
Elementary Partial Differential Equations∗
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Introduction.

Partial differential equations (PDEs) is one of the oldest subjects in math-

ematical analysis. Its development extends back to Euler’s work in the 1700s,

together with Brooks Taylor and others.

Problems arising in the study of PDEs have motivated many of the prin-

ciple developments in classical and modern analysis. For example, harmonic

analysis (Fourier), complex analysis (Cauchy, Riemann), theory of integral

equations (Fredholm, Hilbert), Hilbert and Banach space theory, fixed point

theorems (Schauder), theory of distributions (L. Schwartz) and many others.

At present the theory of PDEs is one of the most active fields of research

in modern mathematics. Each month Mathematical Reviews contains many

pages of reviews of publications on PDE’s. As another example Professor

C. Miranda published a monograph on “PDEs of Elliptic Type” in 1954. It

contained a bibliography of more than 600 research papers published between

1924-1953. In the revised edition published in 1968, Miranda estimated that
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to bring the bibliography up to date more than 1600 items would have to be

added. The process has continued to accelerate.

At the present time, it is impossible to present in a single course a com-

plete survey of what is known as PDEs and the properties of their solutions.

Many advanced monographs exist and in many cases their contents scarcely

overlap.

Plan for this course

A study of classical theories for some of the simplest PDEs. We shall

use as a source, V. Smirnov, A Course in Higher Mathematics, vols. II and

IV, and C. H. Wilcox, “Notes on PDEs.”1 The modern functional analytic

theories of PDEs must wait for further courses.
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Chapter 1. Heat Conduction in a Slab.

Some Classical PDEs2

∂v

∂t
= k∆v = k(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) Heat or Diffusion Equation

∂2v

∂t2
= c2∆v Wave Equation

∆v = ρ(x, y, z) Poisson’s Equation

∆v = 0 Laplace’s Equation

———

2See appendix I p. 117 for other examples.
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Temperature = v(x, t).

Equations:

∂v

∂t
= k

∂2v

∂x2
for 0 < x < l, t > 0

v(x, 0) = g(x) for 0 ≤ x ≤ l (initial condition)

v(0, t) = vo and v(l, t) = v1, for t ≥ 0 (boundary conditions)

The Classical Questions:

Existence of a Solution?

Uniqueness of Solution?

Continuous Dependence on the Data?

The Steady State Limit.

vs(x) = limt→∞ v(x, t) should satisfy

∂2vs
∂x2

= 0, 0 < x < l, and vs(0) = vo, vs(l) = v1
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It follows that

vs(x) = vo(
l − x
l

) + v1(
x

l
)

The Reduced Problem. v(x, t) = vs(x) + u(x, t)

∂v

∂t
=
∂u

∂t
,

∂2v

∂x2
=
∂2u

∂x2

Thus,

(1)
∂u

∂t
= k

∂2u

∂x2
for 0 < x < l, t > 0

(2) u(x, 0) = g(x)− vs(x) ≡ f(x) for 0 ≤ x ≤ l

(3) u(0, t) = 0 and u(l, t) = 0 for t ≥ 0

Separation of Variables. Look for functions

u(x, t) = X(x)T (t) 6≡ 0

which satisfy (1) and (3) (but not necessarily (2)).
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XT ′ = kX ′′T

(1)
X ′′(x)

X(x)
=

T ′(t)

kT (t)
= const. = −λ

(3) X(0)T (t) = 0 and X(l)T (t) = 0 for t ≥ 0

These conditions are satisfied if

T ′(t) + kλT (t) = 0 for t > 0

and

X ′′(x) + λX(x) = 0 for 0 < x < l

X(0) = 0 and X(l) = 0

These are problems involving constant coefficient linear ordinary differ-

ential equations and are therefore explicitly solvable:

X(x) = Xn(x) = sin(
πnx

l
), n = 1, 2, 3, . . .

λ = λn = (
πn

l
)2

T (t) = Tn(t) = e−k(πn
l

)2t

and

u(x, t) = un(x, t) = sin(
nπx

l
)e−k(nπ

l
)2t
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Superposition. To solve (1), (2), (3) try

(4) u(x, t) =
∞∑
n=1

cn sin(
nπx

l
)e−k(nπ

l
)2t

where c1, c2, c3... are to be determined.

Formal Solution.

u(x, 0) = f(x) =
∞∑
n=1

cn sin(
nπx

l
) (Fourier Sine Series)

(5) cn =
2

l

∫ l

0

f(x) sin(
nπx

l
)dx, n = 1, 2, 3, . . .

(5) follows from (4) by the orthogonality relations.3 The formal solution

is defined by (4), (5). Convergence theory for Fourier series may now be

applied.

Convergence Theorem for Fourier Sine Series. Assume that

(a) f(x) ∈ C[0, l]

(b) f(0) = f(l) = 0

(c) f ′(x) is sectionally continuous on [0, l].4

3I.e.
∫ l
0

sin(nπxl ) sin(kπxl ) = 0 when n 6= k. See page 130.
4A function is sectionally continuous if it is possible to divide its domain into a finite

number of sections on which the function is continuous (or has removable discontinuities),
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Then the Fourier sine series coefficients (5) satisfy

(6)
∞∑
n=1

|cn| <∞

moreover

f(x) =
∞∑
n=1

cn sin(
nπx

l
) for 0 ≤ x ≤ l

and the convergence is uniform and absolute on 0 ≤ x ≤ l.5

——————————————

Notation: Ω = {(x, t) : 0 < x < l, t > 0}; Ω = closure of Ω in

R2 = {(x, t) : 0 ≤ x ≤ l, t ≥ 0}.

Classical Solution. A function u is a classical solution of the heat

conduction problem in a slab if and only if u ∈ C(Ω), ∂u/∂t ∈ C(Ω),

∂2u/∂x2 ∈ C(Ω) and (1), (2) and (3) all hold.

Existence Theorem. If f(x) satisfies (a), (b), (c) then the formal so-

lution (4), (5) converges uniformly on Ω and defines a classical solution.

Proof. (6) shows that (4) converges uniformly on Ω and hence u ∈ C(Ω)

bounded and has left and right-hand limits at each point in its domain. Naturally, all
bounded continuous functions are also sectionally continuous, the converse of course, is
not true.

5R. V. Churchill, Fourier Series and Boundary Value Problems, 2nd ed. McGraw-Hill
1963.
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and (2) and (3) hold (for a detailed argument that this is so, see pages .

To prove that ∂u
∂t
, ∂

2u
∂x2 ∈ C(Ω) and (1) holds note that

|cn sin
nπx

l
e−k(nπ

l
)2t| ≤ |cn|e−k(nπ

l
)2to

for all x ∈ R and t ≥ to.

Hence the series

∞∑
n=1

n2cn sin
nπx

l
e−k(nπ

l
)2t

converges uniformly for all x ∈ R and t ≥ to.
6 It follows that ∂u

∂t
, ∂u
∂x
, ∂

2u
∂x2 ∈

C(Ω) can all be calculated by termwise differentiation and are continuous for

all x ∈ R, t > 0. Finally, (1) holds because each term in (4) is a solution of

the heat equation. QED

Notation. R2
+ = {(x, t) : x ∈ R, t > 0} (Ω is as above).

ΩT = Ω ∩ {(x, t) : t < T}

ΩT = closure of ΩT = Ω ∩ {(x, t) : t ≤ T}

∂Ω = boundary of Ω = Ω− Ω

6The Weierstrass M-Test may be used. See page 142-3.
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ΓT = ∂Ω ∩ ΩT

Maximum Principle. Let u ∈ C(Ω) satisfy ∂u/∂t ∈ C(Ω), ∂2u/∂x2 ∈

C(Ω) and the heat equation in Ω. Then for all T > 0,

max
ΩT

u(x, t) = max
ΓT

u(x, t)

Proof. (By contradiction.) Assume the conclusion is false, i.e., maxΩT
u (>

maxΓT u) occurs at (xo, to) ∈ ΩT − ΓT . Define the function

v(x, t) = u(x, t)− ε(t− to), ε > 0

Then for all such ε,

v(xo, to) = u(xo, to) = max
ΩT

u > max
ΓT

u

Let max v occur at (x1, t1) ∈ ΩT . Then

v(xo, to) = max
ΩT

u > max
ΓT

u+ εto = max
ΓT

v

provided ε is sufficiently small. Thus max v must occur at some (x1, t1) ∈

ΩT − ΓT . It follows that

∂2v

∂x2
(x1, t1) ≤ 0,

∂v

∂t
(x1, t1) ≥ 0
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whence

∂2u

∂x2
(x1, t1) =

∂2v

∂x2
(x1, t1) ≤ 0

but

∂u

∂t
(x1, t1) =

∂v

∂t
(x1, t1) + ε > 0

which contradicts (1) (the heat equation). QED

Uniqueness Theorem. The BV problem (1), (2), (3) can have only

one classical solution.

Proof. Let u1 and u2 be any two classical solutions with the same initial

values f(x). Then u(x, t) = u1(x, t) − u2(x, t) is a classical solution with

f(x) ≡ 0. Thus

max
ΩT

u = max
ΓT

u = 0

i.e.7

u(x, t) ≤ 0 ∀(x, t) ∈ ΩT

Similarly, −u(x, t) is a classical solution with f(x) ≡ 0. Following the

same reasoning, −u(x, t) ≤ 0. It follows that u(x, t) ≡ 0. QED

7∀ is a logical symbol which simply means “for all.”
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The maximum principle implies that if f(x) satisfies (a), (b), (c) and

u(x, t) is the corresponding classical solution then

max
Ω
|u(x, t)| ≤ max

0≤x≤l
|f(x)|

This implies

Continuous Dependence on the Data. Let {fn(x)} be a sequence

of functions satisfying (a), (b), (c). Let {un(x, t)} be the corresponding so-

lutions of (1), (2), (3). Suppose further that fn(x)→ 0 uniformly as n→∞

on 0 ≤ x ≤ l. Then un(x, t)→ 0 when n→∞, uniformly in Ω.
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Chapter 2. Wave Propagation on a Taut String.

The small amplitude vibrations of a taut string, moving in a plane, are

governed by the wave equation

∂2u

∂t2
= c2∂

2u

∂x2
, c > 0

Interpretation

[See chalkboard illustration]

Note that the change of variable τ = ct reduces the wave equation to

(1)
∂2u

∂τ 2
=
∂2u

∂x2

The integration8 of (1) can be based on

Lemma 1 Let Ω be a domain in the (x, τ)-plane that is intersected by each

line x ± τ = const. in an interval (possibly empty) and let (a1, a2), (b1, b2)

be the smallest intervals such that

Ω ⊂ Ωo = {(x, τ) : a1 < x− τ < a2 and b1 < x+ τ < b2}

[See chalkboard illustration]

8By integration we mean finding the solution of the equation.
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Assume that u ∈ C2(Ω) and (1) holds for all (x, τ) ∈ Ω. Then there exist

functions f(τ), g(τ) such that

(a) f ∈ C2(a1, a2), g ∈ C2(b1, b2)

(b) u(x, τ) = f(x− τ) + g(x+ τ) in Ω

Remark 1 This is d’Alembert’s solution of (1).

Remark 2 f and g are unique up to constant functions.9

Proof. Introduce new coordinates

ξ = x− τ, η = x+ τ

and let

u(x, τ) = v(ξ, η)

Then (chain rule for partial derivatives)

∂u

∂x
=
∂v

∂ξ
+
∂v

∂η
,

∂u

∂τ
= −∂v

∂ξ
+
∂v

∂η

∂2u

∂x2
=
∂2v

∂ξ2
+ 2

∂2v

∂ξ∂η
+

∂v

∂η2
,

∂2u

∂τ 2
=
∂2u

∂ξ2
− 2

∂2v

∂ξ∂η
+
∂2v

∂η2

9That is, the pair (f, g) is equivalent to the pair (f+C, g−C) where C is any constant.
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Thus

∂2u

∂x2
− ∂2u

∂τ 2
= 4

∂2v

∂ξ∂η
= 0 in Ω′ = {(ξ, η) : (x, τ) ∈ Ω}

Also, v ∈ C2(Ω′). Thus for each ηo ∈ (b1, b2), ∂
∂ξ

(∂v
∂η

) = 0 on a non-empty

ξ-interval (Ω′ is connected) and hence

∂v(ξ, ηo)

∂η
= G(ηo) ∈ C1(b1, b2).

