |f | = |A|.

Exercise 24.4. For a ∈ Z, denote the congruence class of a modulo 8 by a, and the
congruence class of a modulo 4 by [a]. Determine which of the following definitions
give well-defined functions. For those that are well-defined, give a proof. For those
that are not well-defined, give an example to demonstrate this fact.
(a) Define f : Z8 → Z4 by f(a) = [a].
(b) Define g : Z4 → Z8 by g([a]) = a.
(c) Define h : Z4 → Z8 by h([a]) = 2a.
(d) Define j : Z4 → Z8 by j([a]) = 3a.

Exercise 24.5. Define f : Z5 → Z5 by f(a) = a5. Define g : Z5 → Z5 by g(a) = a.
You may assume that f and g are both well-defined (which they are). Are f and g
equal? (Hint: Both f and g are collections of exactly five ordered pairs.)
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Exercise 24.6. Let A be a set, and let S1, S2 be subsets of A. Given an arbitrary
a ∈ A, prove the following facts for characteristic functions defined on the domain A:
(a) If T = S1 ∪ S2 and S1 ∩ S2 = ∅, then χ

T (a) = χ
S1(a) + χ

S2(a).
(b) If T = S1 ∩ S2, then χ

T (a) = χ
S1(a) · χS2(a).

(c) If T = S1 ∪ S2, then χ
T (a) = χ

S1(a) + χ
S2(a)− χ

S1(a) · χS2(a).
(Hint: Cases.)

Exercise 24.7. Let A and B be sets. Let I be an indexing set, and let P = {Pi :
i ∈ I} be an arbitrary partition of A. For each i ∈ I, let fi : Pi → B be a function.
Prove that the relation

f =
⋃
i∈I

fi

is a function from A to B and that the rule for f (as a piecewise defined function) is

f(a) = fi(a) when a ∈ Pi for some i ∈ I.

(Hint: Modify the proof of Theorem 24.13.)
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25 Injective and surjective functions

Although a function from A to B consists of ordered pairs with the condition that
each element a ∈ A is the first coordinate of exactly one ordered pair, there is no
such constraint on elements of B. As we have seen, it is possible that an element of
B can be the second coordinate of several ordered pairs in a function; it can also be
the second coordinate of no ordered pairs.

We will now discuss two conditions on functions that together guarantee that
every element of B is the second coordinate of exactly one ordered pair. Even though
the strongest results occur when both conditions hold, each condition separately is
important enough to study on its own.

25.A Injective functions

Given some curve in the plane (such as in the two pictures below), in order for it
to be the graph of a function it must pass the vertical line test : every vertical line
hits the curve in at most one point. Thus, the curve on the left does not represent a
function, while the curve on the right passes the test.

x

y

x

y

Thus, the vertical line test checks that each x-input yields at most one y-output.
If we turn this around, and ask which functions pass the horizontal line test (i.e., no
output comes from two different inputs) we get the following definition:

Definition 25.1. Let f : A → B be a function. We say f is injective if distinct
elements of A are mapped by f to distinct elements of B. In symbols,

∀a1, a2 ∈ A, a1 ̸= a2 ⇒ f(a1) ̸= f(a2).

In order to avoid working with inequalities, one often instead uses the contra-
positive

(25.2) ∀a1, a2 ∈ A, f(a1) = f(a2) ⇒ a1 = a2.
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Advice 25.3. Students should memorize (25.2), as that is the formulation of
injectivity commonly used in proofs. Injectivity will be usually accomplished by
doing a direct proof using (25.2), although on occasion other methods can be
utilized.

Injective functions are also called “one-to-one” (or 1-1) functions, meaning each
element of B is the image of at most one element from A. In other words, for each
b ∈ B either there is a unique a ∈ A such that f(a) = b, or there is no element in A
that maps to B. This is in contrast to functions that might take two, three, or more
elements of A to one fixed element of B. In other words, a function f : A → B is
injective exactly when:

(25.4) Each b ∈ B is the second coordinate of at most one ordered pair in f .

The name “one-to-one” does not refer to the fact that the function takes each
individual element of A to one element of B (as opposed to multiple elements of B);
this is a property that all functions have (corresponding to the vertical line test).

The next example illustrates what injectivity looks like for functions between finite
sets.

Example 25.5. Let A = {1, 2, 3} and let B = {1, 2, 3, 4}. Define f : A → B by

f = {(1, 4), (2, 3), (3, 1)}.

Clearly, distinct elements of A map to distinct elements in B. In other words, 1, 2,
and 3 each go to different places. Hence, f is injective by checking (25.4) in every
case.

Thinking of f pictorially, we get

B

1

2

3

4
A

1

2

3

In terms of the diagram, we can think of injectivity as meaning that there is never
more than one arrow pointing at an element of B. △

Example 25.6. Let A = {1, 2, 3} and let B = {1, 2, 3, 4}. Define f : A → B by

f = {(1, 4), (2, 3), (3, 3)}.

Thinking of f pictorially, we get
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B

1

2

3

4
A

1

2

3

We see from the diagram that f(2) = f(3) even though 2 ̸= 3. Thus, this function is
not injective. △

In most of the following examples we take Advice 25.3 to heart and prove injec-
tivity by showing that (25.2) holds.

Example 25.7. Let f : R → R be defined by f(x) = 2x + 1. Notice that f passes
the horizontal line test, so it should be injective. We will prove that claim.

Let x1, x2 ∈ R. Assume that f(x1) = f(x2). Then 2x1 +1 = 2x2 +1. Subtracting
1 and dividing by 2, we obtain x1 = x2. Hence, f is injective. △

Example 25.8. Let f : R → R be defined by f(x) = x2. This function fails the
horizontal line test, so it should not be injective. Indeed, f(1) = f(−1), but 1 ̸= −1.
Hence, f is not injective. △

Example 25.9. Let f : [0,∞) → R be defined by f(x) = x2. We will show that f is
injective. (Notice that it passes the horizontal line test, since it is only the right half
of the parabola.)

Let x1, x2 ∈ [0,∞). Assume f(x1) = f(x2), so x2
1 = x2

2. Hence x2
1 − x2

2 = 0, and
factoring we have

(x1 − x2)(x1 + x2) = 0.

One of the two factors must be zero, and thus there are two cases to consider.
Case 1: x1+x2 = 0. In this case x1 = −x2. But since x1 and x2 are nonnegative,

the only way this can happen is if x1 = x2 = 0.
Case 2: x1 − x2 = 0. Therefore, x1 = x2.
In both cases x1 = x2, and thus we have shown that f is injective. △

The previous two examples show that injectivity depends as much on the domain
as on the rule used to define the function.

Example 25.10. Let f : R− {2} → R− {1} be defined by

f(x) =
x− 1

x− 2
.

First, notice that f is indeed a function with the given domain and codomain. For
a ∈ R − {2}, we see that f(a) is a real number. If f(a) were equal to 1, we would
have

a− 1

a− 2
= 1,
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so that a− 1 = a− 2, and hence −1 = −2. This is not possible, so f(a) ∈ R− {1}.
Now, we prove injectivity. Let x1, x2 ∈ R− {2} and suppose that f(x1) = f(x2).

We have
x1 − 1

x1 − 2
=

x2 − 1

x2 − 2
.

Cross-multiplying, we find

(x1 − 1)(x2 − 2) = (x2 − 1)(x1 − 2).

Expanding both sides, we obtain

x1x2 − 2x1 − x2 + 2 = x1x2 − x1 − 2x2 + 2

Cancelling equal terms on both sides, and adding 2x1 + 2x2 to both sides yields

x2 = x1.

Hence, f is injective. △

Example 25.11. Define a function f : Z → Z by

f(n) =

{
n+ 1 if n ≥ 0,

n if n < 0.

We will show that f is injective.
Working contrapositively, let a, b ∈ Z and assume a ̸= b. We note that a+1 ̸= b+1.

There are now three possible cases.
Case 1: Assume a ≥ 0 and b ≥ 0. Then f(a) = a+ 1 ̸= b+ 1 = f(b).
Case 2: Assume a < 0 and b < 0. Then f(a) = a ̸= b = f(b).
Case 3: Assume (without loss of generality) that a < 0 and b ≥ 0. Then f(a) = a <

0 and f(b) = b+ 1 > 0, so f(a) ̸= f(b).
In all cases we have shown f(a) ̸= f(b). Hence, f is injective. △

Remark 25.12. Proving that a piecewise defined function is injective will almost
always involve a proof by cases. ▲

25.B Surjective functions

Recall the two graphs of curves given in the previous subsection:

x

y

x

y
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The curve on the left is not a function because it fails the vertical line test. If we
are asking for a function from R to R, then the curve on the right also fails to be a
function because it is not defined everywhere. In other words, some vertical lines do
not hit the curve; there are “holes” for all negative values of x.

Thus, any function f : A → B satisfies two basic properties:
� (Vertical line test): For each input, there is at most one output.
� (No holes in the domain): For each input, there is at least one output.

Putting these two properties together we get exactly the definition of a function (for
each element of the domain, there is exactly one output in the codomain).

In the previous subsection we studied what happens if we reverse the roles of
the domain and codomain, turning the vertical line test into the horizontal line test.
Here, we study the same reversal, but with the “no holes in the domain” rule changed
to the “no holes in the codomain.”

Definition 25.13. A function f : A → B is surjective if every element of B
occurs (at least once) as the image under f of some a ∈ A. In symbols,

(25.14) ∀b ∈ B, ∃a ∈ A, f(a) = b.

Surjective functions are sometimes called “onto” (meaning, they map onto all
elements of the codomain). In terms of ordered pairs, surjectivity of a function
f : A → B means:

(25.15) Each b ∈ B is a second coordinate of at least one ordered pair in f .

Example 25.16. Let A = {1, 2, 3, 4} and let B = {1, 2, 3}. Define a function f : A →
B by

f = {(1, 2), (2, 2), (3, 3), (4, 1)}.
We note that each element 1, 2, 3 ∈ B appears at least once as the second coordinate
of an ordered pair in f (in fact, 2 appears twice). Visualizing f as a diagram, we have

A

1

2

3

4
B

1

2

3

In terms of the diagram, we can think of surjectivity as meaning that there is always
at least one arrow pointing at any element of B. △

In order to prove that f : A → B is surjective we normally verify (25.14). We
start by letting b ∈ B be an arbitrary element of B. We then need to somehow use b
to prove the existence of an element a ∈ A such that f(a) = b. We will demonstrate
how this is to be done with many examples.
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Example 25.17. Let f : R → R be a function defined by f(x) = 2x + 1. If we
graph this function, each horizontal line crosses the graph, so there are no holes in
the codomain. Thus, we should believe that f is surjective. We will now prove it.

Let b ∈ R, and fix

a =
b− 1

2
.

Note that a ∈ R (the domain). We compute

f(a) = f

(
b− 1

2

)
= 2

(
b− 1

2

)
+ 1 = (b− 1) + 1 = b.

Hence, f is surjective. △

Remark 25.18. This proof may be unsatisfying because, like many existence proofs,
it clearly shows that a exists with f(a) = b, but it does so without explaining how a
might be found. This is due to the fact that the correct a was found using scratchwork,
but that work was not included in the proof. We will do that scratchwork now.

Given b ∈ R, we wish to find a such that f(a) = b. Hence, we wish to solve

2a+ 1 = b.

Subtracting 1, we see that 2a = b− 1. Dividing by 2 yields

a =
b− 1

2
.

This gives the desired element.
Notice that the preceding paragraph derives the desired a. However, the work done

there is not the proof of surjectivity. To do the proof we need to check two things.
First, that this a we found in our scratchwork belongs to the domain. Second, that
f(a) = b. You should do the work of calculating the desired a on scratch paper and
afterwards write out the proof. ▲

Example 25.19. Define f : R → R by f(x) = x2. Does this function pass the “no
holes in the codomain” test? No, we see that all negative values are missed. We will
now formally prove it is not surjective. Fixing b = −1, then for any a ∈ R we have
f(a) = a2 ̸= −1 = b. Hence, f is not surjective. △

Example 25.20. Define f : R → [0,∞) by f(x) = x2. Let b ∈ [0,∞). Since b is
nonnegative it has a square root, so fix a =

√
b. Clearly a is real, hence it belongs to

the domain. Now,

f(a) = f(
√
b) = (

√
b)2 = b.

Since b was an arbitrary element of the codomain, f is surjective. △

The previous two examples show that surjectivity can depend as much on the
codomain as on the rule used to define the function.
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Example 25.21. Let f : R− {2} → R− {1} be defined by

f(x) =
x− 1

x− 2
.

We wish to show that f is surjective.

−10 −8 −6 −4 −2 2 4 6 8 10

−2

−1

1

2

3

4

x

y

(Note: This function only has a “hole” in the codomain if our codomain is R. We
remove that hole by limiting the codomain to R− {1}.)

Let b ∈ R− {1}. Fix

a =
2b− 1

b− 1
.

We need to show that a belongs to the domain R−{2}. Clearly a ∈ R (since b ̸= 1).
Assuming, by way of contradiction, that a = 2, we would have 2b − 1 = 2(b − 1).
Simplifying, we get −1 = −2, a contradiction. Hence, a ∈ R− {2}.

Now

f(a) =

2b− 1

b− 1
− 1

2b− 1

b− 1
− 2

=
2b− 1− (b− 1)

2b− 1− 2(b− 1)
=

b

1
= b.

Hence, f is surjective. △

Remark 25.22. Again, this proof of surjectivity is quite unsatisfying. It gives no
idea how a was found. Note that we wish to find a such that

f(a) =
a− 1

a− 2
= b.

Clearing denominators by multiplying by a− 2, we have a− 1 = b(a− 2), or in other
words a− 1 = ab− 2b. Hence, we want 2b− 1 = ab− a = a(b− 1). Dividing by b− 1,
we see that we want

a =
2b− 1

b− 1
.

This calculation is an important step in finding the correct a, but is not a necessary
part of the written proof. ▲
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Example 25.23. Let S = {1, 2, 3, 4, 5}, and let A = P(S)− {∅}. Define a function
f : A → S by

f(X) = the least element of X,

for every X ∈ A. You may check directly that f is a function from A to S (for
instance f({3, 4, 5}) = 3 and f({2, 4}) = 2). We will now prove that f is surjective.

Let b ∈ S. Fix a = {b}. Since {b} ∈ P(S) and {b} ̸= ∅ we have that a ∈ A.
Clearly, the least element of {b} is b. Hence, f(a) = f({b}) = b. This proves that f
is surjective. △

Example 25.24. Let f : Z → Z be defined by

f(n) =

{
n if n ≥ 0,

n+ 1 if n < 0.

We will show that f is surjective.
Let b ∈ Z. We consider two cases:

Case 1. If b ≥ 0, then fixing a = b we have a ∈ Z and f(a) = f(b) = b.
Case 2. If b < 0, then fixing a = b− 1 < 0 we have a ∈ Z and f(a) = f(b− 1) = b.
Hence, f is surjective. (Note that f(−1) = f(0) = 0, so f is not injective.) △

Remark 25.25. As with injectivity, proving the surjectivity of a piecewise defined
function will generally involve proof by cases. ▲

25.C The range of a function

A useful concept in studying surjectivity is the set of outputs of a function.

Definition 25.26. Let A and B be sets, and let f : A → B be a function. Define

im(f) = {f(a) : a ∈ A}.

We call im(f) the range or the image of f . Notice that im(f) ⊆ B.

Example 25.27. Let f : {1, 2, 3, 4} → {a, b, c, d} be given as a set of ordered pairs
by

f = {(1, a), (2, a), (3, b), (4, c)}.

Then

im(f) = {f(1), f(2), f(3), f(4)} = {a, a, b, c} = {a, b, c}. △

Example 25.28. Consider the function f : R → R given by the rule f(x) = x2.
What is the image of this function? In other words, what is the set of outputs? Since
every output is nonnegative, and every nonnegative number a is equal to f(

√
a), we

see that we have im(f) = R≥0. △
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Example 25.29. Let A = {1, 2, 3}, and let f : A → P(A) be defined by f(a) =
{a, 2}. The range of f is the set

{f(a) : a ∈ A} = {f(1), f(2), f(3)} = {{1, 2}, {2}, {2, 3}}. △

A useful way to think about im(f) is as the set of all elements of B that are second
coordinates of some element of f .

Theorem 25.30. Let A and B be sets, and f : A → B a function. Then f is
surjective if and only if the range of f is equal to B.

Proof. The function f is surjective if and only if every b ∈ B is equal to f(a) for some
a ∈ A. This happens if and only if B = {f(a) : a ∈ A} = im(f).

25.D Bijective functions

We have seen two important properties of functions: injectivity and surjectivity.
When we combine these two properties we obtain a very special type of function.

Definition 25.31. A bijective function is a function that is both injective and
surjective.

Remark 25.32. A bijective function is often called a bijection. (Similarly, injective
functions are called injections, and surjective functions are called surjections.) It
is also called a “one-to-one correspondence.” Although the latter term risks being
confused with the very similar phrase “one-to-one function,” which does not imply
surjectivity, it is nevertheless frequently used. ▲

Example 25.33. Let A = {1, 2, 3} and let B = {4, 5, 6}. Define a function f : A → B
by

f = {(1, 5), (2, 6), (3, 4)}.
Since each element of A occurs exactly once as a first coordinate of an ordered pair
in f , we know f is a function. Since each element of B occurs exactly once as a
second coordinate, f is both injective and surjective by (25.4) and (25.15). Hence, f
is bijective. △
Example 25.34. Define f : R → R by f(x) = 2x+ 1.

We have seen (Example 25.7) that f is injective and (Example 25.17) that f is
surjective. Hence, f is a bijection. △
Example 25.35. Let f : R− {2} → R− {1} be defined by

f(x) =
x− 1

x− 2
.

We have seen (Example 25.10) that f is injective and (Example 25.21) that f is
surjective. Hence, f is a bijection. △

In the next chapter we will see that bijections help us show that two sets have the
same size.
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25.E Exercises

Exercise 25.1. Let A = {1, 2, 3} and B = {x, y}. List all functions from A → B,
and for each function state (without proof) whether it is injective, surjective, both
(bijective), or none of the above.

Now do the same for all functions from B → A.

Exercise 25.2. For each of the following, determine (with proof) whether the func-
tion is injective and/or surjective.
(a) Define f : Z → Z by f(n) = 2n+ 1.
(b) Define g : R → R by g(x) = x2 + 2x+ 2.
(c) Define h : Z → Z by h(n) = n+ 3.

Exercise 25.3. Define f : Z5 → Z5 by f(a) = 2a+ 3.
(a) Prove that f is well-defined.
(b) Is f injective? Surjective? Give proofs. (Hint: You cannot divide by 2, but

you can multiply by 3. Alternatively, write out the ordered pairs and check all
cases.)