Repeating this with ξo ∈ (a1, a2) gives v(ξ, η) = f(ξ) + g(η) on Ω′.

where

g(η) =

∫
G(η)dη ∈ C2(b1, b2)

and hence f = v − g ∈ C2(a1, a2). QED

Corollary. Under the hypotheses of Lemma 1 u has an extension

u′ ∈ C2(Ωo) which satisfies (1) in Ωo.

Wave Propagation on a Long String. In the (x, τ) - plane consider

the domains

Ω = {(x, τ) : τ > 0, a < x < b},∆ = {(x, τ) : τ > 0, τ + a < x < b− τ}
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[See chalkboard illustration]

Let u ∈ C2(Ω) describe a motion of the string. By the lemma the values

of u in ∆ ⊂ ∆o are independent of what happens at the ends of the string

and ∃f, g ∈ C2(a, b)10 such that

u(x, τ) = f(x− τ) + g(x+ τ) in ∆

Moreover, f and g can be determined by the initial values

u(x, 0) = uo(x) and
∂u(x, 0)

∂τ
= u1(x), a < x < b

Indeed,

u(x, 0) = f(x) + g(x) = uo(x), f ′(x) + g′(x) = u′o(x)

∂u(x, 0)

∂τ
= −f ′(x) + g′(x) = u1(x)

Thus

2f ′(x) = u′o(x)− u1(x), 2g′(x) = u′o(x) + u1(x)

2f(x) = uo(x)−
∫ x

a

u1(ξ)dξ + C, 2g(x) = uo(x) +

∫ x

a

u1(ξ)dξ + C ′

10∃ is a logical symbol meaning “there exists.”
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Hence

2(f(x) + g(x)) = 2uo(x) + C + C ′ = 2uo(x)

whence

C + C ′ = 0 or C ′ = −C

Thus

u(x, τ) =
1

2
uo(x− τ)− 1

2

∫ x−τ

a

u1(ξ)dξ + C

+
1

2
uo(x+ τ) +

1

2

∫ x+τ

a

u1(ξ)dξ − C

or

(2) u(x, τ) =
1

2
{uo(x− τ) + uo(x+ τ)}+

∫ x+τ

x−τ
u1(ξ)dξ, (x, τ) ∈ ∆.

This leads us to the

Initial Value Problem for the Wave Equation.

In the idealized case of an infinitely long string, a = −∞, b = ∞, (2)

gives the solution of the boundary value problem
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(3)
∂2u

∂τ 2
=
∂2u

∂x2
for −∞ < x <∞, τ > 0

(4) u(x, 0) = uo(x) and
∂u(x, 0)

∂τ
= u1(x) for −∞ < x <∞

Notation. R2
+ = {(x, τ) : −∞ < x <∞, τ > 0}.

Classical Solution. A function u is a classical solution of the Initial

Value Problem (3), (4) if and only if u ∈ C2(R2
+) ∩ C1(R2

+) and (3) and (4)

hold.

Existence. If uo ∈ C2(R), u1 ∈ C1(R) then (2) defines a classical solu-

tion.

Uniqueness. The argument leading to (2) shows that any classical so-

lution must be given by (2). Hence classical solutions are unique.

Continuous Dependence on the Data. If is clear for (2) that if

u(n)(x, τ) corresponds to data u
(n)
o (x), u

(n)
1 (x) then if (u

(n)
o (x), u

(n)
1 (x)) → 0

uniformly on bounded intervals then u(n)(x, τ) → 0 uniformly on bounded

subsets of R2
+ (as n→∞).
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Wave Propagation on a String of Finite Length.

The displacement u(x, τ) is a solution of the boundary value (BV) prob-

lem

(5)
∂2u

∂τ 2
=
∂2u

∂x2
for 0 < x < l, τ > 0

(6) u(0, τ) = 0 and u(l, τ) = 0 for τ ≥ 0

(7) u(x, 0) = uo(x) and
∂u(x, 0)

∂τ
= u1(x) for 0 ≤ x ≤ l

The solution may be constructed by separation of variables as with the

heat equation.

Separation of Variables. Look for functions

u(x, τ) = X(x)T (τ)

which satisfy (5), (6). Then

XT ′′ = X ′′T
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or

T ′′

T
=
X ′′

X
= const. = −λ

consequently

(8) T ′′ + λT = 0, τ > 0

(9) X ′′ + λX = 0 for 0 < x < l

X(0) = 0, and X(x) = 0 for 0 < x < l

Observe that (9) is the same BV problem which occurred in the reduction

of the heat equation. Hence

λ = λn = (
nπ

l
)2, X(x) = Xn(x) = sin(

nπx

l
), n = 1, 2, 3, 4, . . .

The corresponding T (τ) factors are

T (τ) = Tn(τ) = An cos(
nπτ

l
) +Bn sin(

nπτ

l
)

Thus (5) (6) have the solutions

20



un(x, τ) = {An cos(
nπτ

l
) +Bn sin(

nπτ

l
)} sin(

nπx

l
), n = 1, 2, 3, 4, . . .

Principle of Superposition. To solve (5), (6), (7) try

(10) u(x, τ) =
∞∑
n=1

{An cos(
nπτ

l
) +Bn sin(

nπτ

l
)} sin(

nπx

l
)

∂u(x, τ)

∂τ
=
∞∑
n=1

nπ

l
{−An sin(

nπτ

l
) +Bn cos(

nπτ

l
)} sin(

nπx

l
)

Formal Solution.

u(x, 0) = uo(x) =
∞∑
n=1

An sin(
nπx

l
)

∂u(x, 0)

∂τ
= u1(x) =

∞∑
n=1

nπ

l
Bn sin(

nπx

l
)

Thus

(11) An =
2

l

∫ l

0

uo(x) sin
nπx

l
dx

nπ

l
Bn =

2

l

∫ l

0

u1(x) sin
nπx

l
dx n = 1, 2, 3, 4, . . .

The formal solution is defined by (10), (11). We may now proceed to

21



define the

Classical Solution. u is a classical solution of the vibrating string

problem (5), (6), (7) if and only if u ∈ C1(Ω)∩C2(Ω) and (5), (6), (7) hold.

Here Ω = {(x, τ) : 0 < x < l, τ > 0}, Ω = {(x, τ) : 0 ≤ x ≤ l, τ ≥ 0}.

The existence of a classical solution can be proved by using convergence

theory for the Fourier sine series, as in the case of the heat equation, but this

does not give the best results (the weakest possible smoothness conditions

on the initial values). Instead Fourier convergence theory will be used in a

different way to sum the formal series (10), (11). For simplicity, only the

special case where

∂u(x, 0)

∂τ
= u1(x) ≡ 0

will be discussed. In this case, the formal solution is

(10)′ u(x, τ) =
∞∑
n=1

An cos
nπτ

l
sin

nπx

l

(11)′ An =
2

l

∫ l

0

uo(x) sin
nπx

l
dx

To sum (10)′, (11)′ note that
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(12) 2 cos
nπτ

l
sin

nπx

l
= sin

nπ(x− τ)

l
+ sin

nπ(x+ τ)

l

and hence (10)′ can be written as

(13) u(x, τ) =
1

2

∞∑
n=1

An sin
nπ(x− τ)

l
+

1

2

∞∑
n=1

An sin
nπ(x+ τ)

l

The two series in this expression are Fourier sine series for uo(x) evaluated

at x − τ and x + τ respectively. Now if uo(x) has a convergent sine series

then ∀ξ ∈ R

Uo(ξ) =
∞∑
n=1

An sin
nπξ

l
=



uo(ξ) if 0 ≤ ξ ≤ l;

Odd periodic extension of uo(ξ)

with period 2l

for all other values of ξ.

Thus, formally,

(14) u(x, τ) =
1

2
[Uo(x− τ) + Uo(x+ τ)]

This will define a classical solution if and only if Uo ∈ C2(R). This is true
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if and only if

(15) uo ∈ C2[0, l]

and

(16) uo(0) = 0, uo(l) = 0, u′′o(0) = 0, u′′o(l) = 011

This proves the

Existence Theorem. If uo satisfies (15), (16) then (13), (14) defines a

classical solution of (5), (6), (7) with u1(x) ≡ 0.

The case where uo(x) ≡ 0 and u1(x) 6= 0 can be treated similarly.

Another Derivation of the Solution Based on Lemma 1

Let u be a classical solution of the finite string problem, i.e.

(1) u ∈ C1(Ω) ∩ C2(Ω) and
∂2u

∂τ 2
=
∂2u

∂x2
in Ω

(2) u(x, 0) = uo(x) and
∂u(x, 0)

∂τ
= u1(x) for 0 ≤ x ≤ l

(3a) u(0, t) = 0 for t ≥ 0

(3b) u(l, t) = 0 for t ≥ 012

11These conditions are necessary to allow a smooth 2l periodic extension of uo.
12The conditons (3a), (3b) state that the string is immobilized at the ends.
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It will be shown that Lemma 1 leads to a unique construction of u(x, τ)

in Ω.

Step 1. (1) =⇒ u(x, τ) = f(x− τ) + g(x+ τ) in Ωo.

where

Ωo = {(x, τ) : −τ < x < l + τ}

f ∈ C2(−∞, l) and g ∈ C2(0,∞)13

It will be convenient to transform this into the (ξ, η) - plane where

ξ = x− τ, η = x+ τ

Ω→ Ω′ = {(ξ, η) : 0 < η + ξ < 2l and η − ξ > 0}

Ωo → Ω′o = {(ξ, η) : −∞ < ξ < l and η > 0}

[See chalkboard illustration.]

Step 2.

(1), (3) =⇒ (see page 11)

13See pages 10, 11.
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(4) f(ξ) =
1

2
uo(ξ)−

1

2

∫ ξ

0

u1(x)dx ∀ 0 ≤ ξ ≤ l

(5) g(η) =
1

2
uo(η)− 1

2

∫ η

0

u1(x)dx ∀ 0 ≤ η ≤ l

Step 3.

(1), (3a) =⇒ u(0, τ) = f(−τ) + g(τ) = 0,∀τ ≥ 0

or

(6) f(−τ) = −g(τ),∀τ ≥ 0

Step 4.

(1), (3b) =⇒ u(l, τ) = f(l − τ) + g(l + τ) = 0, ∀τ ≥ 0

or

(7) f(l − τ) = −g(l + τ), ∀τ ≥ 0

Lemma (1), (3a), (3b) =⇒
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(8) g(τ + 2l) = g(τ),∀τ ≥ 0

(9) f(τ + 2l) = f(τ),∀τ ≤ −l14

Proof.

(7) =⇒ f(−τ) = −g(2l + τ),∀τ ≥ −l

(6) =⇒ f(−τ) = −g(τ),∀τ ≥ 0

These two together give (8).

(7) =⇒ f(−τ − l) = −g(τ + 3l), ∀τ + 2l ≥ 0

(7) and (8) =⇒ f(l − τ) = f(−l − τ),∀τ ≥ 0

=⇒ f(τ + l) = f(τ − l),∀τ ≤ 0 which =⇒ (9). QED.

————

Construction of f and g.

• (4), (5) define f, g on [0, l]

14In other words, g is 2l- periodic and f nearly so.
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• (5), (6) extend f to [−l, 0]

• (4), (7) extend g to [l, 2l]

• (8) extends g to [2l,∞)

• (9) extends f to (−∞,−l]

[See chalkboard illustration.]