Exercise 25.4. Find a function f : R → R that is
(a) neither injective nor surjective.
(b) injective but not surjective.
(c) surjective but not injective.
(d) both injective and surjective.

In all cases give proofs. (Hint: For some of these, piecewise defined functions may be
useful.)

Exercise 25.5. Define f : R− {2} → R− {1} by

f(x) =
x− 3

x− 2
.

(a) Prove that f is a function from R − {2} to R − {1}. (The only question is
whether f(x) ∈ R− {1} whenever x ∈ R− {2}.)

(b) Prove that f is injective.
(c) Prove that f is surjective.

Exercise 25.6. Define f : Z2 → Z by f(m,n) = 3m− 2n. Is f injective? Surjective?
(Give proofs.)

Exercise 25.7. Describe (without proof) the image of each of the following functions
from R → R.
(a) sin(x).
(b) ex.
(c) x3.
(d)

√
|x|.

Exercise 25.8. Let f : R → R be a function. Suppose that we graph f in the xy-
plane, with the domain being the horizontal axis, and the codomain being the vertical
axis. Prove the following:
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(a) (The vertical line test): Since f is a function, every vertical line intersects the
graph of f at most once.

(b) (No holes in the domain): Since f is a function, every vertical line intersects
the graph of f at least once.

(c) (The horizontal line test): The function f is injective if and only if every hori-
zontal line intersects the graph of f at most once.

(d) (No holes in the codomain): The function f is surjective if and only if every
horizontal line intersects the graph of f .
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26 Composition of functions

Fix A = {1, 2, 3, 4}, B = {5, 6, 7}, and C = {8, 9, 10, 11}, and fix functions f : A → B
and g : B → C defined by

f = {(1, 6), (2, 5), (3, 7), (4, 6)},

and
g = {(5, 8), (6, 9), (7, 10)}.

A picture of this situation appears below:

A B C

1
2
3
4

5
6
7

8
9
10
11

f
g

One can ask what might happen if we were to begin at an element of A, and first
follow the arrow for the function f (to an element of B), and then follow the arrow for
the function g (to an element of C). We would then get a drawing like the following:

A C

1
2
3
4

8
9
10
11

Each arrow in the new diagram is obtained by traversing two arrows in the original
diagram. We notice that the new diagram describes a function, since each element
of A has a single arrow emanating from it. We call this function the composition. In
this section we will formally define compositions and study how function properties
(such as injectivity or surjectivity) behave on composites of functions.

26.A Defining function composition

Here is the formal definition of what it means to compose two functions.

Definition 26.1. Let f : A → B and g : B → C be functions. We define the
composition of g with f , written g ◦ f , to be the new function g ◦ f : A → C
given by the relation

g ◦ f = {(a, g(f(a))) ∈ A× C : a ∈ A}.

Remark 26.2. We note that this definition makes sense: since a ∈ A, we have that
f(a) is in B, so g(f(a)) exists and is in C. ▲
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Advice 26.3. When the codomain of f is not equal to the domain of g, there
is no composite function g ◦ f (i.e., it is not defined).

Example 26.4. Let A = {1, 2, 3, 4}, B = {5, 6, 7}, and C = {8, 9, 10, 11}, and
suppose we have functions f : A → B and g : B → C defined by

f = {(1, 6), (2, 5), (3, 7), (4, 6)},

and
g = {(5, 8), (6, 9), (7, 10)}.

Since f(1) = 6 and g(6) = 9, we have (g ◦ f)(1) = g(f(1)) = g(6) = 9.
Since f(2) = 5 and g(5) = 8, we have (g ◦ f)(2) = g(f(2)) = g(5) = 8.
Similarly, (g ◦ f)(3) = 10 and (g ◦ f)(4) = 9. Hence, we have that

g ◦ f = {(1, 9), (2, 8), (3, 10), (4, 9)}. △

Example 26.5. Let f : R → R be given by f(x) = x+ 1 and let g : R → R be given
by g(x) = x2. Then g ◦ f : R → R is given by

(g ◦ f)(x) = g(f(x)) = g(x+ 1) = (x+ 1)2.

In this case, since the codomain of g is the same as the domain of f , we may also
construct the function f ◦ g : R → R. This function is given by

(f ◦ g)(x) = f(g(x)) = f(x2) = x2 + 1.

Notice that f ◦ g is not the same function as g ◦ f . The order in which the functions
are composed does matter. Because of this, we say that function composition is not
commutative. This is in contrast to operations like addition of real numbers, where
a+ b = b+ a. △

Although function composition is not commutative, it does satisfy a different
property that is very useful. This property is motivated by the question: What
happens if we compose three functions?

Theorem 26.6. Let A, B, C, and D be sets, and let f : A → B, g : B → C, and
h : C → D be three given functions. The two new functions h ◦ (g ◦ f) : A → D
and (h ◦ g) ◦ f : A → D are equal.

Proof. Both h ◦ (g ◦ f) and (h ◦ g) ◦ f have domain A and codomain D. Hence, to
prove that they are equal, we need only check that for each a ∈ A both functions give
the same image.

Let a ∈ A. Then(
h ◦ (g ◦ f)

)
(a) = h

(
(g ◦ f)(a)

)
= h(g(f(a))),
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and (
(h ◦ g) ◦ f

)
(a) = (h ◦ g)

(
f(a)

)
= h(g(f(a))).

Hence, we see that the two functions give the same image for a. Therefore, they are
equal.

Remark 26.7. A graphical representation of this theorem is given below.

•

•

•

•

g ◦ f

h ◦ g

f g
h

A B C D

The statement of the theorem is that following the arrow marked g ◦ f and then the
arrow marked h, in other words h ◦ (g ◦ f), yields the same result as following f and
then following h ◦ g, in other words (h ◦ g) ◦ f . ▲

Remark 26.8. The fact that (h◦g)◦f = h◦ (g ◦f) is called associativity of function
composition. Associativity is a property that shows up in many places in math.
For a, b, c ∈ R, we have two different forms of associativity, namely (a + b) + c =
a+ (b+ c) for addition and (ab)c = a(bc) for multiplication. If you have seen matrix
multiplication, then you know that if A, B, and C are matrices that can be multiplied,
then (AB)C = A(BC). Different manifestations of associativity are often, in some
way, related to the associativity of function composition. ▲

There is one special function that behaves very well with respect to composition.

Definition 26.9. Let A be a set. Define the function idA : A → A by idA(a) = a
for each a ∈ A. This is the identity function on A.

Example 26.10. Let A = {1, 2, 3}. Then, as a collection of ordered pairs,

idA = {(1, 1), (2, 2), (3, 3)}.

Let B = {r, s, t, u, v}. Then, as a collection of ordered pairs,

idB = {(r, r), (s, s), (t, t), (u, u), (v, v)}. △

Theorem 26.11. Let A and B be sets, and let f : A → B be a function. We
have
(1) idB ◦f = f and
(2) f ◦ idA = f .
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Proof. We prove (1) and leave (2) as an exercise.
Note that idB ◦f : A → B and f : A → B have the same domain and codomain.

Let a ∈ A. Notice that f(a) ∈ B. Then

(idB ◦f)(a) = idB(f(a)) = f(a).

Hence, we see that idB ◦f = f .

26.B Composition of injective and surjective functions

When we compose functions, properties of the component functions can sometimes
be deduced from the composition, and properties of the composition can sometimes
be deduced from the component functions. We investigate both of these possibilities.

Theorem 26.12. Let A, B, and C be sets, and let f : A → B and g : B → C
be functions.
(1) If g ◦ f is injective, then f is injective.
(2) If g ◦ f is surjective, then g is surjective.
(3) If f and g are injective, then g ◦ f is injective.
(4) If f and g are surjective, then g ◦ f is surjective.

Proof. (1) Assume that g ◦ f : A → C is injective. To prove that f is injective, let
a1, a2 ∈ A and assume f(a1) = f(a2); we will show a1 = a2. Applying g to both
sides of the assumed equality yields g(f(a1)) = g(f(a2)), and so

(g ◦ f)(a1) = (g ◦ f)(a2).

Since g ◦ f is injective, we see that a1 = a2. Hence, f is injective.
(2) See Exercise 26.1.
(3) See Exercise 26.1.
(4) Assume that f and g are surjective. We wish to show that g ◦ f is surjective.

Let c ∈ C. Since g : B → C is surjective, there is some b ∈ B such that g(b) = c.
Since f : A → B is surjective, there is some a ∈ A such that f(a) = b. Then
(g ◦ f)(a) = g(f(a)) = g(b) = c.

26.C Inverse relations

We now define a way of constructing new relations from old, and apply it to functions.

Definition 26.13. Let R be a relation from A to B. The inverse relation is the
set

R−1 = {(b, a) : (a, b) ∈ R}

where we reverse each ordered pair in R. It is a relation from B to A.
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Example 26.14. Let A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5}. Define a relation R by

R = {(1, 2), (2, 2), (3, 4), (4, 1)}.

Then
R−1 = {(2, 1), (2, 2), (4, 3), (1, 4)}.

Is R a function? (Yes.)
Is R−1 a function? (No.) △

Suppose that f : A → B is a function. Then f is a relation, so it has an inverse
relation. What can keep this inverse relation from being a function? There are two
possibilities.
(1) If some element of B is not a second coordinate of any ordered pair in f , then

it will not be a first coordinate of any ordered pair in f−1. Hence, the inverse
relation will not be a function. In other words, if f is not surjective, then f−1

will not be a function because it is not defined somewhere.
(2) If some element of B is a second coordinate of more than one ordered pair in f ,

then it will be a first coordinate of multiple ordered pairs in the inverse relation.
Hence, the inverse relation will not be a function. In other words, if f is not
injective, then f−1 will not be a function because it “maps” some element to
two different “outputs.”

It would appear that in order for the inverse relation of f to be a function, each
element of B should be the second coordinate of exactly one ordered pair in f . In
other words, f should be a bijection. We state this as a theorem and give a proof.

Theorem 26.15. Let f : A → B be a function. Let g be the inverse relation to
f . Then g is a function from B to A if and only if f is a bijection.

Proof. Let f : A → B be an arbitrary function, and let g = f−1 be the inverse relation.
(⇐): Assume that f is a bijection. Then every element of B is the second coordi-

nate of exactly one ordered pair in f . Hence, every element of B is the first coordinate
of exactly one ordered pair in g. Therefore, g is a function.

(⇒): Conversely, assume that g : B → A is a function. Hence, every element of B
is the first coordinate of exactly one ordered pair in g. Thus, every element of B is the
second coordinate of exactly one ordered pair in f . Therefore, f is a bijection.

Example 26.16. Let f : R → R be given by f(x) = 2x+1. We’ve shown previously
that f is a bijection. As a collection of ordered pairs, we have

f = {(x, y) : x ∈ R, y = 2x+ 1}.

Hence, the inverse relation is the set

f−1 = {(y, x) : x ∈ R, y = 2x+ 1} = {(y, x) : y ∈ R, x = (y − 1)/2},

since if y = 2x + 1, then we may solve for x and we find x = (y − 1)/2. So we see
that f−1 is a function given by the rule f−1(y) = (y − 1)/2. △
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Advice 26.17. Suppose a function f(x) = y is given by a simple rule. If we
can solve for x in terms of y, this gives us the rule f−1(y) = x for the inverse
relation.

In the example above, we had f(x) = 2x+ 1. We set y = 2x+ 1, subtract 1
and divide by 2 to obtain

x =
y − 1

2
,

showing that the inverse relation to f is f−1(y) = (y − 1)/2.

Example 26.18. Let f : R → R be given by the rule f(x) = x2. Setting y = x2,
we might think that we can solve for x to get x =

√
y, and then guess f−1(y) =

√
y.

This is not correct, because when we solved for x we should have set x = ±√
y. Thus,

the inverse relation is not a function. (This can also be seen from the fact that f is
neither injective, nor surjective.) △

Example 26.19. We have seen that f : R− {2} → R− {1} given by

f(x) =
x− 1

x− 2

is a bijection. Setting y = f(x), we will solve for x. Multiplying by x− 2, we find

xy − 2y = x− 1,

so that

x(y − 1) = 2y − 1,

and, dividing by y − 1, we obtain

x =
2y − 1

y − 1
.

Hence, the inverse relation to f is f−1 : R− {1} → R− {2} given by

f−1(y) =
2y − 1

y − 1
. △

26.D Composition of inverse functions

In general, if f is a bijective function, we denote the inverse relation (which is also
a function) by f−1, and we call it the inverse (function) of f . In cases where f is
a function that is not bijective, we typically do not use the notation f−1 for the
inverse relation (in fact, we seldom discuss the inverse relation). However, we may
use the notation f−1 in other contexts (for instance, see the next section). We have
the following theorem concerning a bijective function and its inverse.
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Theorem 26.20. Let f : A → B be a bijective function. The following each
hold:
(1) (f−1)−1 = f .
(2) f−1 : B → A is a bijective function.
(3) f−1 ◦ f : A → A is equal to idA.
(4) f ◦ f−1 : B → B is equal to idB.

Proof. Throughout the proof we let f : A → B be a bijection.
(1) This part holds for any relation f . If we reverse the ordered pairs in f , and

then reverse again, we are back to the original relation.
(2) By Theorem 26.15, we know f−1 is a function. Now, by part (1) above, its

inverse relation is f , which is a function. Thus, by Theorem 26.15 again, we
know f−1 is a bijection.

(3) We note that f−1◦f and idA have the same domain and codomain. Now for any
a ∈ A, we have (a, f(a)) ∈ f , so we see that (f(a), a) ∈ f−1. This tells us that
f−1(f(a)) = a, proving that (f−1 ◦ f)(a) = a = idA(a). Hence, f

−1 ◦ f = idA.
(4) This is similar to part (3), by switching the roles of f and f−1.

26.E Exercises

Exercise 26.1. Let f : A → B and g : B → C be functions.
(a) Prove that if f and g are injective, then g ◦ f is injective.
(b) Prove that if g ◦ f is surjective, then g is surjective.

Exercise 26.2. Let f : A → B be a function. Prove that f ◦ idA = f .

Exercise 26.3. Prove or disprove: If f : A → B and g : B → C are functions, and g
is surjective, then g ◦ f is surjective.

Exercise 26.4. Prove or disprove: If f : A → B and g : B → C are functions, and
g ◦ f is injective, then g is injective.

Exercise 26.5. Let f : A → B and g : B → C be functions. Prove that if f and g
are both bijective, then (g ◦ f)−1 = f−1 ◦ g−1.

(Hint: How do you check if functions are equal?)

Exercise 26.6. Prove that the function f : R− {5} → R− {3} given by

f(x) =
3x+ 1

x− 5

is bijective. Find f−1(y) for y ∈ R− {3}.

Exercise 26.7. Let A = {1, 2, 3} and let f : A → A be given as

f = {(1, 2), (2, 3), (3, 1)}.
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(a) Determine f−1.
(b) Determine f ◦ f .
(c) Determine f ◦ f ◦ f .
(d) Define

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

Then f 1 = f , f 2 = f ◦ f , and f 3 = f ◦ f ◦ f , and so forth. Determine fn, as a
collection of ordered pairs, for each natural number n.
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27 Additional facts about functions

27.A Functions between finite sets

For finite sets A and B, we can draw conclusions about the sizes of the sets based on
properties of functions between them.

Given f : A → B, if either A or B is a finite set, we can sometimes obtain infor-
mation about whether f is injective or surjective by studying the size of im(f).

Theorem 27.1. Let A and B be sets, and let f : A → B be a function. If A is
finite, then |im(f)| ≤ |A|. Moreover (still assuming A is finite) f is injective if
and only if |im(f)| = |A|.

Proof. As a collection of ordered pairs, f has |A| elements. Hence, there are at most
|A| second coordinates. Thus, there cannot be more than |A| elements in the image
of f .

We now prove the last sentence. For the forward direction, assume that f is
injective. Then all second coordinates of pairs in f are distinct, so the number of
such second coordinates, which is |im(f)|, is equal to |f | = |A|.

For the converse we work contrapositively. Assume that f is not injective. Then
f has fewer than |A| distinct second coordinates (since at least two of the |A| second
coordinates must be equal). Hence, |im(f)| < |A|.

Theorem 27.2. Let A and B be sets, and let f : A → B be a function. If B is
finite, then |im(f)| ≤ |B|. Moreover (still assuming B is finite) f is surjective
if and only if |im(f)| = |B|.

Proof. Left as Exercise 27.1.

Theorem 27.3. Let A and B both be finite sets, and let f : A → B be a function.
(1) If f is injective, then |A| ≤ |B|.
(2) If f is surjective, then |A| ≥ |B|.
(3) If f is bijective, then |A| = |B|.

Proof. We make use of Theorems 27.1 and 27.2.
(1) If f is injective, then |A| = |im(f)| ≤ |B| (since im(f) ⊆ B).
(2) If f is surjective, then |A| ≥ |im(f)| = |B|.
(3) This follows from (1) and (2).

Example 27.4. Let A = {1, 2, 3, 4} and let B = {1, 2, 3, 4, 5}. Then |A| < |B|.
Hence, by the contrapositive of part (2) above, we know that there can be no surjective
function from A to B. This also implies that there can be no bijective function from
A to B. △
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A special property of finite sets is that, in some cases, injectivity and surjectivity
may imply each other.

Theorem 27.5. Let A and B be finite sets and assume |A| = |B|. A function
f : A → B is injective if and only if it is surjective.

Proof. Suppose A and B are finite, |A| = |B|, and that f : A → B is a function.
(⇒): Assume f is not surjective. Then |im(f)| < |B| = |A|, so f is not injective.
(⇐): Assume f is not injective. Then |im(f)| < |A| = |B|, so f is not surjective.

Warning 27.6. Theorem 27.5 does not apply if A and B are infinite sets.
Firstly, we don’t yet know what it means for two infinite sets to have the same
size. However, even if A = B, there are still problems. For instance, define
f : N → N by

f(n) = n+ 1

and define g : N → N by

g(n) =

{
1 if n = 1,

n− 1 if n > 1.

One may quickly check that f is injective but not surjective, and g is surjective
but not injective.

Remark 27.7. A common use of Theorem 27.5 occurs when A is a finite set and
f : A → A is a function. In this case, the sizes of the domain and codomain are clearly
equal, so f is injective if and only if f is surjective. ▲

Example 27.8. Let A = {1, 2, 3}. If f : A → A is a function, is it automatically
bijective?