Specifically,

f(ξ) =


1
2
uo(ξ)− 1

2

∫ ξ

0
u1(x)dx, 0 ≤ ξ ≤ l

−1
2
uo(−ξ)− 1

2

∫ −ξ
0

u1(x)dx, −l ≤ ξ ≤ 0

f ′(ξ) =


1
2
u′o(ξ)− 1

2
u1(ξ), 0 ≤ ξ ≤ l

1
2
u′o(−ξ) + 1

2
u1(−ξ), −l ≤ ξ ≤ 0
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g(η) =


1
2
uo(η) + 1

2

∫ η

0
u1(x)dx, 0 ≤ η ≤ l

−1
2
uo(2l − η) + 1

2

∫ 2l−ξ
0

u1(x)dx, l ≤ ξ ≤ 2l

g′(η) =


1
2
u′o(η) + 1

2
u1(η), 0 ≤ η ≤ l

1
2
u′o(2l − η)− 1

2
u1(2l − η), l ≤ η ≤ 2l

If f and g have sufficient smoothness, they will verify (16) [see page 16]:

Recall that v(ξ, η) = f(ξ)+g(η). This holds in particular for ξ ≤ l, η ≥ 0.

Along the line segment ξ = 0, 0 ≤ η ≤ l we have by smoothness of v,

v(0+, η) = v(0−, η)⇔ f(0+) = f(0−)⇔ uo(0
+) = −uo(0+) or uo(0

+) = 0
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∂v(0+, η)

∂ξ
=
∂v(0−, η)

∂ξ
⇔ f ′(0+) = f ′(0−)⇔ u1(0+) = −u1(0+) or u1(0+) = 0

∂2v(0+, η)

∂ξ2
=
∂2v(0−, η)

∂ξ2
⇔ f ′′(0+) = f ′′(0−)⇔ u′′o(0

+) = −u′′o(0+) or u′′o(0
+) = 0

Similarly, considering the segment 0 ≤ ξ ≤ l, η = l gives

uo(l
−) = 0, u1(l−) = 0, uo(l

−) = 0

Uniqueness Theorem. ∃ at most one solution to (1), (2), (3a), (3b).

Proof. It must be given by u(x, τ) = f(x− τ) + g(x + τ) where f and g

are defined as above.

Corollary For a solution of (1), (2), (3a), (3b) to exist it is necessary

that

(10) uo ∈ C2[0, l], u1 ∈ C1[0, l]

(11) uo(0
+) = 0, u1(0+) = 0, uo(0

+) = 0

(12) uo(l
−) = 0, u1(l−) = 0, uo(l

−) = 0
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Existence Theorem If uo, u1 satisfy (10), (11), (12) then ∃ a solution

of (1), (2), (3a), (3b). The proof is the construction of f and g above.

Continuous Dependence on the Data. Let {uno (x)}, {un1 (x)} be a

sequence of initial data with corresponding solutions {un(x, τ)}. Then

{uno (x)} → 0, {un1 (x)} → 0 uniformly on 0 ≤ x ≤ l =⇒

un(x, τ)→ 0 uniformly on Ω

Proof. This is evident from (4) and (5) and their extensions.

Periodicity. Note that (8), (9) =⇒ u(x, τ + 2l) = f(x − τ − 2l) +

g(x+ τ + 2l) = u(x, τ), i.e. every motion of the string has period 2l. This is

also evident from the Fourier series for u(x, τ).

31



Chapter 3. Steady Temperature in a Circular Cylinder.

Consider a long solid cylindrical rod of radius a. The temperature T =

u(x, y, z, t) in such a rod satisfies the heat equation:

∂u

∂t
= K(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
)

Assume that

u(x, y, z, t) = g(x, y), for x2 + y2 = a2, t ≥ 015

Then we expect that

lim
t→∞

u(x, y, z, t) = us(x, y), ∀ x2 + y2 ≤ a2

The corresponding steady temperature should be a solution of the BV

problem Dirichlet’s Problem for Laplace’s Equation:16


∂2us
∂x2 + ∂2us

∂y2
= 0 for x2 + y2 < a2

us(x, y) = g(x, y) for x2 + y2 = a2

We shall study this problem. It is natural to introduce

15That is, the temperature at the surface of the cylinder depends on neither z nor t.
16Dirichlet problems are those in which the unknown function is required to have spec-

ified behavior at the boundary of its domain.
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Polar Coordinates. Put T = us(x, y) = v(r, θ) where

x = r cos θ, y = r sin θ

Then

r =
√
x2 + y2, θ = tan−1 y

x

Differentiation gives

∂r

∂x
=
x

r
= cos θ,

∂r

∂y
=
y

r
= sin θ

∂θ

∂x
=
−y
r2

=
− sin θ

r
,

∂θ

∂y
=

x

r2
=

cos θ

r

Applying the chain rule for partial derivatives:

∂us
∂x

=
∂v

∂x
=
∂v

∂r

∂r

∂x
+
∂v

∂θ

∂θ

∂x
= cos θ

∂v

∂r
− sin θ

r

∂v

∂θ
≡ F1(r, θ)

∂us
∂y

=
∂v

∂y
=
∂v

∂r

∂r

∂y
+
∂v

∂θ

∂θ

∂y
= sin θ

∂v

∂r
+

cos θ

r

∂v

∂θ
≡ F2(r, θ)

Differentiating both sides of these equations yields
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∂2us
∂x2

=
∂2v

∂x2
=
∂F1

∂r

∂r

∂x
+
∂F1

∂θ

∂θ

∂x
= cos2 θ

∂2v

∂r2
+

sin2 θ

r2

∂2v

∂θ2
+

sin2 θ

r

∂v

∂r

∂2us
∂y2

=
∂2v

∂y2
=
∂F2

∂r

∂r

∂y
+
∂F2

∂θ

∂θ

∂y
= sin2 θ

∂2v

∂r2
+

cos2 θ

r2

∂2v

∂θ2
+

cos2 θ

r

∂v

∂r

Thus

∂2us
∂x2

+
∂2us
∂y2

=
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2

BV Problem for v(r, θ). If we write f(θ) for g(a cos θ, a sin θ) then

(1)
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
= 0 for 0 < r < a, and all θ

(2) v(a, θ) = f(θ) for all θ

(3) v(r, θ + 2π) = v(r, θ) for all 0 ≤ r ≤ a and all θ

(4) v(0, θ) = vo = a finite constant for all θ
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The condition (3) is an obvious geometric fact. Rotation around the ver-

tical axis of the cylinder by 2π should not effect the temperature. Condition

(4) is certainly true for the steady-state temperature along the vertical axis

of the cylinder. But it is a necessary condition for the solution of the prob-

lem, since (1) has a singularity at r = 0. (4) excludes non-physical solutions.

Separation of Variables. Look for functions

v(r, θ) = R(r)Θ(θ)

which satisfy (1), (3), (4). Then (1) implies

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′

Multiply this by r2/RΘ to get

r2R
′′

R
+ r

R′

R
= −Θ′′

Θ
= µ

µ is called the separation constant.17 This and (3) gives

Θ′′(θ) + µΘ(θ) = 0

Θ(θ + 2π) = Θ(θ)

17See page 3 for the slab problem. - λ was the separation constant.
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The solutions of this eigenvalue problem are µ = µn = n2, n = 0, 1, 2, 3, ...,

Θ(θ) = Θn(θ) = An cosnθ +Bn sinnθ

The equation for R(r), with µ = n2, is

r2R′′ + rR′(r)− n2R(r) = 0, 0 ≤ r ≤ a

This is an Euler equation with solutions of the form rα or ln r. We try

R(r) = rα. Substitution into the equation gives

α(α− 1)rα + αrα − n2rα = [α2 − n2]rα = 0

whence

α2 − n2 = 0, or α = ±n, n = 1, 2, 3, ...

For n = 0, rR′′ +R′ = 0 =⇒ R′ = Do
r
, Ro = Co +Do ln r

(4) requires that Do = 0. Thus the separated solutions are

vn(r, θ) = rn(An cosnθ +Bn sinnθ), n = 0, 1, 2, 3, ...

Superposition. Try to satisfy (1)-(4) by a linear combination

(5) v(r, θ) = Ao +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

Formal Solution
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(6) v(a, θ) = f(θ) = Ao +
∞∑
n=1

(anAn cosnθ + anBn sinnθ)

Suppose that the Fourier series of f(θ) is

f(θ) =
1

2
ao +

∞∑
n=1

(an cosnθ + bn sinnθ)

(7)


an = 1

π

∫ π

−π f(φ) cos(nφ)dφ, n = 0, 1, 2, ...

bn = 1
π

∫ π

−π f(φ) sin(nφ)dφ, n = 1, 2, ...

This agrees with (6) if

Ao =
1

2
ao, anAn = an, a

nBn = bn, n = 1, 2, ...

Thus the formal solution can be written:

(8) v(r, θ) =
1

2
ao +

∞∑
n=1

(
r

a
)n(an cosnθ + bn sinnθ)

The existence of solutions of the Dirichlet problem for the disk can be

discussed by applying convergence theorems for Fourier series to the formal

solution (8). However, we shall take a different approach to show that the

series in (8) can be summed.
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The Poisson Integral. Still proceeding formally we have, from (7) and

(8),

v(r, θ) =
1

2π

∫ π

−π
f(φ)dφ+

∞∑
n=1

(
r

a
)n

1

π

∫ π

−π
f(φ){cosnφ cosnθ+sinnφ sinnθ}dφ

=
1

2π

∫ π

−π
f(φ)dφ+

∞∑
n=1

(
r

a
)n

1

π

∫ π

−π
f(φ) cosn(θ − φ)dφ

=
1

2π

∫ π

−π
f(φ){1 + 2

∞∑
n=1

(
r

a
)n cosn(θ − φ)}dφ

Remark. The last step is easy to justify if r < a and f ∈ L1(−π, π).

Now18

(
r

a
)n cosnψ = Re{(r

a
)neinψ} = Re{(re

iψ

a
)n}

and

∞∑
n=1

(
reiψ

a
)n =

∞∑
n=1

zn = z + z2 + z3 + ... =
z

1− z

=
r
a
eiψ

1− r
a
eiψ

=
r
a
eiψ(1− r

a
e−iψ)

|1− r
a
eiψ|2

18Re stands for “real part.” Thus for any complex number z = c+ ib, Re(z) = c.
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=
r
a
eiψ − ( r

a
)2

(1− r
a
cosψ)2 + r

a
sin2 ψ

Thus

∞∑
n=1

(
r

a
)n cosnψ =

r
a

cosψ − ( r
a
)2

1− 1 r
a

cosψ + ( r
a
)2

Hence

1 + 2
∞∑
n=1

(
r

a
)n cosnψ =

1− 2 r
a

cosψ + ( r
a
)2 + 2 r

a
cosψ − 2( r

a
)2

1− 2 r
a

cosψ + ( r
a
)2

Simplifying,

1 + 2
∞∑
n=1

(
r

a
)n cosnψ =

a2 − r2

a2 + r2 − 2ra cosψ

The latter expression is called the “Poisson kernel.” Again formally,

(9) v(r, θ) =
1

2π

∫ π

−π
f(φ)

a2 − r2

a2 + r2 − 2ra cos(θ − φ)
dφ, for 0 ≤ r < a

The corresponding formula in rectangular coordinates is

(10) us(x, y) =
1

2π

∫ π

−π

a2 − x2 − y2

a2 + x2 + y2 − 2a(x cosφ+ y sinφ)
g(a cosφ, a sinφ)dφ

This function is called Poisson’s integral. It may be used to prove the
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existence of solutions.

Classical Solutions. us(x, y) is a classical solution of the Dirichlet

problem for the Laplace equation in the disk Ω = {(x, y) : x2 + y2 < a2} ⇔

us ∈ C2(Ω) ∩ C(Ω) and satisfies

(11)
∂2us
∂x2

+
∂2us
∂y2

= 0 in Ω

(12) us(x, y) = g(x, y) on ∂Ω = {(x, y) : x2 + y2 = a2}

A necessary condition for the existence of a classical solution is g ∈

C(∂Ω). It will be shown, using Poisson’s integral, that this is also a suf-

ficient condition!

Existence Theorem. For all g(x, y) ∈ C(∂Ω) the function

us(x, y) =


1

2π

∫ π

−π
a2−x2−y2

a2+x2+y2−2a(x cosφ+y sinφ)
g(a cosφ, a sinφ)dφ, r < a

g(x, y), r = a

is a classical solution of the Dirichlet problem (11), (12).

Proof. The main difficulty is establishing that the two values of us

match up at the boundary. In other words, we must eventually show that

limr→a us(x, y) = g(x, y) with some uniformity in θ (i.e., direction). We
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attack the easier parts first.

Step 1. Show us ∈ C2(Ω) and ∂2us
∂x2 + ∂2us

∂y2
= 0 in Ω.

To show this, let 0 < δ < a and define

Ωδ = {(x, y) : r =
√
x2 + y2 < a− δ}

Then if ψ = θ − φ

a2 − 2ra cosψ + r2 = a2 − 2ra+ r2 + 2ra(1− cosψ)

= (a− r)2 + 2ra(1− cosψ) ≥ (a− r)2 > δ2

Hence

(13)
a2 − r2

a2 + r2 − 2ra cos(θ − φ)
= 1 + 2

∞∑
n=1

(
r

a
)n cosn(θ − φ), r < a

defines a function which has partial derivatives of all orders and satisfies

Laplace’s equation on Ωδ for each δ such that 0 < δ < a. Hence (10) defines

a function us ∈ C2(Ω) (indeed C∞(Ω)) such that (11) holds.

Step 2. us ∈ C(Ω). It suffices to prove continuity at the boundary of Ω.

Note that

• a2 − r2

a2 + r2 − 2ra cos(θ − φ)
→ 0 when r → a if φ 6= θ.
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• a2 − r2

a2 + r2 − 2ra cos(θ − φ)
=

a2 − r2

(a− r)2
=
a+ r

a− r
→ +∞ if φ = θ.

• 1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ra cos(θ − φ)
dφ ≡ 1, ∀r < a,−π ≤ θ ≤ π (by 13)

[See chalkboard illustration.]

Thus, for δ > 0 sufficiently small

v(r, θ)− f(θo) =
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ra cos(θ − φ)
{f(φ)− f(θo)}dφ19

=
1

2π

∫ θo+δ

θo−δ

a2 − r2

a2 + r2 − 2ra cos(θ − φ)
{f(φ)− f(θo)}dφ

+
1

2π

∫
|θo−φ|≥δ

a2 − r2

a2 + r2 − 2ra cos(θ − φ)
{f(φ)− f(θo)}dφ

= I1(r, θ) + I2(r, θ)

Choose δ = δ1(ε) > 0 such that20

|f(φ)− f(θo)| <
ε

2
∀ φ with |φ− θo| ≤ δ1(ε)

19Recall a2 + r2 − 2ra cos(θ − φ) > 0.
20Observe by definition (see (6)) that g(x, y) ∈ C(∂Ω)⇔ f(θ) ∈ C(R) and f(θ+2π) =

f(θ), ∀ θ ∈ R.
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Then

(15) |I1(r, θ)| ≤ 1

2π

∫ θo+δ

θo−δ

a2 − r2

a2 + r2 − 2ra cos(θ − φ)
|f(φ)− f(θo)|dφ

≤ ε

2
, ∀θ ∈ R, r < a.

Next observe that

a2 + r2 − 2ra cos(θ − φ) ≥ 2ra(1− cos(θ − φ)) = 4ra sin2 θ − φ
2

Take

|θ − θo| <
δ1(ε)

2
, |θo − φ| ≥ δ1(ε)

Then

|θ − φ| ≥ |θo − φ| − |θ − θo| >
δ1(ε)

2

and hence

a2 + r2 − 2ra cos(θ − φ) ≥ 2ra(1− cos(θ − φ) > 4ra sin2 δ1(ε)

4
> 0
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Thus if

M = max
0≤θ≤2π

|f(θ)|

|I2(r, θ)| ≤ 1

2π

∫
|θo−φ|≥δ1(ε)

a2 − r2

a2 + r2 − 2ra cos(θ − φ)
{|f(φ)|+ |f(θo)|}dφ

(16)

≤ 2M

2π

∫
|θo−φ|≥δ1(ε)

a2 − r2

4ra sin2 δ1(ε)
4

dφ ≤ 2M
a2 − r2

4ra sin2 δ1(ε)
4

<
ε

2

provided r > a− δ2(ε) for δ2(ε) sufficiently small, and |θ − θo| < δ1(ε)/2.

Combining (14), (15), (16) gives

|v(r, θ)− f(θo)| ≤ |I1(r, θ)|+ |I2(r, θ)| < ε

∀ (x, y) = (r cos θ, r sin θ) with a− δ2(ε) < r < a, |θ − θo| <
δ1(ε)

2
.

This shows that us(x, y) − g(xo, yo) → 0 uniformly as (x, y) → (xo, yo)

and this completes the proof. QED.
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The Mean Value Theorem for Laplace’s Equation. Let

(1) Ω be a domain (any open set) in the (x, y) plane.

(2) u ∈ C2(Ω) and
∂2us
∂x2

+
∂2us
∂y2

= 0 in Ω.

(3) D(xo, yo, R) = {(x, y) : (x− xo)2 + (y − yo)2 < R2} ⊂ Ω.

Then

(3) u(xo, yo) =
1

2π

∫ π

−π
u(xo + r cos θ, yo + r sin θ)dθ for 0 ≤ r ≤ R.

In other words, at any point in the domain, u is equal to its mean value

along any circle surrounding it in Ω.

Proof. Define

v(r, θ) = u(xo + r cos θ, yo + r sin θ)

Then
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(5)
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
= 0 for 0 < r < R, θ ∈ R.

[The reader should check (5) by comparing with pp. 33-34.]

(6) v(r, θ + 2π) = v(r, θ)

Now let

(7) A(r) =
1

2π

∫ π

−π
v(r, θ)dθ =

1

2π

∫ π

−π
u(xo + r cos θ, yo + r sin θ)dθ

Then

A′′(r) +
1

r
A′(r) =

1

2π

∫ π

−π
(
∂2

∂r2
+

1

r

∂

∂r
)v(r, θ)dθ

= − 1

2πr2

∫ π

−π

∂2v

∂θ2
dθ = 0 by (5), (6)

Thus A(r) = co+c1 ln r, 0 < r < R. But A(0) = limr→0+ A(r) = u(xo, yo)

by (7). Hence

c1 = 0 and therefore A(r) = co = u(xo, yo). QED

Corollary (The Maximum Principle). If (1), (2) hold and u is not
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constant in Ω then it can have no local maximum or minimum in Ω.

Proof. (By contradiction.) Assume u has a local max at (xo, yo) ∈ Ω

then for R sufficiently small, u(x, y) < u(xo, yo) for all (x, y) ∈ D(xo, yo, R)−

(xo, yo). This violates (3).

Corollary. If Ω is compact,

u ∈ C(Ω) ∩ C2(Ω)

and

∂2u

∂x2
+
∂2u

∂y2
= 0 in Ω

then the maximum and minimum of u occur on ∂Ω.

Uniqueness Theorem. If Ω is compact then the Dirichlet problem

for Laplace’s equation in Ω has at most one classical solution. Proof. Let

u1(x, y) and u2(x, y) be any two solutions with the same values on ∂Ω. Then

u(x, y) = u1(x, y)−u2(x, y) satisfies the conditions of the preceding corollary

and vanishes on ∂Ω. Hence u(x, y) ≡ 0 on Ω or

u1(x, y) ≡ u2(x, y)

QED.
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Chapter 4. Basic Concepts in the Theory of Heat Conduc-

tion.

Temperature. The notion of the temperature of a body (at a point) is an

intuitive concept. A more precise definition can be based on thermodynam-

ics. In any case it is measurable by thermometers, thermocouples and many

other devices, The temperature relative to a fixed scale is measured by a real

number. Scales include

• Centigrade or Celsius Scale TC = 0◦ ↔ Freezing water.

• Fahrenheit Scale TF = 32◦ + 9/5TC

• Kelvin (or Absolute) Scale TK = TC + 273.16◦

The Kelvin scale is derived from thermodynamic principles. It has the

property that every body has a temperature

TK ≥ 0

Quantity of Heat. Heat is a form of energy. The basic unit of heat energy

is the calory (also spelled calorie), defined by the property that 1 calory =

Quantity of heat needed to heat 1 gram of water from 14.5◦C to 15.5◦C.

Specific Heat of a Solid. The lower case c will be used to represent this
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quantity. For each substance, the amount of heat required to raise the tem-

perature of 1 gram by 1◦C is called the specific heat of the substance. Actu-

ally, the specific heat varies slightly with the temperature, but we shall treat

it as a constant. Some approximate values for familiar substances are

Substance Specific Heat

Water 1.0000 (at 15◦C)

Glass .20

Cork .48

Copper .0914

Silver .0556

Heat Transfer Mechanisms. Three different modes of heat transfer are

distinguished:

Conduction (or Diffusion) - This means the direct transfer by contact of

adjacent particles.

Convection - This means the transfer of heat in a fluid due to motion of

the fluid.

Radiation - This means the transfer of heat by conversion to electromag-

netic waves and their propagation through space.
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In solid bodies heat transfer in the interior is assumed to take place by

pure conduction. It may be necessary to consider convection and/or radia-

tion at the surface of a solid.

The Physical Principles Governing Heat Conduction.

There are two principles

I. The Conservation of Heat Energy. This is usually formulated as the

statement that if V is any volume in a solid then

Net Change in quantity of heat in V during any time interval =

Net Flux of heat through the surface of V during the same time interval.

This statement will be quantified below in several cases.

II. Fourier’s Law of Heat Conduction. This states that the rate of flow of

heat at any point in a solid is a function of the temperature gradient at that

point.

This will also be quantified in several different cases below. To begin, the

case of 1-dimensional heat flow in a plate (slab) is discussed.
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Heat Flow in a Plate. Imagine a large uniform plate (or wall) with

Area = A, Thickness = l.

Assume that the two faces are kept at fixed temperature To and T1 6= To,

T (x) being the temperature (independent of time) on a plane parallel to the

faces of the plate at depth x21 and let

Q = Quantity of heat in the plate from

side 0 to side 1 in t units of time.22

In this case Fourier’s law states that

Q ∝ (T1 − To)
A

l

Thus one may write

(1) Q = −K (T1 − To)At
l

where the constant of proportionality K = the thermal conductivty of the

21Hence To = T (0), T1 = T (l).
22Therefore the quantity of heat in the plate between x = 0 and some interior depth

x = xo would be Q(xo, t) = − (T (xo)−To)At
l .

51



plate. The value of K is characteristic of the material of which the plate is

made (it may vary somewhat with the thermal state of the material, but we

shall assume it is constant).

Remarks

a. Heat flows from high temperature regions to low temperature regions.

Hence, with the definition of Q given above, K > 0.

b. The insulating value of a layer of insulation is proportional to its thick-

ness.

c. Our confidence in Fourier’s law is based on both direct experiment and

the accuracy of many predictions based on the law.

Heat Flux. The quantity

q =
Q

At
= −K (T1 − To)

l

cal.

m2sec.

is called the heat flux through the plate. Some representative values of the

thermal conductivity are

Substance Thermal Conductivity

Water .00144

Glass .0028

Cork .0001

Copper .93

Silver 1.00
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Steady Temperature Profile in a Plate. Introduce a coordinate x normal

to the surface of the plate, the left side corresponding to x = 0 and xo corre-

sponding to some interior point. Between any two interior points, xo, xo+∆x

the net increase in heat content is determined as specific heat times volume

times net temperature increase over time is approximately (assuming ∆x is

small) = cρA∆x[T (xo, t + ∆t) − T (xo, t)] where ρ is mass density. Mean-

while, the heat energy entering [xo, xo + ∆x] over the time interval [t, t+ ∆t]

is (q(xo, t) − q(xo + ∆x, t))A∆t. Applying the principle of conservation of

heat energy tells us that these two quantities should be equal and using

the fact that T (and therefore q) is not a function of time, we have that

q(xo) = const. = q.