No, it is not. But if it is injective, then it is automatically surjective (and vice
versa), since the domain and codomain are both finite of the same size. △

27.B Partitions and pasting functions

Often, it will happen that we wish to define a function from a set A to a set B.
However, it might be the case that A is too large or too complicated to make it
convenient for us to define such a function. However, if we can partition A, then we
may define a piecewise function on A. Proving injectivity and surjectivity of piecewise
functions can be somewhat more complicated than for functions defined by a single
simple rule, but by carefully using the definitions, and proceeding with a proof by
cases, it is usually not too difficult.

We will now examine a special case of piecewise defined functions for which injec-
tivity and surjectivity are easy to prove. These functions will be useful to us later.
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Definition 27.9. Let A and B be sets, and suppose {P1, . . . , Pn} is a partition
of A with n parts and {Q1, . . . , Qn} is a partition of B with n parts. Assume
that for each i with 1 ≤ i ≤ n, we are given a function fi : Pi → Qi. We may
define a function f : A → B by

f =
n⋃

i=1

fi

with the rule f(a) = fi(a) if a ∈ Pi. We call f the function obtained by pasting
together the fi.

Example 27.10. Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and let P1 = {1, 2, 3}, P2 =
{4, 5, 6, 7}, and P3 = {8, 9, 10}. Then {P1, P2, P3} is a partition of A.

Let B = {1, 2, 3, 4, 5}, Q1 = {1, 2, 3}, Q2 = {4}, andQ3 = {5}. Then {Q1, Q2, Q3}
is a partition of B.

Define f1 : P1 → Q1 by f1(x) = x. Define f2 : P2 → Q2 by f2(x) = 4, and define
f3 : P3 → Q3 by f3(x) = 5. Pasting together the fi we obtain a function f given by
the rule

f(x) =


f1(x) if x ∈ P1,

f2(x) if x ∈ P2,

f3(x) if x ∈ P3.

=


x if x ∈ P1,

4 if x ∈ P2,

5 if x ∈ P3.

We can view this situation as follows:

1
2
3
4
5
6
7
8
9
10

1
2
3

4

5

△

The following theorem tells us when a pasted together function is injective, sur-
jective, or both.
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Theorem 27.11 (The Pasting Together Theorem). Using the notation as given
in Definition 27.9, each of the following holds:
(1) If each fi is injective, then f is injective.
(2) If each fi is surjective, then f is surjective.
(3) If each fi is bijective, then f is bijective.

Proof. (1) Suppose that each fi is injective. We will show that f is injective, so
let a1, a2 ∈ A and assume f(a1) = f(a2). We know that a1 ∈ Pi and a2 ∈ Pj

for some i and j (since the P ’s partition A). Hence f(a1) = fi(a1) ∈ Qi, and
f(a2) = fj(a2) ∈ Qj. Since f(a1) = f(a2) we have Qi ∩ Qj ̸= ∅. But the Q’s
partition B, hence Qi = Qj, or in other words i = j. Thus

fi(a1) = f(a1) = f(a2) = fi(a2).

Since fi is injective, a1 = a2.
(2) Suppose that each fi is surjective. Let b ∈ B, so b ∈ Qi for some i. Since fi

is surjective we can fix some a ∈ Pi with fi(a) = b. Hence, f(a) = fi(a) = b.
Therefore, f is surjective.

(3) This part follows from (1) and (2).

Example 27.12. We partition N into {P1, P2}, where P1 is the set of even natural
numbers, and P2 is the set of odd natural numbers. We partition Z into {Q1, Q2},
where Q1 is the set of positive integers, and Q2 is the set of nonpositive integers.
Define f1 : P1 → Q1 by f1(n) = n/2, and f2 : P2 → Q2 by f2(n) = −(n− 1)/2.

Pasting together, define f : N → Z by

f(n) =

{
n/2 if n is even,

−(n− 1)/2 if n is odd.

One checks easily that f1 and f2 are bijections (see Exercise 27.2). Hence, by the
Pasting Together Theorem, f is a bijection. △

27.C Restrictions of functions

Suppose f : A → B is a function and S is a subset of A. It will often be the case
that we wish to study the function f limited to the set S. This situation occurs often
enough that we have a special name and notation for it.

Definition 27.13. Let A and B be sets and let f : A → B be a function. If
S ⊆ A, we can define a new function

f |S : S → B

by the rule f |S(x) = f(x) for each x ∈ S. We call f |S the restriction of f to S,
and read it as “f restricted to S.”
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Example 27.14. Let f : R → R be the function defined by f(x) = x2. We note
that f is not injective, since f(−1) = f(1). If we let S be the set of nonnegative real
numbers, then the function f |S : S → R is in fact injective. Note that it is defined by
the same rule as f , except that we restrict the allowed inputs. △

Remark 27.15. If we think about the restriction of f to S in terms of ordered pairs,
we come up with the following description. If f : A → B is the function

f = {(a, f(a)) : a ∈ A},

then

f |S = {(a, f(a)) : a ∈ S}.

Hence, f |S is just the set of ordered pairs in f whose first coordinate is in S. ▲

It is also possible to adjust a function by changing its codomain. There is no
standard notation (or even name) for this process. We will define a notation, but
note that it is not standard.

Definition 27.16. Let f : A → B be a function. We define a new function
f̂ : A → im(f) by the rule f̂(a) = f(a) for all a ∈ A. We call f̂ the surjective
reduction of f .

Example 27.17. Let f : R → R be defined by f(x) = x2. We know f is not
surjective, because −1 is not in the range of f . Note that the image of f is the set
im(f) = [0,∞).

If we let f̂ : R → [0,∞) be the surjective reduction of f , then we see that f̂ is
a surjective function with the same defining rule as f , but with the new codomain
im(f). △

You should try to prove the following theorem before reading the proof.

Theorem 27.18. Given a function f : A → B, the surjective reduction

f̂ : A → im(f)

is a surjective function.

Proof. Since f̂ consists of the same ordered pairs as f , it is a function. (Each element
of the domain A is the first coordinate of exactly one ordered pair, and the second
coordinate is an element of im(f).) For each b ∈ im(f), there is some a ∈ A such
that f(a) = b (by the definition of the image). Then f̂(a) = b, so f̂ is surjective.

Remark 27.19. In essence, Theorem 27.18 says “a function f is surjective onto its
image.” ▲
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27.D Images and preimages

Given a function f : A → B, we previously defined the image f(a) ∈ B of an element
a ∈ A. We now give a new meaning of the word “image” that applies to subsets of
A, rather than individual elements.

Definition 27.20. Let A and B be sets and let f : A → B be a function. If S
is a subset of A, we define the image of S under f (or just “the image of S”) to
be

f(S) = {f(x) : x ∈ S}.

We note that f(S) is a subset of B.

Example 27.21. Let A = {1, 2, 3, 4}, B = {5, 6, 7, 8}, and

f = {(1, 6), (2, 5), (3, 8), (4, 7)}.

Then f({1, 2}) = {5, 6} and f({1, 3}) = {6, 8}. △

Example 27.22. Define f : R → R by f(x) = 2x+1. Let [0, 1] be the closed interval
of real numbers from 0 to 1. Then the image of [0, 1] under f is the set

f([0, 1]) = [1, 3].

To see this, note that if 0 ≤ x ≤ 1, then 0 ≤ 2x ≤ 2, so 1 ≤ 2x + 1 ≤ 3. Hence, if
x ∈ [0, 1], then f(x) ∈ [1, 3].

Conversely, if y ∈ [1, 3], then (y − 1)/2 ∈ [0, 1], and f((y − 1)/2) = y. Hence,
every element of [1, 3] is the image of some element in [0, 1]. △

Remark 27.23. Note that for any function f : A → B, we have f(A) = im(f). ▲

A final concept that is often mentioned in relation to functions is the preimage of
a set.

Definition 27.24. Let f : A → B be a function, and let T be a subset of B.
We define the preimage of T to be the set

f−1(T ) = {a ∈ A : f(a) ∈ T}.

Note that f−1(T ) is a subset of A.

Warning 27.25. Although the same symbol is used for the preimage and the
inverse function of f (if f is a bijection), we note that the two concepts are quite
different. The preimage exists even if f is not a bijection, while we have seen
that the inverse function only exists if f is a bijection.
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Example 27.26. Let A = {1, 2, 3, 4, 5} and B = {6, 7, 8, 9}. Let

f = {(1, 7), (2, 6), (3, 7), (4, 6), (5, 9)}.

Then we can calculate the preimages

f−1({6, 7}) = {1, 2, 3, 4}, f−1({8}) = ∅,
f−1({9}) = {5}, f−1({7, 8, 9}) = {1, 3, 5},

as well as preimages of many other subsets of B. (How many subsets of A are
preimages of subsets of B? There are less than 16.) △

Example 27.27. Let f : R → R be defined by f(x) = x2. Then for x > 0 we have
f−1({x}) = {

√
x,−

√
x}, for x < 0 we have f−1({x}) = ∅, and f−1({0}) = {0}. △

27.E Exercises

Exercise 27.1. Prove Theorem 27.2.

Exercise 27.2. Prove that the functions f1 and f2 defined in Example 27.12 are both
bijections.

Exercise 27.3. Give an example of a bijective function f : Z → {0, 1}×N and include
a proof that it is bijective.

(Hint: Partition Z into positive and nonpositive integers. Partition {0, 1}×N into

{{(0, n) : n ∈ N}, {(1, n) : n ∈ N}}.

Define two bijections, and then use the Pasting Together Theorem.)

Exercise 27.4. Let A = {n ∈ Z : −3 ≤ n ≤ 3}, and let f : A → Z be defined by
f(x) = x2 + 2x+ 2.
(a) Write f as a set of ordered pairs.
(b) Find im(f).
(c) Find a subset C of A so that f |C is injective and im(f |C) = im(f).

Exercise 27.5. Let f : A → B be an injective function, and let S be an arbitrary
subset of A.
(a) Prove that f |S : S → B is injective.
(b) Prove that f̂ is a bijection.
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Exercise 27.6. Let f : A → B be a function.
(a) Prove that f is surjective if and only if f−1({b}) ̸= ∅ for each b ∈ B.
(b) Prove that f is injective if and only if |f−1({b})| ≤ 1 for each b ∈ B.

Exercise 27.7. Let f : A → B be a function, and let X, Y ⊆ A and C,D ⊆ B. Prove
or disprove each of the following equalities.
(a) f(X ∪ Y ) = f(X) ∪ f(Y ).
(b) f(X ∩ Y ) = f(X) ∩ f(Y ).
(c) f−1(C ∪D) = f−1(C) ∪ f−1(D).
(d) f−1(C ∩D) = f−1(C) ∩ f−1(D).

(Hint: At least one of these is true and at least one of these is false.)
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Chapter VIII

Cardinality

...it’s very much like your trying to reach Infinity. You know that it’s there, but you
just don’t know where—but just because you can never reach it doesn’t mean that it’s
not worth looking for. Norton Juster, The Phantom Tollbooth

In the very first chapter of this book, we defined the cardinality of a finite set to
equal the number of its elements. Thus, for instance, the sets {a, b, c} and {1, 2, 3}
have the same cardinality, which is 3. For infinite sets we cannot define the cardinality
to be the number of elements, because such sets do not have any (finite) number of
elements.

However, there is a reason we do not just define the cardinality of an infinite set
to be the symbol ∞; there is a better way to measure the size of sets! This came as
a shock to mathematicians in the late 1800’s, who expected all infinite sets to have
the same size. This theory was developed by Cantor, who showed that the set of real
numbers R has bigger cardinality than N. In this chapter we develop Cantor’s theory
of cardinality, which has become an important part of modern mathematics.

215
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28 Definitions regarding cardinality

In this section, we will define what it means for two sets to have the same cardinality,
discuss what it means for sets to have the same size as the natural numbers, and
prove some basic facts about cardinality.

28.A How do we measure the size of sets?

The first question we must answer is: How do we measure the size of a set? For finite
sets we simply count out the elements. For instance, if A = {68, 5, 39291, 90}, then
we just count off each element, and we see that |A| = 4. By counting this way we
form a bijection

f : {1, 2, 3, 4} → A

given by

f(1) = 68, f(2) = 5, f(3) = 39291, and f(4) = 90.

Intuitively, we can think of sets having the same “size” if there is a bijection between
them. This motivates the following definition.

Definition 28.1. Let A and B be sets. We say that A and B have the same
cardinality if there exists a bijection f : A → B. If this holds, we write |A| = |B|.

If there is no bijection from A to B, we say that they have different cardi-
nalities and write |A| ≠ |B|.

Remark 28.2. We will prove, shortly, that this relation is an equivalence relation,
which will justify our use of an equality sign for the relation. ▲

The following are some examples and nonexamples of sets with the same cardi-
nality.

Example 28.3. (1) Consider the three sets A = {a, b, c, d, e, f}, B = {1, 2, 3, 4, 5, 6},
and C = {0, 1, 2, 3, 4, 5}. It is easy to construct a bijection from A to B (since both
sets have exactly six elements). So |A| = |B|. There are also bijections from A to C,
and from B to C (since C also has six elements), so |A| = |C|, and |B| = |C|.

(2) Let S = {1, 2, 3} and T = N. There is no bijection from S to T (since T has
more than 3 elements). Thus |S| ≠ |T |.

(3) It can be tricky when working with infinite sets to tell whether they have the
same cardinality. For instance, does N have the same cardinality as 2N? The answer
is yes! There is a bijection f : N → 2N, given by f(n) = 2n. In other words,

f(1) = 2, f(2) = 4, f(3) = 6, f(4) = 8, . . .

is a bijection from N to 2N. Thus, we do have

|N| = |2N|. △

The following example is so important that we’ll call it a theorem.
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Theorem 28.4. The cardinalities of N and Z are the same.

Proof. We need to construct a bijection f : N → Z; or, in other words, we need to
“count” the elements of Z using the natural numbers. The idea is to first count 0, and
then successively count the positive and negative integers, as in the following table

n 1 2 3 4 5 6 7 8 9 10
f(n) 0 1 −1 2 −2 3 −3 4 −4 5

which yields the needed bijection between N and Z.

Remark 28.5. The previous proof was very informal. First, the definition of the
function f is sloppy. To be more precise we should define f as a piecewise function
from N → Z by the rule

f(n) =

{
n/2 if n is even,

−(n− 1)/2 if n is odd.

This is exactly the same function as in Example 27.12.
Second, we didn’t prove that the function f is injective and surjective. This was

previously assigned as Exercise 27.2.
Amazingly, it turns out that this function can be expressed by a (somewhat com-

plicated) single formula

f(n) =
1 + (−1)n(2n− 1)

4
.

(It is not expected that a student would be able to come up with this formula without
a lot of help!) ▲

Advice 28.6. To prove that two sets have the same cardinality you are required
to find a bijection between the two sets. Generally there are many different
bijections. Try to look for a simple one.

We end this subsection with one more example.

Example 28.7. We will prove that the open interval A = (0, 1) and the open interval
B = (1, 4) have the same cardinality. We thus want to construct a bijection between
these two sets. The most obvious option would be to stretch by a factor of 3 and
then shift right by 1. So we define g : (0, 1) → (1, 4) by the rule

g(x) = 1 + 3x.

It is straightforward to check that g is a function from A to B, and that g is both
injective and surjective. △
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28.B Basic results and a picture

In the previous subsection, we defined what it means for two sets to have the same
cardinality. To really justify that definition, we should show that the relation of
“having the same cardinality” is an equivalence relation on sets.

Theorem 28.8. The relation of “having the same cardinality” as given in Def-
inition 28.1 is an equivalence relation on the collection of sets.

Proof. We first prove this relation is reflexive. LetX be any set. The identity function
idX : X → X is a bijection. Thus X is related to X.

Next, we prove this relation is symmetric. Let X and Y be any sets, and assume
X relates to Y . In other words, assume there is a bijection f : X → Y . Then f has
an inverse function f−1 : Y → X which is also a bijection. Hence Y relates to X.

Finally, we prove transitivity. Let X, Y , and Z be any sets, and assume there
are bijections f : X → Y and g : Y → Z. The composite function g ◦ f : X → Z is a
bijection, as needed.

The equivalence classes of this equivalence relation are precisely the collections of
sets with the same cardinality.

The observant reader will have noticed that we defined when two sets A andB have
the same cardinality, |A| = |B|, but that we have not defined what the cardinality
of an individual set is. Mathematicians solve this problem by choosing a (special)
transversal of this equivalence relation; the representatives in the transversal are the
cardinal numbers . Thus, the cardinality of a set, denoted |A|, is a special element of
the equivalence class of A under the relation “having the same cardinality.” There
are specific symbols used to represent the cardinality of a set. For finite sets, that
symbol is just the actual size of the set. Thus, we still have |{2, 79,−4}| = 3.

For infinite sets things are much more complicated. (Did you expect otherwise?)
The smallest infinite cardinal |N| is written as ℵ0 (read as “aleph-nought”). The next
infinite cardinal is ℵ1, and so forth. The diagram below gives some perspective to this
chain. (We put question marks in places where we do not yet have any examples.)

28.C Definition of countable sets

The easiest infinite set to understand is the set of natural numbers. Its cardinality
is given a special symbol |N| = ℵ0. We think of the natural numbers as “counting
numbers” which motivates the following two definition.

Definition 28.9. Given a set A, we say that A is countably infinite if |A| = |N|.

Definition 28.10. Given a set A, we say that A is countable if it is either finite
or countably infinite.
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The following are some examples and nonexamples involving these definitions.

Example 28.11. (1) The empty set is countable, since it is finite. It is not countably
infinite (since it isn’t infinite).

(2) The set {1, 2, 93828283928} is countable and finite, but not infinite, and hence
not countably infinite.

(3) Theorem 28.4 tells us that the integers are a countably infinite set. Similarly,
Example 28.3 tells us that 2N is a countably infinite set.

(4) The set of integer square, {n2 : n ∈ Z}, is infinite; we will see shortly that it
is countably infinite.

(5) Are there any sets which are infinite but not countably infinite? These would
be sets which occur strictly above ℵ0 in the diagram below. We will prove in Section 30
that, yes, there are such sets! △

0

1

2

...

ℵ0

ℵ1

ℵ2

...

Infinite

Finite

∅

{1}, {2}, . . .

{1, 2}, {1, 3}, . . .

...

N, 2N,Z, . . .

?

?

...

ExamplesCardinalities

Advice 28.12. To show that a set A is countably infinite, you just need to
arrange its elements in a nonrepeating, infinite list

A = {a1, a2, a3, . . .}.

This is precisely what we did when we proved that Z is countably infinite, we put
its elements in the list 0, 1,−1, 2,−2, 3,−3, . . ..

Warning 28.13. If you are proving that a set is countably infinite by putting
its elements into a list, then do not skip elements and do not repeat elements.
Otherwise, you didn’t really create a bijection.

Question: Which of the following lists proves that Z is countably infinite?
(a) {0, 1, 2, 3, . . .}.
(b) {0, 1, 0,−1, 0, 2, 0,−2, . . .}.
(c) {1, 0, 2,−1, 3,−2, 4,−3, . . .}.
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Answer: Only (c) works. The list in (a) skips the negative integers. (However,
it does prove that the nonnegative integers are countably infinite.) The list in (b)
repeats 0. Of the choices, only (c) lists every integer exactly once, hence gives the
bijection with N.

28.D Subsets of countable sets

Many operations involving countable sets yield new countable sets. One of the most
useful results is the following:

Theorem 28.14. Any infinite subset of a countably infinite set is countably
infinite.

Proof. Let A be a countably infinite set. We can write the elements of A in an infinite
list a1, a2, a3, . . .. Let B be an infinite subset of A.

Let n1 be the smallest natural number with an1 ∈ B, which exists since B ̸= ∅ as
B is infinite. Put b1 = an1 .

Next let n2 be the smallest natural number with n2 > n1 and an2 ∈ B, which
exists since B − {b1} ≠ ∅ as B is infinite. Put b2 = an2 .

Repeating this process (by induction) we create an infinite list b1, b2, . . .. Clearly
there are no repetitions in this list. This new list covers every element of B because
we can also prove (by induction) that ni ≥ i for each i ∈ N; hence, we have worked
all the way through the list of elements of A.

Corollary 28.15. Any subset of a countable set is countable.

Proof. We leave this as Exercise 28.7.

Example 28.16. Not every subset of N is countably infinite. For instance {3, 7, 19}
is a subset but not countably infinite.

However, every infinite subset of N is countably infinite by Theorem 28.14. For
instance, since there are infinitely many primes (by Theorem 19.14), then we know
that the set of all primes

{2, 3, 5, 7, 11, 13, 17, . . .}

is countably infinite.
Is S = {x3 : x ∈ Z} = {. . . ,−27,−8,−1, 0, 1, 8, 27, 64, . . .} countably infinite?

Yes! First, it is an infinite set since as you cube larger and larger integers, you get
infinitely many different cubes (because the cubing function is strictly increasing). As
S is an infinite subset of the countably infinite set Z, we know S is countably infinite
by Theorem 28.14. △

Example 28.17. Is |2Z| = ℵ0? Yes, since 2Z is an infinite subset of the countably
infinite set Z.
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Alternatively, you could create an explicit bijection f : N → 2Z, although this is
more difficult. We see that we can list the elements of 2Z as 0, 2,−2, 4,−4, 6,−6, . . ..
From this pattern, one possible bijection is given by the rule

f(n) =
1 + (−1)n(2n− 1)

2
. △

28.E Exercises

Exercise 28.1. Indicate whether the following statements are true or false, with
proof/reason or counterexample:
(a) All finite sets have the same cardinality.
(b) If f : A → B is a function between two sets, then |f | = |A| (thinking of f as a

set of ordered pairs).
(c) Every subset of N is countably infinite.
(d) Every subset of an infinite set has cardinality ℵ0.
(e) If f : A → B is a surjective function then |f | = |B| (thinking of f as a set of

ordered pairs).

Exercise 28.2. Prove that the set of those natural numbers with exactly one digit
equal to 7 is countably infinite. For instance, the number 103792 has exactly one of
its digits equal to 7, while 8772 has two digits equal to seven.

Exercise 28.3. Consider the set

S = {x ∈ Z : x = a2 + b2 for some a, b ∈ Z}.

Prove that |S| = |N|.

Exercise 28.4. Define h : (0,∞) → (0, 1) by the rule

h(x) =
x

x+ 1
.

Verify that h is a function by showing that for any x ∈ (0,∞) we have x
x+1

∈ (0, 1).
Then prove that h is a bijection. What does this say about the cardinality of these
open intervals?

Exercise 28.5. Adjust the formula in Exercise 28.4 to define a bijective function
j : (−∞, 0) → (−1, 0). Verify that your new rule j defines a function to the given
codomain and that it is a bijection.

Exercise 28.6. Prove that |R| = |(0, 1)|. (Hint: Use the previous two exercises to
define a piecewise bijection from R to (−1, 1). Then find a bijection from (−1, 1) to
(0, 1) and compose the two bijections.)

Exercise 28.7. Prove Corollary 28.15.

Exercise 28.8. Prove that a set A is countable if and only if there exists an injective
function f : A → N. (This exercise may be useful for future exercises.)
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29 More examples of countable sets

Usually a combination of two countable sets is countable. For instance, in this sec-
tion we will prove that unions of countable sets are countable, as well as Cartesian
products. Finally, we will show that Q is countably infinite.

29.A Unions

Theorem 29.1. If A and B are countable sets, then A ∪B is countable.

Proof. Let B′ = B−A. Notice that A∪B = A∪B′. Also since B is countable so is B′,
by Corollary 28.15. Thus, to prove the theorem, it suffices to work with B′ in place
of B. The benefit of working with B′ instead of B is that A∩B′ = A∩ (B−A) = ∅;
i.e., A and B′ are disjoint.

We will handle the case when A and B′ are both countably infinite, leaving the
other cases as Exercise 29.1.

So assume that A and B′ are countably infinite. Thus, we can write the elements
of A in an infinite list a1, a2, a3, . . .. Similarly list the elements of B′ as b1, b2, b3, . . ..
We need to list the elements of A ∪ B′ in an infinite list, which is easy to do by
interlacing the two lists, as

a1, b1, a2, b2, a3, b3, . . .

There is no repetition in this list, since A ∩B′ = ∅ and the two original lists have no
repetitions. Also this new list contains each of the elements of A ∪B′ = A ∪B.

Advice 29.2. The type of argument used in the first paragraph of the proof
above is referred to as reducing to a simpler situation. For instance, in the proof
above we could say there that we reduced to the case where the two sets are
disjoint.

After a reduction, mathematicians will simply assert that they now need
only consider the simpler situation. For example, after the first paragraph of
the proof above, we could simply say “We thus may assume A∩B = ∅.” This is
because we would recognize that, after replacing B by B′, this situation actually
occurs.

29.B Products

Taking a union is not the only operation we can do with two sets. Another operation
is intersection. When we intersect two sets, the cardinality can get much smaller.
There is a third operation: the Cartesian product. Cantor came up with a very
clever method for showing that the product of two countably infinite sets is still
countably infinite. Thus we have:
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Theorem 29.3. If A and B are countably infinite sets, then A×B is as well.

Proof. Without loss of generality, we just need to show that N × N is countably
infinite. Consider the following diagram:

(1, 1)

(2, 1)

(3, 1)

(1, 2)

(2, 2)

(3, 2)

(1, 3)

(2, 3)

(3, 3)
...

...
...

. . .

· · ·

· · ·

· · ·

Travel along each arrow, starting at the smallest arrow, and passing to the next
smallest arrow. This allows us to list the elements of N× N as

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . ,

according to when we pass through each ordered pair. We will hit each ordered pair
exactly once.

Remark 29.4. The bijection f : N × N → N described in Theorem 29.3 was only
described implicitly because the idea of the proof is much more important than the
details. However, we can explicitly describe the function. It is given by the rule

f(m,n) =
(m+ n− 1)(m+ n− 2)

2
+ n.

The first term (m+n−1)(m+n−2)
2

is the size of the triangle covered by the previous arrows,
and the last term n counts how far along the current arrow we have travelled. (The
details of proving that f is a bijection are left to the motivated reader!)

There are other ways of showing |N×N| = |N|. For instance, we could show that
the function g : N× N → N given by the rule

g(m,n) = 2m−1(2n− 1)

is also a bijection. (Proving that g is a bijection requires the lemma that every
natural number can be written as a unique power of 2 times a unique odd integer; for
existence, see Exercise 15.4.)

There are many other options. For instance, we could have used arrows pointing
down and to the left, instead of up and to the right. Alternatively, we could have
“snaked” back and forth along each finite diagonal. ▲

29.C Rational numbers

We are almost ready to describe the cardinality of Q. First, let’s deal with the positive
rational numbers Q>0.
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Theorem 29.5. The set Q>0 is countably infinite.

Proof. Put the elements of Q>0 into a diagram as below. (We put fractions which
are not in lowest terms as light gray.)

1
1

1
2

1
3

1
4

2
1

2
2

2
3

2
4

3
1

3
2

3
3

3
4

4
1

4
2

4
3

4
4

...
...

...
...

. . .

· · ·

· · ·

· · ·

· · ·

Now, we just list the elements as before, skipping over the elements in light gray,
since they will be counted when they are in lowest terms. This counting procedure
never repeats elements (since we skip those fractions not in lowest terms), and con-
tinues forever since Q>0 is infinite (since N is a subset; in other words, the top row
of the diagram is infinite).

Remark 29.6. Here is an alternative proof of Theorem 29.5. Define a function
f : Q>0 → N × N by sending a rational number a/b (written in lowest terms) to the
ordered pair (a, b). The function f is injective, but not surjective. The set im(f) is
infinite, and a subset of the countably infinite set N × N. Thus im(f) is countably
infinite. But f is a bijection from Q>0 to im(f), hence Q>0 is countably infinite. ▲

Corollary 29.7. The set Q is countably infinite.

Proof sketch. We have Q = Q>0 ∪ {0} ∪ Q<0. We know that Q>0 is countable by
Theorem 29.5. Also, Q<0 is countable since there is an easy bijection Q>0 → Q<0.
Also, {0} is finite, hence countable. By Theorem 29.1, the union of two countable sets
is countable, so Q>0 ∪ {0} is countable. Applying Theorem 29.1 again, we find that
Q = (Q>0 ∪ {0}) ∪Q<0 is countable. It is also infinite, hence countably infinite.

We finish with one more example of how to show a set is countably infinite.

Example 29.8. Let S = {(i, j) ∈ N × N : i ≥ j}. This set is pictured below. We
will prove that S is countably infinite.
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(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(1, 3)

(2, 3)

(3, 3)

(4, 3)

(5, 3)

(1, 4)

(2, 4)

(3, 4)

(4, 4)

(5, 4)

(1, 5)

(2, 5)

(3, 5)

(4, 5)

(5, 5)

· · ·

· · ·

· · ·

· · ·

· · ·
...

...
...

...
...

. . .

First, the set S is infinite, since the left column is infinite. Since S ⊆ N× N and
N× N is countably infinite, we know that S is countably infinite by Theorem 28.14.

Alternatively, we can list the elements of S by using the “up arrow” argument
from earlier. (We can’t list the elements of S by going down columns, but could we
list the elements of S by traveling across the successive rows?) △

29.D Exercises

Exercise 29.1. Finish the proof of Theorem 29.1.
(Hint: There are two unfinished cases: (a) both A and B′ are finite, or (b) one of
them is finite and the other infinite.)

Exercise 29.2. Prove that {0, 1} × N is countably infinite. (Hint: Use theorems in
the section.)

Exercise 29.3. Let A and B be countable sets. Prove that A×B is countable. (How
is this different from what was proved in Theorem 29.3?)

Exercise 29.4. Let A1, A2, . . . be arbitrary sets. Let B1 = A1, and for each n ≥ 1
let Bn+1 = Bn × An+1. Hence, we have

B1 = A1, B2 = A1 × A2,
B3 = (A1 × A2)× A3, B4 = ((A1 × A2)× A3)× A4,

and so forth. Do the following:
(a) Prove that if all of the Ai are countable, then Bn is countable for each n ∈ N.

(Hint: Induction.)
(b) Recall that the set A1 × A2 × A3 (without parentheses) consists of ordered

triples of the form (a1, a2, a3) where each ai ∈ Ai. On the other hand, the
set B3 = (A1 × A2) × A3 (with parentheses) consists of elements of the form
((a1, a2), a3) where each ai ∈ Ai. These elements are ordered pairs where the
first coordinate is also an ordered pair.
Describe a bijective function f : A1 × A2 × A3 → (A1 × A2) × A3 = B3, and
prove its bijectivity.

(c) Prove that if A1, A2, A3 are countable, then the set A1 × A2 × A3 is countable.
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(The motivated student might attempt generalizing parts (b) and (c) above, by prov-
ing that there is a bijection from the set of ordered n-tuples A1 × A2 × · · · × An to
the set Bn. This shows that if A1, A2, . . . , An are countable, then the set of ordered
n-tuples A1 × A2 × · · · × An is countable.)

Exercise 29.5. Prove that |Z× N| = |Q|.

Exercise 29.6. Prove that if A1, A2, . . . are pairwise disjoint, countably infinite sets,
then

⋃∞
i=1 Ai is countably infinite. (Hint: Not induction. Think about “up arrow”

arguments. Alternatively, you could construct a bijection from N× N to
⋃∞

i=1 Ai.)

Exercise 29.7. Prove that the set of all finite subsets of N is countably infinite.
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30 Uncountable sets

The results of this section will be centered around the following definition.

Definition 30.1. Any set A that is not countable is said to be uncountable.

We can think of the uncountable sets as those sets which are bigger than the
countably infinite sets, as in the following figure.

0

1

2

...

ℵ0

ℵ1

ℵ2

...

Countable

Uncountable
Infinite

Finite

Countably Infinite

∅

{1}, {2}, . . .

{1, 2}, {1, 3}, . . .

N, 2N,Z,Q,N× N . . .

ExamplesCardinalities

As is evident from this diagram, we still don’t have any examples of uncountable
sets. In this section we will see that there are many examples.

30.A How big is R?

Before we can talk about how big the set of real numbers is, we need to explain more
precisely what a real number is. We usually think of real numbers as infinite decimal
expansions. For instance:

1 = 1.00000 . . .√
2 = 1.41421 . . .

− π

13
= −0.24166 . . .

e−6 − 24

7
= −3.42609 . . .

However, real numbers do not always have unique infinite decimal expansions. If a
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number ends in repeating 9’s, we can shift up and end in repeating 0’s. For example,

0.99999 . . . = 1.00000 . . .

8.3929999 . . . = 8.3930000 . . .

−3928.83829999 . . . = −3928.83830000 . . .

To avoid nonuniqueness issues, we will always avoid writing decimal expansions which
end in repeating 9’s.

Our goal now is to show that R is uncountable. From a previous homework
problem we know that |(0, 1)| = |R|, so it suffices to show that (0, 1) is uncountable.
(This set is easier to work with.) We know that (0, 1) is infinite, so to prove that it
is uncountable we must show that there does not exist any bijection f : N → (0, 1).
Cantor’s trick to do this is to show that every function f : N → (0, 1) is not surjective,
using what is now commonly called a “diagonalization argument.” Before we give the
technical proof, we demonstrate the idea with an example.

Suppose f : N → (0, 1) is the function

f(1) = 0.29838293 . . .

f(2) = 0.43828183 . . .

f(3) = 0.73826261 . . .

f(4) = 0.20030000 . . .

f(5) = 0.73724892 . . .
...

Our goal is to prove that f is not surjective. Thus, we must find some element
x ∈ (0, 1) that is not in the image of f . We will construct x digit by digit, so that it
doesn’t match any of the numbers on our list.

First, we want x to be different from f(1) = 0.29838293 . . .. We can make sure this
is true by guaranteeing that the first digit (past the decimal point) of x is different
from the first digit of f(1). So, let’s change that first 2 to a 4, and put

x = 0.4 . . . .

Notice that no matter what we do with the rest of the digits of x, it will not match
f(1).

Second, we want x to be different from f(2) = 0.43828183 . . .. They do match on
their first digit, but we can make their second digits different by changing the 3 to a
4. So we put

x = 0.44 . . .

and it will not equal f(1) or f(2).
Third, we want x to be different from f(3) = 0.73826261 . . .. It already is different

because of our choice of the first two digits, but we probably should continue the
pattern we’ve already come up with, to make sure that the third digit is different. So
we change the 8 to a 4, and put

x = 0.444 . . .
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and we have x ̸= f(1), f(2), f(3).
For the fourth number, f(4) = 0.20030000 . . ., we change the 3 to a 4, and put

x = 0.4444 . . .

and we have x ̸= f(1), f(2), f(3), f(4).
For the fifth number, f(5) = 0.73724892 . . ., we need to change the fifth digit 4,

so we change it to 7. Put
x = 0.44447 . . . .

In general, we look at the nth digit of f(n), and change it to a 4, unless it is already
a 4, in which case we change it to a 7. We place that new digit in the appropriate
place in x. After all of these changes, x cannot match any number on our list, so f
is not surjective.

Remark 30.2. If we start with a different list of numbers, the number x we construct
will be different (depending on that list). ▲

To make this work more easily, define the digit change function

dig : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} → {4, 7}

by the rule

dig(i) =

{
4 if i ̸= 4

7 if i = 4.

Note that because the digit change function does not use 9’s, we don’t need to worry
about x ending in repeating 9’s.

Warning 30.3. There are many other digit change functions we could have
used. This is just one option. Because there are so many different options,
you should always tell your reader which digit change function you are using by
giving the definition.

We are now prepared to give the formal proof that (0, 1) is uncountable. As
discussed above, the technique used in this proof is known as Cantor’s diagonalization
argument.

Theorem 30.4. The set (0, 1) is uncountable.

Proof. Let f : N → (0, 1) be any function. We will show that f is not surjective.
For each n ∈ N, write f(n) using a decimal expansion f(n) = 0.d1,nd2,nd3,n . . .

(which doesn’t end in repeating 9’s). Fix x ∈ (0, 1) to be the number with decimal
expansion x = 0.x1x2x3 . . . where xn = dig(dn,n). In other words, the nth digit of x is
the digit change of the nth digit of f(n). Hence x ̸= f(n) for each n ∈ N. Therefore
f is not surjective, as x is not in the image.
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Corollary 30.5. The set R is uncountable.

The cardinality of R is called the continuum, and we write |R| = c. You might
ask: Where does c fit in the chain of cardinalities? Is it just one step up from ℵ0?

The answer is strange. It depends on the axioms you use! Some mathemati-
cians do assume c = ℵ1; this assumption is called the continuum hypothesis. Most
mathematicians simply do not worry about this question.

We have already seen that |(0, 1)| = |R|, so (0, 1) also has continuum cardinality.
Here are some more examples of sets with continuum cardinality.
(1) Any open interval (a, b) with a, b ∈ R. (We can also replace a with −∞, or b

with ∞.)
(2) Any half-open interval [a, b) with a, b ∈ R. (We can replace b with ∞.)
(3) Any half-open interval (a, b] with a, b ∈ R. (We can replace a with −∞.)
(4) Any closed interval [a, b] with a, b ∈ R.

To give the idea behind how to prove these facts, we will show:

Proposition 30.6. The half open interval (0, 1] has the same cardinality as the
open interval (0, 1), and hence it has continuum cardinality.