Thus

q = −KT (xo)− To
xo

the heat flux through the layer 0 ≤ x ≤ xo of the plate is independent of xo.

This implies that for any x between 0 and l,

T (x) = To −
q

K
x = To +

T1 − To
l

x

Non-Steady Temperatures in a Plate. Now suppose that To and T1 are

functions of t:
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To = To(t), T1 = T1(t)

In this case the temperature in the plate will be a function of t and x,

the coordinate introduced above:

T = T (x, t), 0 ≤ x ≤ l

Consider the very thin slab parallel to the plate

Fourier’s law for steady temperatures suggests that the instantaneous flux

of heat through this slab, at time t, is approximately

q(xo, t) ' −K
T (xo + ∆x, t)− T (xo, t)

∆x
' −K∂T (xo, t)

∂x

Fourier assumed this law was exact in the limit as ∆x→ 0.

Fourier’s Law of Transient Heat Flow (1 Dimension)

q(xo, t) = −K∂T (xo, t)

∂x

As in the case of steady heat flow, our confidence in Fourier’s law is based

on the accuracy of many predictions based on it.

The Heat Equation for Non-Steady Temperatures in a Plate. Apply the

54



conservation of energy principle to a portion (x, x + ∆x) of the plate and a

time interval (t, t+ ∆t):

The net increase of heat content of (x, x+ ∆x) during (t, t+ ∆t)

= c

mass︷ ︸︸ ︷
ρ A∆x︸ ︷︷ ︸

volume

[T (x, t+ ∆t)− T (x, t)︸ ︷︷ ︸
net temperature increase

]

The heat energy entering (x, x+ ∆x) during (t, t+ ∆t) is

∫ t+∆t

t

Aq(x, t)dt︸ ︷︷ ︸
heat entering at x

−
∫ t+∆t

t

Aq(x+ ∆x, t)dt︸ ︷︷ ︸
heat leaving at x+∆x

= −A
∫ t+∆t

t

∫ x+∆x

x

∂q

∂x
dt

By conservation of energy the two quantities are equal and thus,

−A
∫ t+∆t

t

∫ x+∆x

x

∂q

∂x
dt = cρA∆x[T (x, t+ ∆t)− T (x, t)]

or

− 1

∆t

∫ t+∆t

t

1

∆x

∫ x+∆x

x

∂q

∂x
dt = cρ

T (x, t+ ∆t)− T (x, t)

∆t

Making ∆t,∆x→ 0 gives

−∂q(x, t)
∂x

= cρ
∂T (x, t)

∂t

Applying Fourier’s law,
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K
∂2T

∂x2
= cρ

∂T

∂t

or

∂T

∂t
= k

∂2T

∂x2

where

k = K
cρ

= “thermal diffusivity” or the “diffusion coefficient.”

k measures the speed with which heat is conducted through a substance. The

following table gives approximate values of k for some familiar substances

Substance Thermal Diffusivity

water .00144

glass .0058

cork (ground) .0014

copper 1.14

silver 1.71

Thus cork is roughly 1000 times better as an insulator than copper.

To determine the temperature in a plate as a solution of the heat equation
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we must know T at some initial time (say t = 0). This gives

Initial Condition.

T (x, 0) = f(x) (a given function) for 0 ≤ x ≤ l

Boundary Conditions. In addition the temperatures at the two faces of

the plate must be controlled in some way. Several possibilities will be con-

sidered.

Surface Temperatures Given:

T (0, t) = To(t) (a given function) fort ≥ 0

T (l, t) = T1(t) (a given function) for t ≥ 0

Surface Heat Flux Given. Instead of specifying the surface temperatures

one may specify

q(0, t) = −K∂T (0, t)

∂x
= qo(t) (a given function) t ≥ 0

or
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∂T (0, t)

∂x
= go(t) (=

qo(t)

−K
) for t ≥ 0

Similarly

∂T (l, t)

∂x
= g1(t) for t ≥ 0

may be given.

Convection Boundary Condition. If the plate face at x = 0 is cooled by

convection into a fluid at temperature Te then, to a good approximation,

−q(0, t) = K
∂T (0, t)

∂x
= H(T (0, t)− Te)

where H = “outer conductivity” = const.

Thus

∂T (0, t)

∂x
− hT (0, t) = −hTe, t ≥ 0

where h = H/K. Note that since heat flows from hot to cold, H ≥ 0, h ≥ 0.

Mixed Boundary Conditions. We can have one of the above conditions

at x = 0 and a different one at x = l.

Linear Diffusion of Heat in a Slender Non-Uniform Rod.

In this context “slender” means that the temperature in the rod can be de-
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scribed by a function

T = T (x, t)

where x measures distance along the rod.

[See blackboard illustration.]

The physical characteristics of the rod are described by the real-valued

positive functions

A = A(x) = cross-sectional area of rod

P = P (x) = perimeter of rod

ρ = ρ(x) = linear density of rod

c = c(x) = specific heat of rod

K = K(x) = thermal conductivity of rod

H = H(x) = outer conductivity of rod

If the rod is cooling through its surface into an environment with tem-

perature Te(x) then (cf. p. 59)

Net heat energy entering (x, x+ ∆x) during (t, t+ ∆t)

= −
∫ t+∆t

t

[A(x+ ∆x)q(x+ ∆x, t)− A(x)q(x, t)]dt
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−
∫ x+∆x

x

∫ t+∆t

t

H(x)[T (x, t)− Te(x)]P (x)dtdx

and

Net increase in heat content of (x, x+∆x) during (t, t+∆t) (assuming ∆x is small)

= c(x)ρ(x)A(x)∆x[T (x, t+ ∆t)− T (x, t)]

Equating these and dividing by ∆x∆t gives

− 1

∆t

∫ t+∆t

t

[
A(x+ ∆x)q(x+ ∆x, t)− A(x)q(x, t)]

∆x
dt

− 1

∆x

∫ x+∆x

x

1

∆t

∫ t+∆t

t

H(x)[T (x, t)− Te(x)]P (x)dtdx

= c(x)ρ(x)A(x)[
T (x, t+ ∆t)− T (x, t)

∆t
]

Making ∆x,∆t→ 0 gives

− ∂

∂x
(A(x)q(x, t))−H(x)P (x)[T (x, t)− Te(x)] = c(x)ρ(x)

∂T (x, t)

∂t
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Combining this and Fourier’s law for a non-uniform rod:

q(x, t) = −K(x)
∂T (x, t)

∂x

gives the heat diffusion equation for a slender non-uniform rod:

c(x)ρ(x)A(x)
∂T

∂t
=

∂

∂x
(A(x)K(x)

∂T

∂x
)−H(x)P (x)[T (x, t)− Te(x)]

This has the form

∂T

∂t
− LT = F (x)

where F (x) is a known function and

Lu = po(x)
∂2u

∂x2
+ p1(x)

∂u

∂x
+ p2(x)u

with

po(x) =
K(x)

c(x)ρ(x)
> 0

p1(x) =
1

ρ(x)c(x)A(x)

d

dx
(A(x)K(x))

p2(x) = − H(x)P (x)

ρ(x)c(x)A(x)
< 0

61



It is interesting that the most general linear second order operator23 L

can arise in this way; i.e., by suitable choice of A(x), P (x), etc. The only

restrictions are that po(x) > 0, p2(x) < 0.

The initial and boundary conditions given on pp. 58-59 are appropriate

for the non-uniform rod. In addition we will consider the

Fourier Ring Problem. Imagine bending a slender rod of length l into a

ring and joining the ends. Then the physical identity of the ends x = 0 and

x = l gives the

Periodic Boundary Condition.

T (0, t) = T (l, 0) and K(0)
∂T (0, t)

∂x
= K(l)

∂T (l, t)

∂x
, t ≥ 0

23See appendix I.
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Diffusion of Heat in 3 Space Dimensions. Consider a heat con-

ducting solid body occupying a domain Ω ⊂ R3. The thermal state of the

body is characterized by a temperature field

T = T (x, t), x = (x1, x2, x3) ∈ Ω

(x is a vector quantity).

Let c = c(x) = the specific heat of the body at x ∈ Ω.

ρ = ρ(x) = density of the body at x ∈ Ω.

Thus if V ⊂ Ω is any volume in the body

Q(t) =

∫
V

c(x)ρ(x)T (x, t)dx = Total quantity of heat in V at time t

where dx = dx1dx2dx3.24 In the important case where the body is homo-

geneous c and ρ are constants and Q(t) = cρ
∫
V
T (x, t)dx.

The flow of heat in the body is described by a vector field

~q(x, t) = (q1(x, t), q2(x, t), q3(x, t)) = Heat Flux Field

24The single integral sign is customary in modern mathematics. In elementary calculus
one often sees multiple integral signs corresponding to the space dimension.
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To interpret ~q let dS be a (small) surface element in Ω with unit normal

vector ~ν.

[See blackboard illustration.]

Then

~q(x, t) • ~ν(x)dS = Quantity of heat crossing dS per unit time at time t

In particular, if V is any volume inside the body with boundary ∂V having

exterior unit normal ~ν(x) then the surface integral

∫
∂V

~q(x, t) • ~ν(x)dS = Quantity of heat leaving V per unit time at time t.

Conservation of Heat Energy. The conservation of heat energy law be-

comes, in this context the statement

∫
∂V

~q(x, t) • ~ν(x)dS = −dQ
dt

To obtain a differential equation we can use the divergence theorem:
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∫
V

∇ • ~Adx =

∫
∂V

~ν • ~AdS

or

∫
V

(
∂A1

∂x1

+
∂A2

∂x2

+
∂A3

∂x3

)dx1dx2dx3 =

∫
∂V

(ν1A1 + ν2A2 + ν3A3)dS

Applying this to ~q gives

∫
V

∇ • ~qdx =

∫
∂V

~ν • ~qdS

Hence the conservation of heat energy principle can be written

∫
V

∇ • ~qdx = −
∫
V

c(x)ρ(x)
∂T (x, t)

∂t
dx

or

∫
V

∇ • ~qdx+ c(x)ρ(x)
∂T (x, t)

∂t
dx = 0

If T (x, t), ~q(x, t) are C1 functions (in Ω×R) and c(x), ρ(x) ∈ C1(Ω) then

the integrand in the last integral is continuous in Ω (for any fixed t). Since

the identity holds for all volumes V ⊂ Ω it follows that

(1) ∇ • ~q + c(x)ρ(x)
∂T (x, t)

∂t
= 0, x ∈ Ω, t ∈ R
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Indeed, if

∇ • ~q(xo, t) + c(xo)ρ(xo)
∂T (xo, t)

∂t
> 0

then the same inequality holds in a neighborhood V = V (xo) of xo, by conti-

nuity, and we have a contradiction. Equation (1) is the conservation of heat

energy principle in differential form.

Fourier’s Law of Heat Conduction for a 3-Dimensional Isotropic Body

This may be formulated as the statement

(2) ~q(x, t) = −K(x)∇T (x, t)

where K = K(x) = the thermal conductivity at x.

Note that K > 0 (heat flows from hot to cold). Moreover, K is constant

in a homogeneous body.

Heat Equation for an Inhomogeneous Isotropic Body.

Combining (1) and (2) by eliminating ~q gives

(3)
∂T (x, t)

∂t
− 1

c(x)ρ(x)
∇ • (K(x)∇T (x, t)) = 0

In the anisotropic case, the thermal conductivity causes variation in direc-
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tion away from the temperature gradient. This can be expressed mathemat-

ically by allowing K to be a matrix quantity. In the isotropic, homogeneous

case (3) becomes

(4)
∂T (x, t)

∂t
− k(

∂2T (x, t)

∂x2
1

+
∂2T (x, t)

∂x2
2

+
∂2T (x, t)

∂x2
3

) = 0

where

(5) k = K/cρ = Thermal diffusivity of the body.