Proof. We define a bijection f : (0, 1) → (0, 1], as follows. Fix

S =

{
1

2
,
1

4
,
1

8
, . . .

}
=

{
1

2n
: n ∈ N

}
⊊ (0, 1),

and fix T = S ∪ {1} ⊊ (0, 1]. Now, define f as a piecewise function by the rule

f(x) =

{
x if x /∈ S

2x if x ∈ S.

The first piece of this function is a bijection from (0, 1) − S to (0, 1] − T , and the
second piece is a bijection from S to T . By pasting together, f is a bijection from
(0, 1) to (0, 1].

We end this section with one last result which can be used to tell whether a set is
uncountable.

Theorem 30.7. Let A and B be sets, with A ⊆ B. If A is uncountable, then B
is uncountable.

Proof. This is the contrapositive of Theorem 28.14, after noting that A and B must
be infinite.

Example 30.8. Any subset S ⊆ R such that (0, 1) ⊆ S is uncountable, by the
previous theorem. In a later section we will show that any such subset has continuum
cardinality.

There are lots of subsets of R which are not uncountable. Can you list some? △
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30.B Exercises

Exercise 30.1. Let a, b ∈ R with a < b. Construct a bijection f : (0, 1) → (a, b), and
prove it is a bijection. (This shows that bounded open intervals all have the same
cardinality.)

Exercise 30.2. Prove that the interval [0, 1) has continuum cardinality, by creating
a bijection [0, 1) → (0, 1).

Exercise 30.3. Prove that the interval [0, 1] has continuum cardinality.

Exercise 30.4. Prove that the set of irrational numbers is uncountable. (Hint:
Theorem 29.1 may be useful, along with contradiction.) Find a subset of the irrational
numbers that is countably infinite.

Exercise 30.5. Prove that the set C of complex numbers is uncountable. (With
more work one can prove that C has continuum cardinality, but this is not obvious.)

Exercise 30.6. We defined a product of two sets A and B to be the collection of
ordered pairs from A and B.

Let A1, A2, A3, . . . be sets. Define the product
∏∞

i=1 Ai = A1 × A2 × A3 × · · · to
be the set of ordered sequences (i.e., infinite tuples)

{(a1, a2, a3, . . .) : ai ∈ Ai for each integer i ≥ 1}.

We showed previously that a finite product of countable sets is countable. Show
that the countable product

∏∞
i=1{0, 1} = {0, 1}×{0, 1}×{0, 1}×· · · is not countable.

(Hint: (1) This product is the set of infinite sequences of 0’s and 1’s. (2) Use Cantor’s
diagonalization argument.)
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31 Injections and cardinalities

In the previous section we proved the amazing fact that R is not a countable set. Thus,
we might expect that |N| < |R|. We have only defined when cardinalities are equal.
In this section we give a method for determining inequalities between cardinalities.

31.A Injections vs. bijections

Let A and B be arbitrary sets. We would like to think of A as “smaller” than B if we
can fit A inside B. However, consider the set N which sits properly inside Z. These
sets have the same cardinality! Thus, we have to be extra careful about whether
cardinalities are strictly smaller or not.

One way to think about fitting A inside another set B is to use an injection.
This motivates the following definitions (which will only be fully justified in the next
section).

Definition 31.1. Let A and B be sets. If there is an injection f : A → B, we
write |A| ≤ |B|. If there is an injection but no bijection from A to B, then we
write |A| < |B|.

The following are some examples of these definitions in action.

Example 31.2. (1) What is the relation between the sets A = {1, 3, 5} and B =
{2, 4, 6, 8}? There is an injection from A to B but no bijection (since A has three
elements, but B has four elements). Thus |A| < |B|.

(2) What is the relation between the sets 2N and N? The function f : 2N → N
defined by the rule f(x) = x is injective. Hence, |2N| ≤ |N|. However, both sets are
countably infinite, so in fact there is a (different) bijective function between the sets,
so we have |2N| = |N|.

(3) What is the relation between the sets N and R? The function N → R sending
each natural number to itself is an injective function. Hence |N| ≤ |R|. In the previous
section we proved that R is uncountable, so there is no bijection between these sets.
Hence, we have the strict inequality |N| < |R|. △

Advice 31.3. We can think of injections as giving only “half” of the information
needed to construct a bijection, which is why we only get an inequality ≤.

You might recall that in our tower of cardinalities (found at the beginning of the
previous section) we had an infinite list of infinite cardinalities ℵ0 < ℵ1 < ℵ2 < . . ..
But so far, we have only found two types of infinite cardinalities; the countably infinite
sets, and the sets of continuum size. In our next theorem we will prove that for any
set A we have |A| < |P(A)|. Thus, we have an infinite chain of increasing infinite
cardinalities

|N| < |P(N)| < |P(P(N))| < . . . .
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When A is a finite set, say |A| = n, then we know |A| < |P(A)| because n < 2n.
But how does this process work when A is an infinite set? In that situation we
cannot simply count elements. Rather, we must prove that there is no bijection
g : A → P(A). Our approach will be similar to how we showed R is not countable.
Start with an arbitrary function g : A → P(A), and show that g is not surjective by
finding some set B ∈ P(A) which is not in the image of g. Note that B will be a
subset of A, since B ∈ P(A). The hardest part is constructing B. We will give an
explicit example (using finite sets), and then give the formal proof for arbitrary sets.

Fix A = {1, 2, 3}. Hence

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Consider the function g : A → P(A) where g(1) = {2}, g(2) = ∅, and g(3) = {1, 2, 3}.
We want to find a set B ∈ P(A) that we can prove is not equal to g(1), g(2), or g(3).
Of course, we could just pick one of the other five sets not in the image of g in this
case; but we want to come up with a method that will work for any set A.

So, we ask the question: Is x ∈ g(x)?
� Is 1 ∈ g(1) = {2}? The answer is no.
� Is 2 ∈ g(2) = ∅? The answer is no.
� Is 3 ∈ g(3) = {1, 2, 3}? The answer is yes.

We construct B ∈ P(A) by the following rule: If the answer to the question “Is
x ∈ g(x)?” is no then we put x ∈ B, but if the answer is yes then we leave x out of
B. Using the answers we had above, we see that B = {1, 2}.

Notice that B will not equal g(x) because if x ∈ g(x) then x /∈ B, and vice versa.
Indeed, we see that
� 1 /∈ g(1) but 1 ∈ B.
� 2 /∈ g(2) but 2 ∈ B.
� 3 ∈ g(3) but 3 /∈ B.

This forces B to be different from any element in the image.
One more example is in order, to test our understanding. Suppose that A =

{1, 2, 3} as above, and suppose h : A → P(A) is the function defined by the rule
h(1) = {2, 3}, h(2) = {2}, h(3) = {2, 3}. If we follow the same pattern as above,
asking the question “Is x ∈ h(x)?” and using the answers to define B, what set B do
we get? (Before looking at the answer, try this construction yourself.)

Answer: The set is {1}.

Remark 31.4. The set B is sometimes called the barber set. This is because there
is some connection with the following paradox: There lives a barber in a small town
who always obeys the rule that he will shave everyone in town who doesn’t shave
themselves, but if they shave themselves he will not shave them.

Does the barber shave himself? If he does, then he cannot shave himself by his
own rule. But if he doesn’t, then he must shave himself by his rule.

One way to resolve the paradox is to assume instead the barber does not live in
the town. This corresponds, roughly, to the fact that B is not in the image of the
function. ▲

We are now ready to prove the theorem in general.
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Theorem 31.5. If A is a set, then |A| < |P(A)|.

Proof. Let A be any set. First, we prove that |A| ≤ |P(A)|, so we need to find an
injective function f : A → P(A). Define f by the rule f(a) = {a}. To prove that f
is injective, let a1, a2 ∈ A and assume f(a1) = f(a2). Hence {a1} = {a2}. Therefore
a1 = a2, since sets are equal exactly when they have the same elements.

Next, let g : A → P(A) be an arbitrary function. We will show that g is never
surjective, and hence there is no bijection between A and P(A). Define the (barber)
set as

B = {x ∈ A : x /∈ g(x)}.

This is a subset of A, hence an element of P(A). We will show that B is not in the
image of g.

Let a ∈ A be arbitrary. There are two cases.

Case 1: Assume a ∈ g(a). In this case a /∈ B, hence g(a) ̸= B.

Case 2: Assume a /∈ g(a). Then a ∈ B, hence g(a) ̸= B.

In every case B ̸= g(a). Since a ∈ A was arbitrary, this means B cannot be in the
image of g (since it does not equal any element of the image of g).

31.B How big is P(N)?
We now know that |N| < |P(N)|, but exactly how big is P(N)? In the next section
we will prove it has continuum cardinality. However, we currently have the tools to
find another set with the same cardinality. For the rest of this section, given a set A
we let F(A) be the set of all functions from A to {0, 1}.

Theorem 31.6. If A is any set, then |P(A)| = |F(A)|.

Proof. We must construct a bijection between the two sets P(A) and F(A). The
rule is this: send a subset S ⊆ A to its characteristic function, χS : A → {0, 1}. In
other words, we define f : P(A) → F(A) by the rule

f(S) = χ
S.

We first show that f is injective. Let S, T ∈ P(A) and assume f(S) = f(T ). We
then have χS = χ

T . Plugging in an arbitrary element a ∈ A, we have χS(a) = χ
T (a).

The left-hand side is 1 when a ∈ S and 0 otherwise, and similarly for the right-hand
side. Thus, a ∈ S if and only if a ∈ T . In other words S = T .

Finally, we show that f is surjective. Let φ : A → {0, 1} be any function. Put
S = {a ∈ A : φ(a) = 1}. We then check directly that φ = χ

S. (They have the same
domain and codomain, and the same rule.) Hence φ = f(S), so f is surjective.
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Corollary 31.7. The set F(N) is uncountable.

Proof. The equality |P(N)| = |F(N)| follows from the previous theorem. We also
know |N| < |P(N)|, hence F(N) is uncountable.

Remark 31.8. In Exercise 30.6, you proved that
∏∞

i=1{0, 1} is uncountable. The
corollary above gives an easier way to see this, since functions N → {0, 1} can be
thought of as infinite sequences of 0’s and 1’s. ▲

31.C Exercises

Exercise 31.1. Answer each of the following true or false problems, proving your
answer.

(a) Every uncountable set has the same cardinality as (0, 1).
(b) Let A and B be sets. If A ⊆ B, then |A| ≤ |B|.
(c) For sets A and B, if A ⊊ B, then |A| < |B|.
(d) Given sets A, B, and C, if A ⊆ B ⊆ C and both A and C are countably infinite,

then B is countably infinite.
(e) No subset of R has smaller cardinality than R.
(f) For sets A and B, if |A| < |B| and A is finite, then B is infinite.
(g) For sets A and B, if |A| < |B| and A is countable, then B is uncountable.
(h) For sets A and B, if |A| < |B| and A is countably infinite, then B is uncountable.
(i) For any set A, there exists another set B such that |A| < |B|.

Exercise 31.2. Let A = {a, b, c, d, e} and let g : A → P(A) be defined by the rule
g(a) = {b, d}, g(b) = {a, c, e}, g(c) = {a, c, d, e}, g(d) = ∅, g(e) = {e}. List the
elements of the barber set B = {x ∈ A : x /∈ g(x)}. Why is it not in the image of g?

Exercise 31.3. Find a set with cardinality bigger than that of R. Then find a set
with cardinality bigger than that.

Exercise 31.4. Theorem 27.5 says that for finite sets A and B, if |A| = |B| and
f : A → B is a function, then f is injective if and only if f is surjective. Prove that
this fails for infinite sets, by proving the following:

(a) There is an infinite set S and a function f : S → S that is injective but not
surjective.

(b) There is an infinite set S and a function g : S → S that is surjective but not
injective.

In both parts prove that the function you construct has the required properties.

Exercise 31.5. Let A and B be sets with f : A → B a bijection. Define a new
function g : P(A) → P(B) by the rule g(S) = {f(s) : s ∈ S}, where S ⊆ A is an
arbitrary element of P(A). Prove that g is a bijection.

Conclude that if |A| = |B| then |P(A)| = |P(B)|.
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Exercise 31.6. Define a function f : R → P(Q) by the rule

f(x) = {q ∈ Q : q ≤ x}.

Prove that f is injective. (Hint: For any two real numbers x < y, there is a rational
number strictly between them. See Exercise 11.6.)

Using this injection, in conjunction with the previous exercise, derive the inequal-
ity |R| ≤ |P(N)|.

Exercise 31.7. Let A and B be nonempty sets. Prove that there exists an injection
f : A → B if and only if there exists a surjection g : B → A. (Hint: For the backwards
direction, given a surjection g : B → A define a function f : A → B by the rule f(a) =
one of the elements which mapped to a.)
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32 The Schröder–Bernstein Theorem

Let a, b ∈ R. If we know a ≤ b and b ≤ a, then we must have a = b. In other words,
the “less than or equal to” relation on the real numbers is antisymmetric.

We have used a similar notation for cardinalities, and it is natural to ask whether
or not this relation is antisymmetric. In other words, given sets A and B, if we know
|A| ≤ |B| and |B| ≤ |A|, must we have |A| = |B|? The answer is yes, and this result
is called the Schröder–Bernstein Theorem.

Theorem 32.1 (Schröder–Bernstein Theorem). Let A and B be arbitrary sets.
If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Remark 32.2. The story of how this theorem came to be proved is long and some-
what convoluted. Cantor was the first to state the theorem, but apparently he had
no proof. The first proof (that we know of) was found by Dedekind, but he did not
publish his work at the time.

Schröder announced a proof, which was later shown to have an error. Finally, in
1897, Bernstein (who was only 19 years old, and a student of Cantor) presented a
proof. At nearly the same time Schröder independently found an error free proof as
well. Hence, these two mathematicians have their names attached to the theorem. ▲

32.A Sketching the proof using genealogy

Here we will sketch the main ideas of the proof. The proof is a direct one. Given sets
A and B, assume that |A| ≤ |B| and that |B| ≤ |A|. In other words, we assume that
we have two injective functions f : A → B and g : B → A. Our goal is to show that
|A| = |B|, in other words we need to create a bijection h : A → B.

Of course, if f is already a bijection, we are done. So we may as well assume that
f is not surjective. Similarly, we also assume g is not surjective (since if it is bijective,
then we are done).

The main idea of the proof is that we partition both A and B into two pieces, and
create a bijection between those pieces which, by the Pasting Together Theorem, will
give us the bijection h:

A=A1 ∪ A2yh

yh1

yh2

B=B1 ∪B2.

The only information we have available comes from the two functions f and g
that we have given to us. We must somehow use the functions f and g to make
any progress on this problem. We might ask how these functions behave. Fix some
element a ∈ A. Applying f , we have a new element f(a) ∈ B. We call a the parent
of f(a), and we call f(a) the child of a. See the picture below.
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a
f(a)

A B

We can also talk about elements of B being parents of children in A via the
function g. The parent-child relationship in this case appears below.

g(b) b

A B

There are some very important facts we need to know about these parent-child
relationships.
(1) Every element in A is the parent of exactly one child in B, because f is a

function. Similarly, every element in B is the parent of exactly one child in A.
(2) Every element inA has at most one parent inB, because f is injective. Similarly,

every element in B has at most one parent in A, because g is injective.
(3) Some element in A has no parent in B, because g is not surjective. Similarly,

some element in B has no parent in A, because f is not surjective.
We can pass from a parent to a child, but then that child has its own child. In

this way, we have a chain of descendants . By fact (1), there are no siblings in the
list of descendants; there is always exactly one child per generation. For instance, if
a ∈ A, its chain of descendants is

f(a), g(f(a)), f(g(f(a))), . . . ,

which is pictured below.

a

g(f(a))

...

f(a)

f(g(f(a)))

A B

...
...

It is possible that this chain of descendants could loop around and repeat itself (for
instance, we might have g(f(a)) = a, so that a is its own grandparent), but this
situation will cause us no difficulty.

Just as we can consider descendants, we can also consider ancestors . The ancestors
of an element are its parent, the parent of its parent, and so forth. By the important
fact (2) above, there are never multiple parents in a generation. There is at most
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one parent, and occasionally, by fact (3), there are no parents. Thus, sometimes
the ancestry terminates, and sometimes it goes backwards forever (including when it
loops).

The genealogy of an element x (of either A or B) is the chain consisting of its
ancestors, descendants, and itself. If an element of a genealogy has no parent, we say
it is the beginning of the genealogy. (Note that there is at most one beginning to any
genealogy.) Genealogy chains can exhibit many different behaviors, but there is one
important property that will help us in our proof. We say that genealogies come in
two types:
(1) The genealogy does not begin in B. (This consists of the cases where the

genealogy begins in A, or when the chain of ancestors never ends, including
when it loops.)

(2) The genealogy does begin in B.
A key fact is that a parent and child are in the same chain, and so they have the
same genealogy. Their genealogies thus have the same type.

We are now ready to describe a partition of A. We put A = A1 ∪ A2 where

Ai = {a ∈ A : the genealogy of a is of type i}.

Similarly, we put B = B1 ∪B2 where

Bi = {b ∈ B : the genealogy of b is of type i}.

Now that we have a partition of A and a partition of B, to construct a bijection
h : A → B it suffices by the Pasting Together Theorem to construct bijections
hi : Ai → Bi for each i = 1, 2. Each of these functions will be defined slightly
differently.

Define h1 : A1 → B1 by the rule h1(x) = f(x). To show that h1 is a bijection
requires us to prove three facts.
(1) We first show that h1 really is a function taking elements of A1 to B1. To that

end, let x ∈ A1. This means that the genealogy of x is of type 1. The child of
x is f(x) ∈ B, which has the same type of genealogy. Thus h1(x) = f(x) ∈ B1.

(2) We next show that h1 is injective. Let x1, x2 ∈ A1. Assume that h1(x1) =
h1(x2). From the definition of h1, we have f(x1) = f(x2). Since f is injective,
x1 = x2. So we see that h1 is injective.

(3) Finally, we show that h1 is surjective. Let y ∈ B1. We then know (from the
definition of B1) that y has a type 1 genealogy. In particular, y must have a
parent x ∈ A, since its genealogy cannot begin at y in B. The parent, x, also
has a type 1 genealogy, and so x ∈ A1. Now, h1(x) = f(x) = y, where that
last equality comes from the fact that x is the parent of y. So we see that h1 is
surjective.

Having now dealt with h1, we will next define h2. To do this, we first define a
function j : B2 → A2 by the rule j(y) = g(y). Mimicking the three parts above, it is
straightforward (and left as Exercise 32.5) to show that j is a bijective function from
B2 to A2. We let h2 : A2 → B2 be its inverse, which is also a bijective function by
Theorem 26.20(2).

This completes the sketched proof of the Schröder–Bernstein Theorem.
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32.B Examples

The Schröder–Bernstein Theorem is not only beautiful symbolically, but also quite
useful because it is sometimes very easy to describe injections back-and-forth between
two sets A and B, yet it may be difficult to describe a bijection. Here are some
standard examples.

Example 32.3. We will prove that the closed interval [3, 10] has the same cardinality
as (0, 1).

Define f : [3, 10] → (0, 1) by the rule f(x) = (x− 2)/10. This is a linear function
with f(3) = 1/10 and f(10) = 8/10. So it maps [3, 10] into the interval [1/10, 8/10] ⊆
(0, 1) injectively.

On the other hand, the function g : (0, 1) → [3, 10] given by g(x) = x + 3 is also
an injection.

By the Schröder–Bernstein Theorem, we are done. △

This next example is so important that we will call it a theorem.

Theorem 32.4. |P(N)| = |R|.

Proof. In Exercise 31.6, we proved that |R| ≤ |P(N)|. (For an alternative proof
of this inequality, see Exercise 32.6 below.) By the Schröder–Bernstein Theorem, it
suffices to now prove |P(N)| ≤ |R|.

Define f : P(N) → R by the rule f(S) = 0.χS(1)χS(2)χS(3) . . .. (For instance, if
S = {1, 3, 4, 7, 9, . . .} then f(S) = 0.101100101 . . . ∈ R.) It just remains to show that
this function is injective. Let S, T ⊆ N be arbitrary, and assume f(S) = f(T ). Thus

0.χS(1)χS(2)χS(3) . . . = 0.χT (1)χT (2)χT (3) . . . .

Since neither decimal expansion involves repeating 9’s, the two expansions are equal.
Hence χ

S(n) = χ
T (n) for each n ∈ N. This means that S and T have exactly the

same elements so S = T , which finishes showing that f is an injective function.

32.C Exercises

Exercise 32.1. Let X, Y , and Z be sets. Prove that if X ⊆ Y ⊆ Z and |X| = |Z|,
then |X| = |Y | as well.

Exercise 32.2. Prove that A = [−5, 16) and B = (0,∞) have the same cardinality.
(Hint: Find injections A → B and B → A, and then use the Schröder–Bernstein
Theorem. Alternatively, use Exercise 32.1 twice, with X = (0, 1), Z = R, and Y = A
or Y = B.)

Exercise 32.3. Prove that A = Q ∪ [−2,−1] ∪ {
√
2} and B = [3, 6) ∪ (15, 17) have

the same cardinality.
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Exercise 32.4. Given sets A and B, prove that if there is an injection f : A → B
and a surjection g : A → B, then |A| = |B|. (Hint: A previous homework exercise
might be useful.)

Exercise 32.5. Prove the claim from Subsection 32.A that the function j : B2 → A2

given by the rule j(y) = g(y) is a bijective function. (Hint: Modify the three steps
used to show that h1 is a bijective function.)

Exercise 32.6. In Exercise 31.6 we showed that |R| ≤ |P(N)|. Here is another way
to do that.

Define a function f : (0, 1) → P(N), by sending (the decimal expansion of) a real
number 0.a1a2a3 . . . (not ending in repeating 9’s) to the set

{a1, 10a2, 100a3, . . .} − {0} ⊆ N.

(For instance, 0.03193 . . . maps to {0, 30, 100, 9000, 30000, . . .}−{0}.) Prove that this
is an injective function.
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Chapter IX

Introduction to Analysis

The only way to discover the limits of the possible is to go beyond them into the
impossible. Arthur C. Clarke

In the third century BC, the Greek mathematician Archimedes used the “method
of exhaustion” to estimate the circumference of a circle of diameter 1, and thus
estimate the value of π. His method involved inscribing a regular n-gon inside the
circle, circumscribing the circle by a regular n-gon, and bounding the circumference
of the circle between the perimeters of the two n-gons. For example, taking n = 4,
n = 5, and n = 6, we get the following approximations.

2.8284 < π < 4.0000 2.9389 < π < 3.6327 3.0000 < π < 3.464

As n gets larger the approximations get better; for n = 100 we get 3.141 < π < 3.143,
and for n = 1000 we get 3.141587 < π < 3.141603. This computation was among the
first uses in antiquity of the idea of a limit; however, it would be nearly 2,000 years
before the concept of limit was formally defined and given a logical foundation.

Newton and Leibniz used a concept of limit in the development of calculus, but
it was not until around 1820 that Bolzano and Cauchy formalized the definition of
limit. It was even later when it was finally written in the way most mathematicians
now use limits.

243
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33 Sequences

The infinite list of numbers
1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
, . . .

is an example of what we shall call a sequence. Sequences arise naturally in many
contexts. For instance, you might measure the speed of a race car every second and
produce a list of speeds. Or you could measure, over time, the temperature of heated
metal. Maybe your list of numbers is the total population in a bacterial culture,
measured every morning in the lab.

In all these cases, the numbers give us a brief glimpse at a process that could
continue on forever. Extrapolating from the data, we might make a guess about how
the sequence behaves, or perhaps fit it to a nice function. For instance, you might
guess that the list of numbers above comes from the function 1/n, as n ranges over
the natural numbers (and you’d be right!).

A fundamentally important question we can ask is: Where are these numbers
headed? Scientists use the mathematical theory developed in this section to determine
the eventual behavior, or limit, of such sequences.

33.A What are sequences, exactly?

The formal definition of a sequence is as follows.

Definition 33.1. A sequence is a function f : N → R. The image f(n) of
n ∈ N is called the nth term of the sequence. Often we will write the terms of
a sequence with subscripts; i.e., we write them as

a1, a2, a3, . . .

where an = f(n).

Example 33.2. It is important to be able to pass back and forth between a list of
numbers and the function that defines the list.

For example, define a function f : N → R by the rule f(n) = 2n. Thus, the
nth term of our sequence is an = 2n, and the first few terms are given as follows:
a1 = 2, a2 = 4, a3 = 6, a4 = 8, a5 = 10, . . ..

On the other hand, if you are given the list of numbers 2, 4, 8, 16, . . ., then you
might guess that this sequence arises from the function g : N → R given by the rule
g(n) = 2n. △

Example 33.3. Try to figure out the rule for the following sequences:
(1) −1, 1,−1, 1,−1, 1, . . .,
(2) 1, 3, 5, 7, . . .,
(3) 1, 0, 0, 0, 0, . . .,
(4) −10, 18397863, 2, 939,−10383, . . ..
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Here are some possible answers:
(1) an = (−1)n,
(2) an = 2n− 1,
(3) an = 0n−1 (or you could give a piecewise definition),
(4) Not enough information to find a pattern! △

Definition 33.4. If we wish to refer to a sequence a1, a2, a3, . . ., we may use the
notation

(an)n∈N.

Example 33.5. Let an = 2n. If we wish to refer to the sequence

a1, a2, a3, . . .

we could write (an)n∈N or (2n)n∈N. Both notations would refer to the sequence

2, 4, 8, . . . . △

33.B Arithmetic sequences

Each of the following sequences have something in common. See if you can discover
what it is.

1, 3, 5, 7, 9, . . .

13, 8, 3,−2,−7, . . .

6, 9, 12, 15, 18, . . .

Answer: Each term in the sequence is a fixed distance from the previous term.
In the first sequence, the terms jump by adding 2, in the second sequence they jump
by adding −5, and in the last sequence the terms jump by adding 3.

These types of sequences are so common we give them a special name.

Definition 33.6. Let c, d ∈ R. For n ∈ N, the sequence given by the formula

an = c+ (n− 1)d

is called an arithmetic sequence with first term c and common difference d.

Example 33.7. The arithmetic sequence with first term 2 and common difference 2
has terms

a1 = 2, a2 = 4, a3 = 6, a4 = 8, a5 = 10, . . .

The nth term is given by the formula an = 2 + (n− 1)2 = 2n. △

Can you find the first six terms of the arithmetic sequence with first term π and
common difference −e?



246 CHAPTER IX. INTRODUCTION TO ANALYSIS

33.C Geometric sequences

There is a second very common type of sequence. Look to see if you can find what
the following sequences have in common.

1, 2, 4, 8, 16, 32, . . .

1, 1/2, 1/4, 1/8, 1/16, . . .

3,−6, 12,−24, 48, . . .

Answer: Each term in the sequence is a fixed multiple of the previous term. In
the first sequence we multiply each term by 2 to get the next term, in the second
sequence we multiply by 1/2, and in the third sequence we multiply by −2.

Definition 33.8. Let c, r ∈ R. A sequence given by the formula

an = c · rn−1

for n ∈ N is called a geometric sequence with first term c and common ratio r.

Example 33.9. The geometric sequence with first term 4 and common ratio 1/10 is
given by the formula

an = 4

(
1

10

)n−1

and the first few terms are

4, 4/10, 4/100, . . . △

33.D Sequences and their limits

In this subsection we will discuss what it means for a sequence to approach a limit.
To give an example, consider the sequence an = 1

n
given at the beginning of this

section. This sequence begins

1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
, . . .

It appears that the limit should be 0; the terms are getting closer and closer to 0.

We will now give the formal definition of what it means for a sequence to approach
a limit. This definition is quite complicated, so we will explain the true meaning
behind the symbols afterwards.
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Definition 33.10. Given a sequence (an)n∈N, we say that it converges to L ∈ R
if the following holds:

(33.11) ∀ε ∈ R>0, ∃N ∈ R, ∀n ∈ N, n > N ⇒ |an − L| < ε.

In this case, we say that L is a limit of the sequence.
If a sequence (an)n∈N converges to some L ∈ R, we say that the sequence

converges or that it is a convergent sequence. We write limn→∞ an = L.
If a sequence does not converge to any limit, we say that the sequence di-

verges, or that it is a divergent sequence.

We will spend the rest of this section studying this definition and coming to an
understanding of what it means. We begin by peeling off each of the quantifiers.

What is ε? The first quantifier is “∀ε ∈ R>0.” The variable ε is used to help us
measure how close the sequence gets to the limit L. We want to be able to prove that
our sequence can get arbitrarily close to the limit L. Thus, we want to prove that our
sequence eventually gets within a distance of 1/100 of the limit, but also eventually
within a distance of 1/1000 of the limit, and eventually within 1/10000, and so forth.
Thus, we do not just take ε = 1/100, we allow it to be any positive constant.

What is N? The second quantifier is “∃N ∈ R.” The variable N helps us tell
how far along the sequence we must go, so that after that point the sequence stays
within a distance of ε from the limit.

For instance, again consider the sequence 1, 1/2, 1/3, . . .. When ε = 1/2, how far
along the sequence do we need to travel until it stays within a distance 1/2 of the
limit L = 0? We see that by the time we reach the second term, all of the rest of
the terms are within a distance of 1/2 from 0. When ε = 1/100, we now must take
N = 100. For even smaller values of ε, we have to take larger values of N so that the
sequence stays that close to the limit.

Note that the second quantifier is existential. This means that you must fix a
specific value of N (depending on ε) which will satisfy the definition of limit. This
value of N will usually be found in scratch work, outside the proof. This is often the
hardest part of a limit proof, and we will show how this is to be done shortly.

What is n? The third and final quantifier is “∀n ∈ N.” The variable n is just
one of the subscripts in our sequence.

What does the premise of the implication, n > N , say? The condition
n > N just tells us that we will only look at the terms in the sequence past N . When
looking at limits, we really only care about what eventually happens.

What does the conclusion of the implication, |an − L| < ε, say? The
condition |an−L| < ε is just an easy way of saying that the nth term of our sequence
is within a distance of ε from the limit L. Equivalently, by removing the absolute
value signs, we may write L− ε < an < L+ ε.

Proving Limits. Every proof of a limit for a sequence will look essentially the
same. First you must deal with each of the quantified variables. The universal (for
all) variables must be left arbitrary. The existential variables must be fixed, but only
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in terms of previous variables. The implication is usually dealt with directly.

Proof outline.
Let ε > 0.
Fix N = found from scratch work ∈ R.
Let n ∈ N.
Assume n > N .
Do some work (usually by reversing the scratch work).
Conclude |an − L| < ε.

We will show how this is accomplished, by proving the following result.

Theorem 33.12.

lim
n→∞

1

n
= 0.

Scratch. This work should not appear on your homework, or in your proof.
Start with the conclusion |an − L| < ε. We know that an = 1/n and L = 0. So

the inequality becomes |1/n− 0| < ε. In other words |1/n| < ε. Since 1/n is positive,
the absolute value signs disappear, and we have 1/n < ε, or in other words n > 1/ε.
This will be our value for N . ⋆

We are now ready to do the proof.

Proof. Let ε > 0. Fix N = 1/ε ∈ R. Let n ∈ N. Assume n > N . Thus, n > 1/ε.
Taking reciprocals (noting that both sides of the inequality are positive), we get
1/n < ε. Hence

|an − L| = |1/n− 0| = 1/n < ε

as desired.

Let’s do another example.

Proposition 33.13. Given the sequence (an)n∈N defined by an = 1− 3
n
, then

lim
n→∞

an = 1.

Scratch. Start with |an − L| < ε. Plugging in the values for an and L, we have∣∣∣∣(1− 3

n

)
− 1

∣∣∣∣ < ε.

Simplifying we have |−3/n| < ε. Since n > 0 we have |−3/n| = 3/n. Hence, we may
write 3/n < ε. Solving for n, we get n > 3/ε. This is our value for N . ⋆

With the scratch work done, the proof is straightforward.
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Proof. Let ε > 0. Fix N = 3/ε ∈ R. Let n ∈ N. Assume n > N . Thus n > 3/ε.
Since ε and n are positive, we get 3/n < ε. Thus

|an − L| =
∣∣∣∣(1− 3

n

)
− 1

∣∣∣∣ = ∣∣∣∣− 3

n

∣∣∣∣ = 3

n
< ε

as desired.

Warning 33.14. In the previous examples, each term of the sequence is closer
to the limit L than the previous term. It is tempting to think that this is a
valid definition of a limit; i.e., the terms get closer and closer to L without ever
actually reaching L or getting farther away. In the next example, we will see
that this is not true.

Proposition 33.15. Define a sequence (an)n∈N by the formula

an =

{
1
n

if n is odd,

0 if n is even.

We have
lim
n→∞

an = 0.

This example is interesting because the sequence actually reaches the limit (every
even numbered term is equal to the limit) and moves away from the limit infinitely
often (each odd numbered term is farther from the limit than the previous term).
However, it does not move too far away from the limit.

Scratch. Start with |an − L| < ε. There are two cases.
Case 1: Suppose n is odd. Then an = 1/n so our inequality becomes |1/n−0| < ε.

Solving for n, as before, we reach n > 1/ε.
Case 2: Suppose n is even. Then an = 0 and our inequality becomes |0− 0| < ε.

This is true no matter the value of n, so in this case any value of N will work.
We must use an N that works in every case. Thus N = 1/ε should suffice. ⋆

With our scratch work completed, the proof now follows.

Proof. Let ε > 0. Fix N = 1/ε. Let n ∈ N. Assume n > N . We have two cases to
consider.

Case 1: Suppose n is odd. In this case we have

|an − L| = |1/n− 0| = 1/n < 1/N = ε.

Case 2: Suppose n is even. In this case we have

|an − L| = |0− 0| = 0 < ε.

Thus, in every case we have |an − L| < ε.
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33.E Divergence

Remember that for a sequence a1, a2, a3, . . . to converge, we have:

∃L ∈ R, ∀ε ∈ R>0, ∃N ∈ R, ∀n ∈ N, n > N ⇒ |an − L| < ε.

Thus, to prove that the sequence is divergent we need to prove:

∀L ∈ R, ∃ε ∈ R>0, ∀N ∈ R, ∃n ∈ N, n > N ∧ |an − L| ≥ ε.

As you can see, each of the four different quantifiers has been changed.
We start a divergence proof by letting L ∈ R be arbitrary. Subsequently, we must

find some ε so that our sequence will continue to have some terms at least ε away
from L. (Thus, ε usually depends on L.) We let N ∈ R be arbitrary, and must find
a subscript n, past N , such that an has distance more than ε from L.

We will do one example, where ε does not depend on L.

Proposition 33.16. Given the sequence (an)n∈N defined by an = (−1)n, then
an is divergent.

Proof. Let L ∈ R. Fix ε = 1/2 ∈ R>0. Let N ∈ R. To find a term in our sequence
that is at least distance 1/2 from L we consider two cases.

Case 1: Suppose L ≥ 0. Fix n ∈ N to be the smallest odd number with n > N .
Since n is odd, an = −1. We find

|an − L| = |(−1)− L| = L+ 1 > 1/2 = ε.

Case 2: Suppose L < 0. In this case we fix n ∈ N to be the smallest even number
with n > N . Since n is even, an = 1. We find

|an − L| = |1− L| = 1− L > 1/2 = ε

(since L < 0, we know −L > 0, hence 1− L > 1).
In every case, we fixed some n ∈ N satisfying both of the inequalities n > N and

|an − L| > ε.

33.F One more limit trick

Sometimes when proving that a limit exists it will be useful to use one of the following
functions to specify the value of N .

Definition 33.17. Let a, b ∈ R. We define the maximum and minimum of
these two numbers to be

max(a, b) =

{
a if a ≥ b,

b if a < b
and min(a, b) =

{
a if a ≤ b,

b if a > b.
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Example 33.18. Let a = 5 and b = 6. Then max(a, b) = 6 and min(a, b) = 5. Let
x ∈ R and let y = max(x, 1) and z = min(x, 1). Then y ≥ 1 and z ≤ 1. △

Here is an example of a limit proof in which it is useful to specify N as the
maximum of two numbers.

Proposition 33.19. Define a sequence (an)n∈N by the formula

an =
n+ 3

2n− 21
.

Then

lim
n→∞

an =
1

2
.

Scratch. Once again, we start our scratch work by considering |an − L| < ε, and try
to solve for n. Thus, we want ∣∣∣∣ n+ 3

2n− 21
− 1

2

∣∣∣∣ < ε.

Finding a common denominator, we obtain∣∣∣∣2(n+ 3)− (2n− 21)

2(2n− 21)

∣∣∣∣ < ε,

or in other words 27/|4n− 42| < ε. Thus, we reduce to |4n− 42| > 27/ε.
There are two possibilities here, depending on whether 4n − 42 is positive or

negative. (Note: It is never zero since n ∈ N.) In the positive case we want

4n− 42 >
27

ε
,

which reduces (after some algebra) to

(33.20) n >
27 + 42ε

4ε
.

In the case when 4n− 42 is negative, we want

42− 4n >
27

ε
,

which reduces to

(33.21) n <
42ε− 27

4ε
.