Initial Condition. To determine T (x, t) for a given body one must con-

struct a solution of (3) with a given initial temperature distribution

(6) T (x, 0) = f(x), x ∈ Ω

In addition, information on temperature and heat flux on the boundary

∂Ω must be given. Several possibilities will be considered.

Surface Temperature Given:

(7) T (x, t) = φ(x, t) (a given function) for x ∈ ∂Ω, t ≥ 0

Surface Heat Flux Given:
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(8) ~q(x, t) • ~ν(x) = −K(x)∇T (x, t) • ~ν(x) = φ(x, t)

(a given function) for x ∈ ∂Ω, t ≥ 0

where ~ν(x) is the unit normal vector to ∂Ω at x directed out of Ω.

Convection Boundary Condition.

(9) ~q(x, t) • ~ν(x) = −K(x)∇T (x, t) • ~ν(x) = H(x)(T (x, t)− To(x))

for x ∈ ∂Ω, t ≥ 0

where

H = H(x) = “outer conductivity” of ∂Ω at x (H ≥ 0)

and

To(x) = exterior temperature at x ∈ ∂Ω. This can be written (if ∂T/∂~ν =

∇T • ~ν, ~ν out of Ω)

(10)
∂T

∂~ν
+ hT = hTo, x ∈ ∂Ω, t ≥ 0

where h = h(x) = H(x)/K(x) ≥ 0. (10) is sometimes called the Robin25

boundary condition.

25After Victor Gustave Robin, 19th century physicist.
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Mixed Boundary Conditions are also possible where ∂Ω = S1∪S2∪. . . Sk

and one of the above BCs holds on each Sj.

The above considerations lead us to formulate the following BV Problems

for the heat equation (4) (only the case of homogeneous bodies will be con-

sidered).

BV Problem 1 (Dirichlet Condition on ∂Ω). Find a function u(x, t), x ∈

Ω ⊂ R3, t ≥ 0 such that

(11)
∂u

∂t
− k(

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

) = 0, x ∈ Ω, t > 0

(12) u(x, 0) = f(x), x ∈ Ω

(13) u(x, t) = φ(x, t), x ∈ ∂Ω, t ≥ 0

where f(x) and φ(x, t) are prescribed functions on Ω and ∂Ω × [0,∞], re-

spectively.

Definition. A classical solution of BV Problem 1 is a real-valued function

u ∈ C(Ω× [0,∞)) ∩ C2(Ω× (0,∞)) which satisfies (11), (12), (13).
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BV Problem 2 (Neumann Condition on ∂Ω).26 Find a function u(x, t), x ∈

Ω, t ≥ 0 such that

(14)
∂u

∂t
− k(

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

) = 0, x ∈ Ω, t > 0

(15) u(x, 0) = f(x), x ∈ Ω

(16)
∂u(x, t)

∂ν
≡ ∇u(x, t) • ν(x) = φ(x, t), x ∈ ∂Ω, t ≥ 0

where f(x) and φ(x, t) are prescribed functions.

Definition A classical solution of BV Problem 2 is a real-valued function

u ∈ C1(Ω× [0,∞)) ∩ C2(Ω× (0,∞)) which satisfies (14), (15), (16).

BV Problem 3 (Robin condition on ∂Ω). Find a function u(x, t), x ∈ Ω, t ≥

0 such that

(17)
∂u

∂t
− k(

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

) = 0, x ∈ Ω, t > 0

26Named for German mathematician Carl Gottfried Neumann, cofounder of the math-
ematical research journal Mathematische Annalen.
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(18) u(x, 0) = f(x), x ∈ Ω

(19)
∂u(x, t)

∂ν
+ hu = φ(x, t), x ∈ ∂Ω, t ≥ 0

where f(x) and φ(x, t) are prescribed functions and h > 0 is a prescribed

constant.

Diffusion of Heat in 2 Space Dimensions. If

Ω = {(x1, x2, x3) : (x1, x2) ∈ Ω′,−∞ < x3 <∞}

and if the prescribed functions in BV Problems 1, 2 and 3 are all inde-

pendent of x3 then u = u(x1, x2, t) (also independent of x3). In this case the

BV problems reduce to problems with one less space variable.
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The Maximum Principle. The maximum theorem for the heat equation

in one space dimension formulated and proved on pages 10-11, can be gen-

eralized to higher dimensions. It may be formulated as follows.

Theorem. Let Ω be a bounded domain in R3. Let u ∈ C(Ω×[0,∞)), ∂u/∂t ∈

C(Ω× (0,∞)), ∂2u/∂x2
i ∈ C(Ω× (0,∞)), (i = 1, 2, 3) and

∂u

∂t
− k(

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

) = 0, x ∈ Ω, t > 0

Let

ΓT = (Ω× {0}) ∪ {(x, t) : x ∈ ∂Ω, 0 ≤ t ≤ T}

Then ∀ T > 0

max
x∈Ω,0≤t≤T

u(x, t) = max
ΓT

u(x, t)

The proof is essentially the same as the one on pages 6-7. In fact, the

proof works for any number n ≥ 1 of space variables.

Uniqueness Theorem for BV Problem 1 in Bounded Domains. The the-

orem states that BV Problem 1 for a bounded domain Ω has at most one

classical solution. The result is an immediate consequence of the maximum

principle. The proof is the same as the one for one space dimension (pages

7-8 above).
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Uniqueness Theorems for BV Problems 2 and 3 in Bounded Domains. In

the case of BV Problems 2 and 3 the uniqueness of classical solutions does

not follow immediately from the maximum principle as it does for BV Prob-

lem 1. Another method of proving uniqueness will now be given that works

for these two problems. The following notation will be used in the proof.

∇u = (
∂u

∂x1

,
∂u

∂x2

,
∂u

∂x3

)

4u = ∇ •∇u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

Note also the identity

(20) ∇ • (u∇v) = ∇u • ∇v + u4 v

Theorem If Ω ∈ R3 is a bounded domain for which the divergence theorem

holds (this is a type of restriction on ∂Ω) then BV problems 2 and 3 have at

most one classical solution.

Proof. Note that BV problem 3 with h = 0 is the same as BV problem

2. Hence it will be enough to discuss BV problem 3 with condition h ≥ 0.

To prove that at most one classical solution exists we suppose that u1(x, t)

and u2(x, t) are any two classical solutions with the same “data” f(x), φ(x, t)

and consider the difference
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u(x, t) = u1(x, t)− u2(x, t)

By linearity, u(x, t) is a classical solution of BV problem 3 with data

f(x) ≡ 0 in Ω, φ(x, t) ≡ 0 on ∂Ω× [0,∞). Now consider the function

J(t) =

∫
Ω

u(x, t)2dx, t ≥ 0

J(t) is finite ∀ t ≥ 0 because Ω is bounded and u(., t) ∈ C(Ω),∀ t ≥ 0.

Moreover, it is easy to verify that

J(t) ∈ C[0,∞) ∩ C1(0,∞)

and

J ′(t) = 2

∫
Ω

u(x, t)
∂u(x, t)

∂t
dx, t ≥ 0

Using the heat equation for u gives

J ′(t) = 2

∫
Ω

u(x, t)4 u(x, t)dx

Combining this with (20), with v = u, gives

J ′(t) = 2

∫
Ω

∇ • (u∇u)dx− 2

∫
Ω

|∇u(x, t)|2dx

Next, using the divergence theorem gives
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J ′(t) = 2

∫
∂Ω

u∇u • ν(x)dS − 2

∫
Ω

|∇u|2dx

= 2

∫
∂Ω

u
∂u

∂ν
dS − 2

∫
Ω

|∇u|2dx

Finally, using (19) with φ(x, t) ≡ 0 gives

J ′(t) = −2h

∫
∂Ω

u(x, t)2dS − 2

∫
Ω

|∇u(x, t)|2dx ≤ 0, ∀t > 0

because h ≥ 0. Moreover, the initial condition (18) with f(x) ≡ 0 implies

J(0) = 0. Thus we deduce that

(21) J(t) = J(0) +

∫ t

0

J ′(τ)dτ =

∫ t

0

J ′(τ)dτ ≤ 0, ∀ t ≥ 0

But, since u(., t) ∈ C(Ω), ∀ t ≥ 0, (21) implies27 that

u(x, t) = u1(x, t)− u2(x, t) ≡ 0, ∀ x ∈ Ω, t ≥ 0

i.e.,

u1(x, t) = u2(x, t)

QED.

Remark 1. The same method also works for BV problem 1 if the diver-

gence theorem holds for the domain Ω.

27by the definition of J
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Remark 2. The proof works for any number n ≥ 1 of space dimensions.28

28The divergence theorem for n = 1 dimensions is just the integration by parts formula.
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Chapter 5.

The Cauchy Problem for the Heat Equation in 1 Space Dimension.

So far, our results for the heat equation have been restricted to bounded do-

mains. The Cauchy problem asks for a function u(x, t) such that

(1)
∂u

∂t
=
∂2u

∂x2
for −∞ < x <∞, t > 0

(2) u(x, 0) = uo(x) for −∞ < x <∞

where uo(x) is a prescribed function.

In this chapter the existence, uniqueness and construction of a solution

of (1), (2) is studied. It will be seen that uniqueness holds only if restrictions

are placed on the initial value function uo(x) and the class of solutions u(x, t)

admitted.

It will be helpful to think of the solution of (1), (2) as describing the

temperature distribution in an infinite uniform rod whose surface is insulated.

Thus temperature will satisfy (1) if

(3) k =
K

cρ
= 1

which also can be achieved by the proper choice of time unit. It will also be

assumed that
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(4) cρ = 1 (choice of unit of heat)

and

(5) A = 1 (choice of unit of length)

Diffusion of Heat From a Point Source - The Fundamental Solution. Sup-

pose that the infinite uniform rod is at temperature 0 for t < 0 and imagine

that at time t = 0 1 unit of heat is introduced in a section xo ≤ x ≤ xo + ∆x

of the rod. If the heat is distributed uniformly in [xo, xo + ∆x] the result will

be an increase in temperature of the section from 0 to a uniform tempera-

ture To = const. in [xo, xo + ∆x]. By the definition of specific heat and the

assumptions (3), (4), (5)

Net increase in heat content of [xo, xo+∆x] = 1 = c× ρA∆x︸ ︷︷ ︸
mass of section

× (To−0) = To∆x

Thus the introduction of unit heat, uniformly distributed in [xo, xo+∆x],

produces an initial temperature distribution

(6) uo(x) = u∆x(x, xo) =


1

∆x
, xo ≤ x ≤ xo + ∆x

0 elsewhere

Let u∆x(x, xo, t) denote the subsequent temperature distribution, i.e., the
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solution of (1), (2) with uo(x) defined by (6) (it is assumed for the moment

to exist).

[See blackboard illustration.]

The total quantity of heat in the infinite rod for any time t, is

(7) Q∆x =

∫ ∞

−∞
cρAu∆x(x, xo, t)dx =

∫ ∞

−∞
u∆x(x, xo, t)dx

The “conservation of energy” principle implies that this should be inde-

pendent of t. Indeed, this is verified by the following calculation:

Q′∆x(t) =

∫ ∞

−∞

∂u∆x(x, xo, t)

∂t
dx =

∫ ∞

−∞

∂2u∆x(x, xo, t)

∂x2
dx = 0

provided ∂u∆x(x, xo, t)/∂x → 0 when x → ±∞. This is clearly the case.

Thus

(8) Q∆x(t) = Q∆x(o
+) = 1, ∀ t > 0

The Limiting Case of a Point Source. Now make ∆x → 0 and assume,

tentatively, that the limit

(9) φ(x, xo, t) = lim
∆x→0

u∆x(x, xo, t)
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exists. This will be verified below. The limiting function φ(x, xo, t) should

describe the temperature distribution at time t > 0 due to a unit amount of

heat released at the point xo at time t = 0.

Intuitively, this corresponds to the Cauchy problem (1), (2) with the

initial distribution

uo(x) = δ(x− xo) (Dirac δ-function)

but use of distribution theory will be avoided here. The limit function (9)

may be expected to have the following properties

(10)
∂φ

∂t
=
∂2φ

∂x2
∀ x, xo ∈ R and t > 0

(11) lim
t→0+

φ(x, xo, t) = 0 ∀ x 6= xo

(12)

∫ ∞

−∞
φ(x, xo, t)dx = 1 ∀ xo, t > 0

(13) φ(x, xo, t) ≥ 0, ∀x, xo ∈ R, t > 0

A function φ(x, xo, t) having these properties will now be constructed. As

a working hypothesis, it will be assumed that there is exactly one function

having properties (10)-(13). This assumption will be shown to lead to a

construction of φ(x, xo, t). The latter is part of folklore in PDEs, summarized
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by phrase, “uniqueness implies existence.”

Step 1. Let φ(x, xo, t) be the function having properties (10)-(13) and

consider the function φ′(x, xo, t) defined by

(14) φ′(x, xo, t) = φ(x− ξ, xo − ξ, t), ξ ∈ R

It is clear that for each fixed ξ ∈ R φ′ also satisfies (10)-(13). Hence, by

the assumed uniqueness of φ

(15) φ(x, xo, t) = φ(x− ξ, xo − ξ, t) ∀ x, xo, ξ ∈ R, t > 0

Taking xo = ξ in (14) gives

(16) φ(x, xo, t) = φ(x− xo, t) ∀ x, xo ∈ R, t > 0

where φ(x, t) is the function defined by

(17) φ(x, t) = φ(x, 0, t)

Thus φ(x, t) satisfies

(18)
∂φ(x, t)

∂t
=
∂2φ(x, t)

∂x2
∀ x ∈ R and t > 0
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(19) lim
t→0+

φ(x, t) = 0 ∀ x 6= 0

(20)

∫ ∞

−∞
φ(x, t)dx = 1 ∀ t > 0

(21) φ(x, t) ≥ 0, ∀x ∈ R, t > 0

Step 2. Consider the function

(22) φ′(x, t) = αnφ(αx, α2t), α > 0

For any fixed α > 0 it satisfies (18), (19) and (21). Moreover,

∫ ∞

−∞
φ′(x, t)dx = αn

∫ ∞

−∞
φ(αx, α2t)dx = αn−1

∫ ∞

−∞
φ(y, α2y)dy = 1

if and only if αn−1 = 1; i.e., α = 1 or n = 1. Thus αφ(α(x−xo), α2t) has the

properties (10)-(13) for any α > 0 and hence by the assumed uniqueness

(23) φ(x, t) = φ(x, 0, t) = αφ(αx, α2t) ∀ α > 0

Taking α = t−
1
2 gives

(24) φ(x, t) = t−
1
2φ(t−

1
2x)
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where φ(x) is the function of x ∈ R defined by

(25) φ(ξ) = φ(ξ, 1), ξ ∈ R

To find the properties of φ(ξ) corresponding to (18)-(21) note that differ-

entiating (24) gives

∂φ(x, t)

∂t
= −1

2
t−

3
2φ(

x

t
1
2

)− 1

2
t−

1
2 t−

3
2xφ′(

x

t
1
2

) = −1

2
t

3
2 (φ(ξ) + ξφ′(ξ))

where

ξ =
x

t
1
2

Similarly,

∂φ(x, t)

∂x
=

1

t
φ′(

x

t
1
2

),
∂2φ

∂x2
=

1

t
3
2

φ′′(ξ)

Whence,

∂2φ(x, t)

∂x2
− ∂φ(x, t)

∂t
=

1

t
3
2

{φ′′(ξ) +
ξ

2
φ′(ξ) +

1

2
φ(ξ)} = 0

Also,

∫ ∞

−∞
φ(x, t)dx = t

1
2

∫ ∞

−∞
φ(t−

1
2x)dx =

∫ ∞

−∞
φ(ξ)dξ = 1

and
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lim
t→0+

φ(x, t) = lim
t→0+

1

x

x

t
1
2

φ(
x

t
1
2

) =
1

x
lim

ξ→±∞
ξφ(ξ) = 0

for all x 6= 0 (x > 0⇔ ξ →∞, x < 0⇔ ξ → −∞.)

Thus (24) has properties (18) - (21) if and only if φ(ξ) satisfies the con-

ditions

(26)
d2φ

dξ2
+
ξ

2

dφ

dξ
+

1

2
φ = 0 ∀ ξ ∈ R

(27) lim
t→±∞

ξφ(ξ) = 0

(28)

∫ ∞

−∞
φ(ξ)dξ = 1

(29) φ(ξ) ≥ 0 ∀ ξ ∈ R

It will be shown that (26)-(28) determine φ(ξ) uniquely.

Step 3. To integrate (26) note that

d

dξ
(
dφ

dξ
+
ξ

2
φ) ≡ d2φ

dξ2
+
ξ

2

dφ

dξ
+

1

2
φ

Thus (26) is equivalent to the 1st order equation

(30)
dφ

dξ
+
ξ

2
φ = K = const. ξ ∈ R

If K = 0 then separation of variables gives
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φ = ce
−ξ2
4

where c is any constant. The method of variation of constants29 then gives

the general solution

(31) ce−ξ
2/4 + c′e−ξ

2/4

∫ ξ

0

eτ
2/4dτ

where c and c′ are arbitrary constants. To determine them, conditions (27)-

(29) will be used. Note that, by repeated use of l’Hôpital’s rule

lim
ξ→±∞

ξe−ξ
2/4

∫ ξ

0

eτ
2/4dτ = lim

ξ→±∞

ξ
∫ ξ

0
eτ

2/4dτ

eξ2/4

= lim
ξ→±∞

∫ ξ

0
eτ

2/4dτ + ξeξ
2/4

1
2
ξeξ2/4

= 2 + lim
ξ→±∞

eξ
2/4

1
2
ξeξ2/4 + ξ2

4
eξ2/4

= 2

Thus (31) will satisfy (27) if and only if c′ = 0. Thus

(32) φ(ξ) = ce−ξ
2/4

To find c we have, by (28)

29Also called variation of parameters.
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∫ ∞

−∞
φ(ξ)dξ = c

∫ ∞

−∞
eξ

2/4dξ = c(4π)1/2 = 1

i.e. c = (4π)−1/2 and hence

(33) φ(ξ) = (4π)−1/2eξ
2/4

Note that (29) is also satisfied. Finally, combining (33), (24) and (16)

gives

(34) φ(x, xo, t) = (4πt)−1/2e−(x−xo)2/4t

and we have proved the

Lemma. If ∃ a unique function φ(x, xo, t) having properties (10)-(13) then

that function is given by (34).

Corollary. The function (34) does have the properties (10)-(13).

The corollary follows from the derivation and can also be verified directly.

Remark. The function defined by (34) is called the fundamental solution

of the heat equation. Physically, it gives the temperature in an infinite uni-

form rod due to a unit of heat energy placed at xo at time t = 0.
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Formal Solution of the Cauchy Problem. Returning to the problem (1),

(2) (p. 78), let us assume that uo ∈ C(R) and approximate it by a step

function:

uo(x) ≈
∞∑

i=−∞

uo(x
′
i)χi(x)

where xi < x′i < xi+1 and

χi(x) =


1 xi ≤ x < xi+1

0 elsewhere

The temperature distribution due to a single term

uo(x
′
i)χi(x)

is (see p. 79)

u(x, t) = (uo(x
′
i)∆x)u∆x(x, xi, t) ≈ φ(x, xi, t)uo(x

′
i)∆x

Summing over i gives the approximation

u(x, t) ≈
∞∑
−∞

φ(x, xi, t)uo(x
′
i)∆x

with an approximation that improves as ∆x → 0. This suggests that the

Cauchy problem has the solution
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u(x, t) =

∫ ∞

−∞
φ(x, ξ, t)uo(ξ)dξ

or, more explicitly

(35) u(x, t) =
1

(4πt)1/2

∫ ∞

−∞
e−(x−ξ)2/4tuo(ξ)dξ

Remark. (35) is usually called Poisson’s solution, although it appears to

have been discovered first by Laplace (1809).

Form of the Fundamental Solution. Note that for small t, φ(x, xo, t) is

concentrated near x = xo. One see this by doing various plots with a com-

puter algebra system.

This suggests that if u(x, t) is defined by (35) and uo ∈ C(R) then for t

small

u(xo, t) ≈
1

(4πt)1/2

∫ xo+δ

xo−δ
e−(xo−ξ)2/4tuo(ξ)dξ

≈ uo(xo)

(4πt)1/2

∫ xo+δ

xo−δ
e−(xo−ξ)2/4tdξ)

≈ uo(xo)

This argument can be made more precise.30

30See D. V. Widder, The Heat Equation. New York: Academic Press, 1975; also Widder,
“Postive Temperatures on an Infinite Rod.” Transactions of the American Mathematical
Society 55 (1944): 85-95.
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Notation. Let Ω ⊂ R2 be a domain (a connected open set). Then

(36) H(Ω) = {u(x, t) :
∂u

∂t
∈ C(Ω),

∂2u

∂x2
∈ C(Ω),

∂u

∂t
=
∂2u

∂x2
in Ω)}

Theorem 1. Assume that ∃ a constant a > 0 such that

(37) uo(x)e−ax
2 ∈ L1(R)

Then31 the integral in (35) converges for all (x, t) in the domain Ω1/4a

where

(38) ΩT = R× (0, T )

and defines a function u ∈ H(Ω1/4a).

Proof. Formal differentiation of (35) gives

∂2u

∂x2
=
∂u

∂t
=

1

4t2

∫ ∞

−∞
(x− ξ)2φ(x, ξ, t)uo(ξ)dξ −

1

2t

∫ ∞

−∞
φ(x, ξ, t)uo(ξ)dξ

The theorem will be established if it is shown that the last two integrals

converge uniformly in some neighborhood of each point (xo, to) ∈ Ω1/4a.

31(37) is a growth limiting condition on uo. It may grow fast but not too fast!
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Choose δ > 0 such that

N(xo, to) = {(x, t) : |x− xo| < δ, |t− to| < δ} ⊂ Ω1/4a

It will be shown that the integrals are dominated by convergent integrals

whose integrands are independent of (x, t) ∈ N(xo, to). Consider first the

two integrals restricted over the partial range [R,∞) where R > xo + δ. We

have for xo − δ < x < xo + δ, ξ ≥ R, 0 < to − δ < t < to + δ < t/4a

φ(x, ξ, t) =
1

(4πt)1/2
e−(x−ξ)2/4t ≤ 1

(4πt)1/2
e−(ξ−xo−δ)2/4t

≤ 1

(4πt)1/2
e−(x−ξ)2/4(to+δ) ≤ 1

4π(to − δ))1/2
e−(ξ−xo−δ)2/4(to+δ)

= Cφ(xo + δ, ξ, to + δ)

where

C =

√
to + δ

to − δ

Similarly, ∀ (x, t) ∈ N(xo, to) and R ≤ ξ <∞

(x− ξ)2φ(x, ξ, t) ≤ C(ξ − xo + δ)2φ(xo + δ, ξ, to + δ)

Since to + δ < 1/4a it follows that

φ(xo + δ, ξ, to + δ)eaξ
2 ≤ K1 ∀ ξ ∈ [R,∞)
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(ξ − xo + δ)2φ(xo + δ, ξ, to + δ)eaξ
2 ≤ K2 ∀ ξ ∈ [R,∞)

Then

|φ(x, ξ, t)uo(ξ)| ∈ CK1|uo(ξ)e−aξ
2| ∈ L1([R,∞))

for all (x, t) ∈ N(xo, to). The remaining integrals can be treated in the same

way. QED.