Inequality (33.21) does not help us because we want to find a lower bound on
n. Thus, we must guarantee that case never happens, or in other words, we must
guarantee that 4n − 42 is positive. This means we want to take 4n − 42 > 0, or
in other words n > 21/2. Combining this with (33.20), we see that we want N =
max(21/2, (27 + 42ε)/(4ε)), so that if n > N then n is greater than both 21/2 and
(27 + 42ε)/(4ε). ⋆
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We are now ready to begin our proof.

Proof. Let ε > 0. Fix N = max(21/2, (27 + 42ε)/4ε). Let n ∈ N. Assume n > N .
Using the fact that N ≥ 21/2, we have 4n− 42 > 4N − 42 ≥ 0. We also find

4n− 42 > 4N − 42 ≥ 4
27 + 42ε

4ε
− 42 =

27

ε
.

Hence, we find that

|an − L| =
∣∣∣∣ n+ 3

2n− 21
− 1

2

∣∣∣∣ = ∣∣∣∣ 27

4n− 42

∣∣∣∣ = 27

4n− 42
<

27

27/ε
= ε.

The trick used in the proof above is that we can use maximums to guarantee our
sequence is far enough along so that it behaves in a certain way (in this case, we
needed it to stay positive).

33.G Exercises

Exercise 33.1. Write the first six terms, and determine the nth term an, for each of
the following sequences.
(a) An arithmetic sequence with first term 5 and common difference −3.
(b) A geometric sequence with first term 4 and common ratio 2.
(c) An arithmetic sequence with first term 1/2 and common difference 3/4.
(d) A geometric sequence with first term 3/5 and common ratio 2/3.

Exercise 33.2. Translate the following phrases into symbolic logic. (Your answer
should include any necessary quantifications on the variables ε, N , and n.)
(a) The sequence (an)n∈N defined by an = 3− 4/n converges to L = 3.
(b) The sequence (an)n∈N defined by an = 6 does not converge to L = 3. (Note:

This sequence does converge to L = 6.)

Exercise 33.3. Let a, b, x ∈ R. Prove the following.
(a) max(a, b) ≥ a and max(a, b) ≥ b.
(b) min(a, b) ≤ a and min(a, b) ≤ b.
(c) If x > max(a, b) then x > a and x > b.

Exercise 33.4. Prove that

lim
n→∞

2

n2
= 0.

Exercise 33.5. Prove that

lim
n→∞

3n− 5

2n+ 4
=

3

2
.

(Hint: When n ∈ N, then 2n+4 is always positive, so you don’t have to worry about
when it is negative.)

Exercise 33.6. Prove or disprove: The sequence (an)n∈N defined by an = (n+ 1)/n
converges. (Hint: On scratch paper, write out the first ten terms to see if the sequence
is going somewhere.)
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Exercise 33.7. Let (an)n∈N be an arithmetic sequence with first term c and common
difference d. Prove that if d = 0, the sequence (an)n∈N converges to c. (In other
words, prove that the constant sequence c, c, c, . . . converges to c.)

Exercise 33.8. Prove that the sequence (an)n∈N defined by an = n does not converge
to L = 3.

Exercise 33.9. Prove that limn→∞(
√
n2 + 1− n) = 0.

Exercise 33.10. Let (an)n∈N be a geometric sequence with first term c and common
ratio r. Prove the following statements.
(a) If |r| < 1, then an converges to 0.
(b) If c ̸= 0 and an converges to 0, then |r| < 1.
(c) If c > 0 and r > 1, then an diverges.

(Feel free to use laws of logarithms, and especially the fact that if a, b ∈ R with
0 < a < b, then ln(a) < ln(b). In particular, for 0 < r < 1 we have ln(r) < 0, and for
r > 1 we have ln(r) > 0.)
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34 Series

In this section we introduce the idea of adding infinitely many objects together. There
are many applications for these ideas, which lead naturally into the development of
the integral in calculus.

34.A What is a series?

We write
∑∞

n=1 an to denote the series a1 + a2 + a3 + · · · . But what does this really
mean?

The numbers an form a sequence, which we call the terms or the summands of
the series. From those terms, we can form an entirely new sequence

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

s4 = a1 + a2 + a3 + a4
...

which is called the sequence of partial sums . These sums are only the beginning
portion of the series, which is why we call them partial sums. We can also define the
partial sums using the more compact formula

(34.1) sn+1 = sn + an+1

which we sometimes will find useful.
We say that the series

∑∞
n=1 an converges to a sum S if limn→∞ sn = S. In other

words, the series converges when the sequence of partial sums converges. Thus, the
methods of the previous section apply.

When first working with series it is important to note that the sequence of terms
a1, a2, a3, . . . is very different from the sequence of partial sums s1, s2, s3, . . .. For
instance, it is possible that the terms converge but the partial sums diverge.

In the next two examples, we will investigate how to describe the partial sums
when given a sequence of summands.

Example 34.2. Let (an)n∈N be defined by an = 1. In other words, an is the constant
sequence of 1’s. We find that the partial sums for this sequence are

s1 = a1 = 1

s2 = a1 + a2 = 1 + 1 = 2

s3 = a1 + a2 + a3 = 1 + 1 + 1 = 3

s4 = a1 + a2 + a3 + a4 = 1 + 1 + 1 + 1 = 4
...

We would guess that, in general, sn = n. We will prove it by induction.
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Proof. Base case: When n = 1, we have s1 = 1.
Inductive step: Assume sk = k for some k ≥ 1, with k ∈ N. We want to show

sk+1 = k + 1. Using (34.1), we have

sk+1 = sk + ak+1 = sk + 1 = k + 1,

since sk = k by the inductive hypothesis. □

In this example the sequence of terms a1, a2, a3, . . . converges to 1. However, the
sequence of partial sums s1, s2, s3, . . . diverges. △

Example 34.3. Consider the sequence (bn)n∈N defined by the rule

bn =
1

n
− 1

n+ 1
.

The first few terms in this sequence are given by

b1 =
1

1
− 1

2
=

1

2

b2 =
1

2
− 1

3
=

1

6

b3 =
1

3
− 1

4
=

1

12

b4 =
1

4
− 1

5
=

1

20
...

and it appears that this sequence is converging (fairly quickly) to 0.
Now consider the sequence of partial sums. The first few terms are computed to

equal

s1 = b1 =
1

2

s2 = b1 + b2 =
2

3

s3 = b1 + b2 + b3 =
3

4

s4 = b1 + b2 + b3 + b4 =
4

5
...

which appears to be converging to 1. Before we can prove convergence, we need more
information about the sequence of partial sums.

It appears that the partial sums are given by the rule sn = 1 − 1
n+1

. (Try it for
the first four terms above.) We will now prove that this is correct, by induction.
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Proof. Base case: When n = 1, then s1 = 1/2 = 1− 1/2.
Inductive step: Assume sk = 1 − 1/(k + 1) for some k ≥ 1, with k ∈ N. We

want to show sk+1 = 1− 1/(k + 2). Using (34.1), we have

sk+1 = sk + bk+1 =

(
1− 1

k + 1

)
+

(
1

k + 1
− 1

k + 2

)
= 1− 1

k + 2

as desired. □

Now that we know sn = 1− 1/(n+ 1), we can prove limn→∞ sn = 1. We will not
include the scratch work, but here is the proof.

Proof. Let ε > 0. Fix N = 1
ε
− 1 ∈ R. Let n ∈ N. Assume n > N . We find

|sn − S| =
∣∣∣∣1− 1

n+ 1
− 1

∣∣∣∣ = 1

n+ 1
<

1

N + 1
= ε

as desired. □

This finishes our proof that
∑∞

n=1

(
1
n
− 1

n+1

)
= 1. Those who have taken calculus

might recognize that this is a telescoping sum, which makes it much easier to simplify.
△

Advice 34.4. To prove that a series converges try the following steps:
(1) Compute a few partial sums.
(2) Conjecture a general formula for the partial sums.
(3) Prove that formula by induction.
(4) Using your formula for the partial sums, find the limit.
(5) Finally, prove that the partial sums converge to that limit.

We will demonstrate how to prove convergence of series with one more example,
leaving most of the work as Exercise 34.3.

Example 34.5. Consider the series
∑∞

n=1
1
2n
. The first few partial sums work out to

be 1/2, 3/4, 7/8, 15/16, . . .. By induction, we can prove that

sn = 1− 1

2n
.

These partial sums converge to 1. △

We now prove a powerful result that can often be used to show that a series does
not converge. We first state and prove the result in terms of convergence, and give
the contrapositive (in terms of divergence) as a corollary. Before reading this proof,
it might be helpful to review the triangle inequality (Theorem 8.21).
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Theorem 34.6. Let (an)n∈N be a sequence of real numbers. If the series

∞∑
i=1

ai

converges, then
lim
n→∞

an = 0.

Proof. We will write

sn =
n∑

i=1

ai

for the partial sums of the series. The theorem asserts that if limn→∞ sn exists, then
limn→∞ an = 0. Note that for any n > 1, we have sn − sn−1 = an.

Assume that the series converges. Then the sequence sn of partial sums converges
to some limit L.

Let ε > 0 be arbitrary. We wish to find an N ∈ R such that for all natural
numbers n > N , we have |an| < ε.

Since ε > 0, we also have that ε/2 > 0. Hence, since the sequence sn converges,
there is someM ∈ R such that for all natural numbers n > M , we have |sn−L| < ε/2.
Taking N = M +1, we see that if n > N , then both n and n− 1 are greater than M .
Hence, for any n > N ,

|sn − L| < ε/2 and |sn−1 − L| < ε/2.

Therefore, for any n > N ,

|an| = |sn − sn−1|
= |(sn − L) + (L− sn−1)|
≤ |sn − L|+ |L− sn−1| (by the triangle inequality)

= |sn − L|+ |sn−1 − L|
< ε/2 + ε/2

= ε.

We thus see that for this value of N , it is true that for all n > N we have |an−0| < ε.
Therefore

lim
n→∞

an = 0.
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Corollary 34.7. Let (an)n∈N be a sequence of real numbers. If

lim
n→∞

an ̸= 0

then
∞∑
i=1

ai

does not converge.

Example 34.8. The series
∞∑
i=1

i+ 3

2i− 1

does not converge, because

lim
n→∞

n+ 3

2n− 1
=

1

2
̸= 0

by Proposition 33.19. △

Example 34.9. The series
∞∑
i=1

(−1)i

does not converge, since
lim
n→∞

(−1)n

does not exist (see Proposition 33.16), and hence does not equal 0. △

Note that the converse of Theorem 34.6 does not hold; it is possible for

lim
n→∞

an = 0

to hold while
∞∑
i=1

ai

does not converge. See Exercise 34.5 for an example.

34.B Exercises

Exercise 34.1. Consider the sequence (an)n∈N given by the rule an = n. Find the
first 6 terms of the sequence of partial sums sn. Conjecture a simple formula for sn
and prove it.

Exercise 34.2. Let c, d ∈ R and let (an)n∈N be the arithmetic sequence defined by
an = c+(n−1)d (i.e., the arithmetic sequence with first term c and common difference
d). Find a formula for the nth partial sum sn =

∑n
k=1 ak and prove it.
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Exercise 34.3. Give a complete proof that
∑∞

n=1 1/2
n = 1, by filling in the missing

details from Example 34.5. This should include:
(a) Giving a proof (by induction) that sn = 1− 1/2n.
(b) Giving a proof that limn→∞ sn = 1.

Exercise 34.4. Prove or disprove: The series
∞∑
n=1

1

3n
converges.

Exercise 34.5. In this exercise we will show that the harmonic series
∑∞

k=1
1
k
does

not converge. Throughout the exercise, let sn =
∑n

k=1
1
k
be the nth partial sum, for

each integer n ≥ 1.
(a) The main idea for showing that the harmonic series diverges is to break the

series into pieces

1 +
1

2︸︷︷︸
t1

+
1

3
+

1

4︸ ︷︷ ︸
t2

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
t3

+
1

9
+

1

10
+ · · ·+ 1

15
+

1

16︸ ︷︷ ︸
t4

+ · · · ,

where each box contains twice as many terms as the previous box.
Notice that

t1 =
1

2
≥ 1

2
,

t2 =
1

3
+

1

4
≥ 1

4
+

1

4
= 2 · 1

4
=

1

2
, and

t3 =
1

5
+

1

6
+

1

7
+

1

8
≥ 1

8
+

1

8
+

1

8
+

1

8
= 4 · 1

8
=

1

2
,

where the inequalities come from replacing terms with possibly smaller fractions.
In general, for each n ≥ 1 define

tn =
2n−1+2n−1∑
k=2n−1+1

1

k
=

2n∑
k=2n−1+1

1

k
=

1

2n−1 + 1
+ · · ·+ 1

2n
.

Prove that tn ≥ 1
2
for each n ≥ 1. (Hint: How many terms are being added?

What is the smallest one?)
(b) Show that s2n ≥ 1 + n

2
, for each n ≥ 0, by induction.

(Hint: For each n ≥ 0 we have s2n+1 = s2n + tn+1.)
(c) Now show that the harmonic series does not converge.
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35 Limits of functions

Let f : R− {0} → R be defined by

f(x) =
sinx

x
.

If we evaluate this function for some values of x near 0, we find the following interesting
behavior.

x 0.1 0.01 0.001
f(x) 0.998334 0.999983 0.999999

It appears that as x gets close to 0, the value of f(x) gets close to 1. Note that we
cannot just plug x = 0 into the function, since that would result in division by 0. A
graph of the function f(x) seems to confirm this behavior.

−10 −5 5 10

−0.5

0.5

1

1.5

x

y

However, graphs can sometimes be misleading. Thus, in this section we will
formalize what we mean when we say that a function approaches a value. This will
become our definition of the limit of a function.

35.A Windows

In the example above, there are two related quantities we focus upon: the input x of
the function, and the output f(x). We are interested in the behavior of the outputs
f(x) as x approaches some fixed constant, which we might call the point of interest .
In the previous example that point of interest is 0, but more generally we use the
letter a ∈ R to describe the place where x is headed. Sometimes we write x → a as
shorthand for the sentence “as x goes towards the point of interest a.”

Similarly, we use the letter L to denote the limiting value that f(x) approaches
(if any) as x → a. We might write f(x) → L to mean that “f(x) is approaching the
limit L.”

To formalize all of this, we start (just as with sequences) by letting ε > 0 denote
some (positive, arbitrarily small) quantity that tells us how close our function should
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be to the limit L. For instance, in the example above, when ε = 1/4 we want our
function to stay between the two dashed lines in the graph below.
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y

The top dashed line is y = L + ε and the bottom dashed line is y = L − ε. We
want the graph of y = f(x) to stay between these two lines, but of course, as you can
plainly see, the function does not stay between those two lines everywhere. However,
it does stay between those two lines near the point of interest a = 0.

The next question we must answer is: How close must the input x get to the point
of interest a so that the output f(x) stays between those two lines? For example,
let’s add two (green) vertical dashed lines to our previous graph, which tell us exactly
how far away from a = 0 the values of x can range before the function takes on values
outside the band bordered by the (red) horizontal dashed lines.
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Those vertical lines are (approximately) x = 1.275698 and x = −1.275698. Thus
we see that x can vary as much as 1.275698 away from the point of interest, and our
function stays within ε = 1/4 of the limit. If we take a smaller value of ε, then we
have less room to vary.

Those two horizontal lines along with the two vertical lines give us a window (the
rectangle in the middle). As we take smaller values of ε, that window should squeeze
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in on the limit L. Notice that if the graph of our function has points between the two
green lines that are also either above the top red line or below the bottom red line
(i.e., directly above or below the window), then we have not placed the vertical lines
correctly.

We let δ > 0 be a variable which measures (given some ε) how far x can vary
away from the point of interest, and still guarantee that f(x) stays within a distance
of ε from the limit value L. In other words, δ is some constant small enough that the
vertical lines x = a + δ and x = a − δ together with the horizontal lines y = L + ε
and y = L− ε produce a window for our function.

35.B Limit definition

We begin by defining certain subsets of R.

Definition 35.1. A deleted neighborhood of a ∈ R is a subset of R of the form
(c, d)− {a}, where c < d are real, and a ∈ (c, d) ⊆ R.

We can think of a deleted neighborhood as a set of real numbers that contains all
the points “close to” a (but does not contain a itself).

Example 35.2. Let a = 2. Some deleted neighborhoods of a would include

(−10, 2.1)− {2}, (1, 3)− {2}, (1.9999999, 2.00000001)− {2}. △

We are now equipped to give the formal definition of what we mean by a limit for
functions. Afterwards, we will explain all of the notation.

Definition 35.3. Suppose we are given a point of interest a ∈ R, and a possible
limit value L ∈ R, along with a function f : S → R, where S is a subset of R
that includes some deleted neighborhood of a. We write

lim
x→a

f(x) = L

to mean that

∀ε ∈ R>0, ∃δ ∈ R>0, ∀x ∈ S, 0 < |x− a| < δ ⇒ |f(x)− L| < ε.

In this case we say that the limit of the function f , as x approaches the point
of interest a, is the real number L.

What is ε? As before, ε measures how close the function gets to the limit L. It
is allowed to get arbitrarily small.

What is δ? The second quantifier is “∃δ ∈ R>0”. The variable δ measures how
close x must be to the point a in order for our function to stay within ε of the limit.
It must be fixed in terms of ε.
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What is S? The domain of the function f is S; it is the set of real numbers
on which f is defined. We want f(x) to be defined for all real numbers x that are
“close to” a, but not necessarily at a. We do this by requiring that some deleted
neighborhood of a is a subset of S. This reflects the idea that a limit depends on
what happens near (but not at) a.

What is x? It is the variable we are plugging into our function f .
What does the premise of the implication, 0 < |x−a| < δ, say? It says two

different things. First, the inequality 0 < |x− a| tells us that x ̸= a. When defining
limits, we do not care what f(x) actually does at x = a, only what it does nearby.
Second, the inequality |x− a| < δ tells us that x is allowed to range only a distance
of δ away from the point of interest.

What does the conclusion of the implication, |f(x) − L| < ε, say? This
condition is saying that the function value f(x) is within a distance of ε from the limit
L. Equivalently, by removing the absolute value signs, we may write −ε < f(x)−L <
ε, or in other words, L− ε < f(x) < L+ ε.

When handling limits, each proof should look nearly the same. We give the general
outline of such a proof below. The reader should note how each quantifier is dealt
with in turn, and the implication will be proved directly.

Proof outline.
Let ε > 0.
Fix δ = found in scratch work > 0.
Let x ∈ S.
Assume 0 < |x− a| < δ.
Reverse the steps in scratch work.
Conclude that |f(x)− L| < ε.

35.C Examples of limits

Some of the easiest limits are for linear functions.

Example 35.4. Let f(x) = 3x+2, let a = 2, and let L = 8. (Note: If we plug x = 2
into f , we get f(2) = 8. In this case we do believe that the limit will also equal the
function’s value at the point of interest.) We will show that

lim
x→2

3x+ 2 = 8.

Scratch. Since this is the scratch work, we start with the conclusion |f(x)− L| < ε,
and try to eventually get information about the quantity |x− a| = |x− 2|. We have

|f(x)− L| = |(3x+ 2)− 8| = |3x− 6| = 3|x− 2|.

Thus we want 3|x− 2| < ε, or in other words |x− 2| < ε/3. This tells us what value
for δ we should use. ⋆

With the scratch work done, we can now give the formal proof.
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Proof. Let ε > 0. Fix δ = ε/3 > 0. Let x ∈ R. Assume 0 < |x− 2| < δ. We then find

|f(x)− L| = |(3x+ 2)− 8| = |3x− 6| = 3|x− 2| < 3δ = 3(ε/3) = ε

as desired. □

Limits for other linear polynomials will work similarly. △

Example 35.5. We find lim
x→−1

−2x+ 3.

Set f(x) = −2x + 3. Plugging in the point of interest a = −1, we find f(−1) =
(−2)(−1)+3 = 5. Thus we would guess the limit is L = 5. We now prove it (without
including our scratch work).

Proof. Let ε > 0. Fix δ = ε/2 > 0. Let x ∈ R. Assume 0 < |x− (−1)| < δ. We find

|f(x)− L| = |(−2x+ 3)− 5| = |−2x− 2| = 2|x+ 1| < 2δ = 2(ε/2) = ε

as desired. □

When working with a linear function f(x) = cx + d (for some constants c, d ∈ R
with c ̸= 0) the best value for δ should be δ = ε/|c|. In this example we have c = −2
and indeed, the value for δ was ε/|c|. △

There is one last trick which will help us to evaluate limits. In limit proofs we
have one assumption, namely

0 < |x− a| < δ.

However, we also have some control on which δ we fix. If we guarantee that δ ≤ 1,
then our assumption gives us |x− a| < 1, or in other words

a− 1 < x < a+ 1.

This allows us to limit x a lot. (If we need an even smaller interval for x, we can take
δ even smaller.) We will use this idea to find the limit of a quadratic function.

Proposition 35.6. lim
x→1

x2 + x = 2.

We will include the scratch work, so you can see how this is done. (Normally, it
should not appear in your proof.)

Scratch. Start with |f(x) − L| < ε. We have f(x) = x2 + x and L = 2, and so
plugging in those values we want |x2 + x − 2| < ε. If we factor the left side of the
inequality, we get

(35.7) |x− 1| · |x+ 2| < ε.

At this point, one might want to take δ = ε/|x+ 2|, but δ must not depend on x.
(Why?) To handle this issue, we bound |x + 2| as follows. Assuming δ ≤ 1, we get
|x− 1| < δ ≤ 1, and hence −1 < x− 1 < 1. Thus, by adding 3 throughout, we have
2 < x+ 2 < 4. Now 2 < |x+ 2| < 4. Using this bound in (35.7), we see that we need
|x− 1| < ε/4. ⋆
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We are now ready for the proof.

Proof. Let ε > 0. Fix δ = min(1, ε/4) > 0. Let x ∈ R. Assume that we have
0 < |x − 1| < δ. First, since δ ≤ 1, this tells us |x − 1| < 1, so −1 < x − 1 < 1.
Therefore 2 < x+2 < 4, and taking absolute values we get |x+2| < 4. Second, since
δ ≤ ε/4 we find

|f(x)− L| = |(x2 + x)− 2| = |x− 1||x+ 2| < δ · 4 ≤ (ε/4)4 = ε

as desired.

We end this section with one final example of a limit proof.

Proposition 35.8.

lim
x→2

2x+ 1

3x+ 2
=

5

8
.

Before reading the proof below, try to do the scratch work yourself, and see if it
helps you figure out the choices made in the proof.

Proof. Let ε > 0. Fix δ = min(1, 40ε) > 0. Let x ∈ R−{−2/3}. (Notice that we have
to avoid x = −2/3 since the function is not defined there.) Assume 0 < |x− 2| < δ.
First, since δ ≤ 1, this tells us |x − 2| < 1 hence −1 < x − 2 < 1. Adding 2 we
get 1 < x < 3. Multiplying by 3 and adding 2, we get 5 < 3x + 2 < 11. Taking
reciprocals, we find that 1/11 < 1/(3x + 2) < 1/5. Then taking absolute values, we
have 1/|3x+ 2| < 1/5. Second, since δ ≤ 40ε we find

|f(x)− L| =
∣∣∣∣2x+ 1

3x+ 2
− 5

8

∣∣∣∣ = ∣∣∣∣ x− 2

8(3x+ 2)

∣∣∣∣ = |x− 2|
8 · |3x+ 2|

<
δ

8 · 5
≤ 40ε

40
= ε.

Advice 35.9. When simplifying |f(x)−L| you should expect that |x−a| is one
of the factors. That can help you simplify the expression (and also gives a quick
double-check that you have not made an algebra mistake).

35.D Exercises

Exercise 35.1. Prove that
lim
x→4

2x+ 3 = 11.

Exercise 35.2. Let a, c, d ∈ R. Prove that

lim
x→a

cx+ d = ca+ d.

(Hint: Consider the cases in which c = 0 and c ̸= 0, separately. Be sure that your
proof properly handles the case where c < 0.)
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Exercise 35.3. Prove that

lim
x→5

x2 + 3x+ 3 = 43.

Exercise 35.4. Prove that

lim
x→2

7x+ 4

4x+ 1
= 2.

Exercise 35.5. Prove that

lim
x→3

x3 + x2 + 2 = 38.
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36 Continuity

36.A Defining continuity

Intuitively, continuity for a function f : R → R means that there are no holes or
jumps in the function. Put another way, if we focus on a point of interest a ∈ R, we
need f(a) to be defined, and for x near a we want f(x) to be near f(a). Thus, there
are two separate conditions that combine to give the formal definition of continuity.

Definition 36.1. Let S ⊆ R. Given a function f : S → R and a point of interest
a ∈ S, we say that f is continuous at a if
(1) S includes an open interval around a and
(2) lim

x→a
f(x) = f(a).

If a function is continuous at all points in its domain, we say that the function
is continuous (everywhere that it is defined).

Example 36.2. Let f : R → R be defined by f(x) = cx + d, where c, d ∈ R. By
Exercise 35.2, for any a ∈ R we have

lim
x→a

f(x) = ca+ d = f(a).

Hence, f is continuous at a for each a ∈ R. Since f is continuous at all points in its
domain, we can thus say that f is continuous. △

Example 36.3. Let f : R → R be the characteristic function of the set [0, 1]. Then

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

One can check that f is continuous for all a ∈ R−{0, 1}. We will show that f is not
continuous at x = 1. (Determining continuity at other points is left as Exercise 36.3.)

Note that f(1) = 1. Then we need to show that

lim
x→1

f(x) ̸= 1.

Hence, we need to show that

∃ε > 0,∀δ > 0,∃x ∈ R, (0 < |x− 1| < δ) ∧ (|f(x)− 1| ≥ ε).

Choose ε = 1/2. Let δ > 0 be arbitrary, and fix x = 1 + δ/2. We notice that
0 < |x− 1| = δ/2 < δ and, since x > 1,

|f(x)− 1| = |0− 1| = 1 > ε.

Hence, f is not continuous at 1. △
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Example 36.4. Let f : R≥0 → R be defined by f(x) = x. Note that 0 is in the
domain of f , but the domain of f does not include any open interval around 0.
Hence, f is not continuous at 0. Since 0 belongs to the domain of f , we see that f
is a discontinuous function. (Some texts would say this function is continuous at 0,
using an alternative definition of continuity for endpoints of intervals. This illustrates
that one must carefully check definitions when verifying statements.) △

36.B Building new functions from old

We will now discuss several different ways to combine functions to form new functions.

Definition 36.5. Let A,B ⊆ R, and let f : A → R and g : B → R be functions.
We define a new function f + g : A ∩B → R by the rule

(f + g)(x) = f(x) + g(x).

We may also define a new function fg : A ∩B → R by

(fg)(x) = f(x)g(x).

If we let B′ = {x ∈ B : g(x) ̸= 0}, we may define a function f/g : A ∩ B′ → R
by

(f/g)(x) = f(x)/g(x).

Example 36.6. Let f(x) = x2 and let g(x) = 2x+ 1 be functions defined on all real
numbers. Then (f + g)(x) = x2 + 2x + 1 and (fg)(x) = x2(2x + 1) are functions
defined on all real numbers. Note that g(x) = 0 when x = −1/2. Hence, (f/g)(x) =
x2/(2x+ 1) is a function defined on R− {−1/2}. △

36.C Limit laws

When we build a function by adding or multiplying two known functions, it turns out
that we can prove that the limits of the functions interact nicely.

Theorem 36.7. Let f and g be real-valued functions defined on a deleted neigh-
borhood S of a ∈ R. Suppose that lim

x→a
f(x) = L and lim

x→a
g(x) = M . Then

lim
x→a

(f + g)(x) = L+M

Proof. Assume that limx→a f(x) = L and limx→a g(x) = M . We wish to show that
limx→a(f + g)(x) = L+M . We will do this by choosing an arbitrary ε and finding a
δ such that for all x ∈ S,

0 < |x− a| < δ ⇒ |(f + g)(x)− (L+M)| < ε.
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Let ε > 0. Then ε/2 > 0. Hence, since limx→a f(x) = L, there is some δ1 > 0
such that for all x ∈ S, we have the implication

(36.8) 0 < |x− a| < δ1 ⇒ |f(x)− L| < ε/2.

Similarly, since limx→a g(x) = M , there is some δ2 > 0 such that for all x ∈ S, we
have

(36.9) 0 < |x− a| < δ2 ⇒ |g(x)−M | < ε/2.

Choose δ = min(δ1, δ2). Let x ∈ S, and assume 0 < |x− a| < δ. Since δ ≤ δ1, and
δ ≤ δ2, from (36.8) and (36.9) we get

|f(x)− L| < ε/2 and |g(x)−M | < ε/2.

Now, using the triangle inequality we have

|(f + g)(x)− (L+M)| = |f(x) + g(x)− L−M |
= |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |
< ε/2 + ε/2

= ε.

Hence,
lim
x→a

(f + g)(x) = L+M.

Theorem 36.10. Let f and g be real-valued functions defined on a deleted neigh-
borhood S of a ∈ R. Suppose that lim

x→a
f(x) = L and lim

x→a
g(x) = M . Then

lim
x→a

(fg)(x) = LM.

Proof. We first do the proof under the assumption that one of L and M is not zero.
Without loss of generality, we assume that L ̸= 0.

Let ε > 0. Then ε/(2|L|) > 0, so, since limx→a g(x) = M , we can find a δ1 > 0 so
that for any x ∈ S, if 0 < |x− a| < δ1, we have |g(x)−M | < ε/(2|L|). Note that this
conclusion further implies that |g(x)| < |M |+ ε/(2|L|).

Now
ε

2 (ε/(2|L|) + |M |)
> 0,

so there is some δ2 so that for 0 < |x− a| < δ2, we have

|f(x)− L| < ε

2 (ε/(2|L|) + |M |)
.

Choose δ = min(δ1, δ2). Let x ∈ S.
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Now, assume that 0 < |x − a| < δ. Then |x − a| < δ1 and |x − a| < δ2. Hence,
|g(x)−M | < ε/(2|L|) and

|f(x)− L| < ε

2 (ε/(2|L|) + |M |)
.

We then have

|(fg)(x)− LM | = |f(x)g(x)− LM |
= |f(x)g(x)− Lg(x) + Lg(x)− LM |
= |(f(x)− L)g(x) + L(g(x)−M)|
≤ |(f(x)− L)g(x)|+ |L(g(x)−M)|
= |f(x)− L||g(x)|+ |L||g(x)−M |

<
ε

2 (ε/(2|L|) + |M |)
(|M |+ ε/(2|L|)) + |L|ε/(2|L|)

= ε/2 + ε/2

= ε.

Hence,
lim
x→a

(fg)(x) = LM.

The proof in the case that both L and M are equal to 0 is much less complicated,
and is left to the reader (see Exercise 36.4).

We can also prove that the limit of f/g is the limit of f over the limit of g (provided
that the limit of g is nonzero). We state the theorem here, but do not prove it.

Theorem 36.11. Let f and g be real-valued functions defined on a deleted neigh-
borhood S of a ∈ R. Suppose that lim

x→a
f(x) = L and lim

x→a
g(x) = M with M ̸= 0.

Then
lim
x→a

(f/g)(x) = L/M.

From the previous three theorems, we can deduce the following result about con-
tinuity.

Theorem 36.12. Let S be a subset of R, and let f : S → R and g : S → R be
real-valued functions that are continuous at some a ∈ S. Then f + g, and fg
are continuous at a. If g(a) ̸= 0, then f/g is continuous at a.

Proof. We prove the theorem for the sum; the proofs for the product and the quotient
are similar.

Suppose that f and g are continuous at a. Then

lim
x→a

(f + g)(x) =
(
lim
x→a

f(x)
)
+
(
lim
x→a

g(x)
)
= f(a) + g(a) = (f + g)(a).

Hence, f + g is continuous at a.
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Remark 36.13. Note that if f and g are continuous at all points in their domain,
then so is their sum and their product. The quotient f/g will be continuous at all
points of S at which g is nonzero. ▲

36.D Continuity of polynomials

In Exercise 35.2, you were asked to prove that any linear function (of the form f(x) =
cx + d) is continuous at all real numbers. This implies that constant functions are
continuous (a constant function is of the form f(x) = d; it is a linear function in
which c = 0).

We now generalize this exercise to prove that every polynomial function is con-
tinuous.

Theorem 36.14. Let f : R → R be a polynomial function; that is, a function
of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with each ai ∈ R. Then f is continuous at every real number.

Proof. We prove the theorem by induction on n, the exponent of the largest power
of x involved in the expression for f .

Let P (n) be the open sentence

Every function of the form g(x) = bnx
n + . . .+ b1x+ b0 is continuous.

Base Case: We have proved that P (1) is true in Exercise 35.2.
Inductive step: Assume that P (k) is true. We will show that P (k + 1) now

follows.
Let f(x) = ak+1x

k+1 + akx
k + · · · + a1x + a0. Then both of the (functions given

by the) polynomials xk and akx
k + · · · + a1x + a0 are continuous by the inductive

hypothesis, and ak+1x is continuous by Exercise 35.2. Hence, the product

ak+1x
k+1 = (ak+1x)x

k

is continuous by Theorem 36.12, so the sum

f(x) = ak+1x
k+1 +

(
akx

k + · · ·+ a1x+ a0
)

is also continuous, again by Theorem 36.12. Hence, P (k + 1) is true.

Example 36.15. The polynomial function given by the rule

f(x) = 3x4 − 6x2 + 2x− 1

is continuous at every real number. △
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36.E Exercises

Exercise 36.1. Prove that the function f : R≥0 → R given by the rule f(x) =
√
x is

continuous at a = 9. (Hint:
√
x− 3 = (

√
x− 3) ·

√
x+3√
x+3

= x−9√
x+3

.)

Exercise 36.2. Prove that if a limit exists, the limit is unique.

Exercise 36.3. For f equal to the characteristic function of [0, 1] as described in
Example 36.3, prove the following.
(a) For each a ∈ R− {0, 1}, the function f is continuous at a.
(b) The function f is not continuous at 0.

Exercise 36.4. Prove Theorem 36.10 in the case that both L and M are equal to 0.

Exercise 36.5. Let f be a function of the form

f(x) =
g(x)

h(x)
,

where g(x) and h(x) are polynomials. Prove that f is continuous at all points where
it is defined. (You may use Theorem 36.12.)
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logical connective, 27
logically equivalent, 28
lower bound, 47
lowest terms, 4, 139

maximum, 250
method of exhaustion, 243
minimum, 250
modus ponens, 30
multiple (of an integer), 60
multiple quantifiers, 42
multiplication table, 172

natural numbers, 3
negating statements with quantifiers, 44
negation, 24, 62
negation rules, summary, 48
Newton, 243
numbers

complex, 4
integers, 3
irrational, 12, 74
natural, 3
rational, 4
real, 4

odd integers, 52
one-to-one correspondence, 195
one-to-one function, 188
onto, 191
open interval, 12
open sentence, 33
opposite parity, 64
ordered n-tuple, 226
ordered pair, 13
ordered triple, 15

parity
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opposite, 64
same, 64

partial sums, 254
partition, 161
parts (of a partition), 161
Pascal’s triangle, 119
pasting together, 208
Pasting Together Theorem, 209
piecewise defined function, 179
pigeonhole principle, 98
point of interest, 260
polynomial function, 271
power set, 8
preimage (of a set), 211
premise (of an implication), 25
prime number, 140
principle of mathematical induction, 92
product, 13
product (Cartesian), 13
proof by contradiction, 72
proper subset, 6
proposition, 53
Pythagoreans, 74

quantifiers
for all, 35
there exists, 36
there exists unique, 84

range (of a function), 194
rational numbers, 4
real numbers, 4
reflexive, 150
relation, 148

antisymmetric, 150
reflexive, 150
symmetric, 150
transitive, 150

relatively prime, 137
representative (of an equivalence class),

157
restriction (of a function), 209

same parity, 64
Schröder, 237
Schröder–Bernstein Theorem, 237

sequence, 244
arithmetic, 245
convergent, 247
divergent, 247
geometric, 246
limit, 247
term, 244

series, 254
converges, 254
partial sums, 254
term, 254

set, 2
complement, 10
difference, 10
equality, 2
finite, 7
infinite, 7
intersection, 9
product, 13
union, 9
universal, 10

set-builder notation, 4
statement, 22
strong induction, 113
subset, 5

proper, 6
surjection, 195
surjective, 191
surjective reduction, 210
surjectivity, 191
symbol, 22
symmetric, 150

tautology, 30
term, of a sequence, 244
term, of a series, 254
theorem, 53
there exists, 36
there exists unique, 84
transitive, 150
transversal, 164
triangle inequality, 70
trivially true, 53
truth table, 28

uncountable, 227
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union, 9
uniqueness proofs, 83
universal quantifier, 36
universal set, 10
upper bound, 47

vacuously true, 54
variable, 33

dummy, 17
Venn diagram, 9
vertical line test, 187, 191, 197

well-defined, 172, 183
well-ordering principle, 100
without loss of generality, 65
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