Theorem 2. Assume that uo satisfies (37) and that the limits uo(xo+)

and uo(xo−) exist. Then the function u ∈ H(Ω1/4a) defined by (35) satisfies32

(39) lim sup
x→xo,t→0+

|u(x, t)| ≤ max(|uo(xo+)|, |uo(xo−)|)

If in addition, uo(x+) = uo(xo−) then

(40) lim
x→xo,t→0+

u(x, t) = uo(xo+)

Remark. The notation x→ xo, t→ 0 means that (x, t)→ (xo, 0) through

points of the half plane t > 0. The approach is otherwise unrestricted.

Proof of Theorem 2. Let M = max(|uo(xo+)|, |uo(xo−)|). Then ∀ ε >

0 ∃ δ > 0 such that

(41) |uo(ξ)| < M + ε for |ξ − xo| ≤ δ

32See Appendix IV.
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Thus if

u(x, t) =

∫ xo−δ

−∞
φ(x, ξ, t)uo(ξ)dξ+

∫ xo+δ

xo−δ
φ(x, ξ, t)uo(ξ)dξ+

∫ ∞

xo+δ

φ(x, ξ, t)uo(ξ)dξ

= I1 + I2 + I3

then

|I2| ≤ (M + ε)

∫ ∞

−∞
φ(x, ξ, t)uo(ξ)dξ = M + ε, ∀ x ∈ R, t > 0.

Moreover, if |x−xo| < ρ < δ, ξ ≥ xo+δ then −xo−ρ < x < xo+ρ, ξ−x ≥

ξ − xo − ρ and hence

φ(x, ξ, t) ≤ 1

(4πt)1/2
e−(ξ−xo−ρ)/4t = φ(xo + ρ, ξ, t)

Thus if |x− xo| < ρ then

|I3| ≤
∫ ∞

xo+δ

φ(xo + ρ, ξ, t)|uo(ξ)|dξ

Now

φ(xo + ρ, ξ, t)eaξ
2

is a decreasing function of ξ for ξ ≥ xo + δ and all t sufficiently small. (In

fact it has its maximum at ξ = (xo + ρ)/(1− 4at).) Thus

92



φ(xo + ρ, ξ, t)eaξ
2 ≤ φ(xo + ρ, xo + δ, t)ea(xo+δ)2 , ξ ≥ xo + δ

or

φ(xo + ρ, ξ, t) ≤ [φ(ρ, δ, t)ea(xo+δ)2 ]e−aξ
2

, ξ ≥ xo + δ

and

|I3| ≤ [φ(ρ, δ, t)ea(xo+δ)2 ]

∫ ∞

xo+δ

e−aξ
2 |uo(ξ)dξ

∀ (x, t) with |x− xo| < ρ, t > 0. Making t→ 0+ gives

lim sup
x→xo,t→0+

|I3(x, t)| = 0

The integral I1 has the same property. Thus by (42)

lim sup
x→xo,t→0+

|u(x, t)| ≤M + ε, ∀ ε > 0

which implies (39). To prove (40), write

u(x, t)− uo(xo+) =

∫ ∞

−∞
φ(x, ξ, t)[uo(ξ)− uo(xo+)]dξ = I ′1 + I ′2 + I ′3

as above. Following the same reasoning as above,
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|I ′2(x, t)| ≤ sup
|x−xo|≤δ

|uo(ξ)− uo(xo+)|+ ε

and the argument used above gives

lim sup
x→xo,t→0+

|u(x, t)− uo(xo+)| ≤ sup
|ξ−xo|≤δ

|uo(ξ)− uo(xo+)|, ∀ δ > 0

If uo(xo−) = uo(xo+) the last expression tends to zero with δ which

proves (40). QED.

Theorems 1 and 2 can be combined to give an existence theorem for the

Cauchy problem. The notation ΩT as above and

Ω̇T = R× [0, T )

will be used.

Definition. A classical solution of the Cauchy problem (1), (2) (p. 78) in

a domain ΩT is a function

u ∈ H(ΩT ) ∩ C(Ω̇T )

such that u(x, 0) = uo(x) for all x ∈ R.

Observe that uo ∈ C(R) is a necessary condition for the existence of a

classical solution. Theorems 1 and 2 imply that continuity and condition

(37) are sufficient. More precisely, the following theorem holds.
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Existence Theorem. Assume that

(a) uo ∈ C(R)

(b) ∃ a > 0 such that uo(x)e−ax
2 ∈ L1(R)

Then the integral (35) defines a classical solution of the Cauchy problem

in the domain Ω1/4a.

Proof. Theorems 1 and 2 imply that u ∈ H(Ω1/4a) and that

lim
x→xo,t→0+

u(x, t) = uo(xo)

for all xo. This property and the continuity of uo imply that u ∈ C(Ω̇1/4a)

and u(x, 0) = uo(x), ∀ x ∈ R. QED.

Corollary. Assume that

(a) uo ∈ C(R)

(b) ∃M such that |uo(x)| ≤M, ∀ x ∈ R

Then (35) defines a classical solution of the Cauchy problem in Ω∞ = R2
+.

Moreover

|u(x, t)| ≤M ∀ (x, t) ∈ R2
+

.

Proof. The boundedness condition (b) implies that condition (b) of the
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Existence Theorem holds for all a > 0. (35) implies the second part of the

corollary. QED.

————

The heat equation is strongly linked to the notion of absolute zero. In

fact it is possible to show that:

Widder’s Representation Theorem. A real-valued function u(x, t) has the

properties

(1) u ∈ H(ΩT )

(2) u(x, t) ≥ 0, ∀ (x, t) ∈ ΩT

if and only if there exists a real non-decreasing function α(x) defined on

R such that

(3) u(x, t) =

∫ ∞

−∞
φ(x, ξ, t)dα(ξ) ∀ (x, t) ∈ ΩT

The class of solutions defined by (3) is more general than that defined by

Poisson’s integral with locally integrable uo(x). However we will not prove

this theorem since it requires some elementary measure theory.

96



Chapter 6. Steady Temperature in a Finite Cylinder.

In Chapter 3 (p. 32) we considered the case of a long cylinder. We now

consider the case of a finite cylinder. Let Ω be a cylinder of radius a and

length l. Let the x3-axis be the axis of the cylinder with x3 = 0 corresponding

to the base of the cylinder and x3 = l the top. The steady-state temperature

us will satisfy

(1)
∂2us
∂x2

1

+
∂2us
∂x2

2

+
∂2us
∂x2

3

= ∆us = 0, x = (x1, x2, x3) ∈ Ω

(2) us(x1, x2, 0) = f(x1, x2), x2
1 + x2

2 ≤ a2

(3) us(x1, x2, l) = g(x1, x2), x2
1 + x2

2 ≤ a2

(4) us(x1, x2, x3) = h(x1, x2, x3), x2
1 + x2

2 = a2, 0 ≤ x3 ≤ l

(2)-(4) respectively correspond to the prescribed temperature at the bottom,

top and side of Ω. Observe that conditions (2)-(3) suggest the consistency conditions

f(x1, x2) = h(x1, x2, 0), g(x1, x2) = h(x1, x2, l), x2
1 + x2

2 = a2. The circu-

lar nature of the problem suggests a change of coordinates, (x1, x2, x3) →

(r, θ, x3) which is the familiar cylindrical coordinate transformation.

Put us(x1, x2, x3) = v(r, θ, x3). The calculations on pp. 33-34 show that

v satisfies
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(5)
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
+
∂2v

∂x2
3

= 0, 0 < r < a, all θ, 0 < x3 < l

(6) v(r, θ, 0) = f(r, θ), x2
1 + x2

2 ≤ a2

(7) v(r, θ, l) = g(r, θ), x2
1 + x2

2 ≤ a2

(8) v(a, θ, x3) = h(a, θ, x3), 0 ≤ x3 ≤ l

(9) v(0, θ, x3) is finite.

where f(r, θ) is shorthand for f(r cos θ, r sin θ), etc.

To simplify our computations, we shall make the assumption that the

boundary temperatures are independent of θ (in other words, f(r, θ) = f(r),

etc). Hence the steady-state temperature will be independent of θ and sat-

isfies

(10)
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂x2
3

= 0, 0 < r < a, all θ, 0 < x3 < l

(11) v(r, 0) = f(r), x2
1 + x2

2 ≤ a2

(12) v(r, l) = g(r), x2
1 + x2

2 ≤ a2

(13) v(a, x3) = h(x3), 0 ≤ x3 ≤ l
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(14) v(0, x3) is finite.

As with the vibrating string problem, it is convenient to break this prob-

lem into simpler problems.

BV Problem 1:

(15)
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂x2
3

= 0, 0 < r < a, all θ, 0 < x3 < l

(16) v(r, 0) = f(r), x2
1 + x2

2 ≤ a2

(17) v(r, l) = 0, x2
1 + x2

2 ≤ a2

(18) v(a, x3) = 0, 0 ≤ x3 ≤ l

(19) v(0, x3) is finite.

BV Problem 2:

(20)
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂x2
3

= 0, 0 < r < a, all θ, 0 < x3 < l

(21) v(r, 0) = f(r), x2
1 + x2

2 ≤ a2

(22) v(r, l) = g(r), x2
1 + x2

2 ≤ a2

(23) v(a, x3) = h(x3), 0 ≤ x3 ≤ l
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(24) v(0, x3) is finite.

BV Problem 3:

(25)
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂x2
3

= 0, 0 < r < a, all θ, 0 < x3 < l

(26) v(r, 0) = 0, x2
1 + x2

2 ≤ a2

(27) v(r, l) = 0, x2
1 + x2

2 ≤ a2

(28) v(a, x3) = h(x3), 0 ≤ x3 ≤ l

(29) v(0, x3) is finite.

We shall only consider BV Problem 1, as the others are similar.

We proceed by means of separation of variables. Assume that v(r, x3) =

R(r)X(x3).

(15) leads to

1

r
(rR′)′X +X ′′R = 0, 0 < r < a, 0 < x3 < l

and hence
1
r
(rR′)′

R
= −X

′′

X
= −λ2

and this gives

(30)
1

r
(rR′)′ + λ2R = 0
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(31) R(0) finite

(32) R(a) = 0

(33) X ′′ − λ2X = 0

(34) X(l) = 0

(31), (32) and (34) are required by (19), (18) and (17), respectively. (30) is

a form of Bessel’s equation.33

Fortunately, the solutions to (33) are easily found. Indeed, X(x3) =

A coshλx3 +B sinhλx3. (34) will be used later.

Solutions of Bessel’s Equation. It is helpful to return to the heat equa-

tion: ∂u/∂t = ∆u.

Suppose we have a solution of the heat equation of the form u(x1, x2, x3, t) =

w(x1, x2)e−λ
2t. Substitution of this u into the heat equation gives

∆w + λ2w = 0

or in polar coordinates (x1 = r cos θ, x2 = r sin θ):

(35)
1

r

∂

∂r
(r
∂v

∂r
) +

1

r2

∂2v

∂θ2
+ λ2v = 0

33Named for German astronomer and mathematician Friedrich Bessel. The solutions of
(30)-(32) are known as Bessel functions, or (for obvious reasons) cylinder functions. Bessel
established basic properties of the solutions of (30)-(32) in 1824.
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(36) v(r, θ + 2π) = v(r, θ)

(37) v(0, θ) finite

Now observe that (30) is a special case of (35) in case v is independent

of θ. Write (35) as

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
+ λ2v = 0

and integrate with respect to θ:

∫ π

−π

∂2v

∂r2
dθ +

1

r

∫ π

−π

∂v

∂r
dθ +

1

r2

∫ π

−π

∂2v

∂θ2
dθ + λ2

∫ π

−π
vdθ = 0

The third integral may be computed and based on (36) is zero. Thus we have

∫ π

−π

∂2v

∂r2
dθ +

1

r

∫ π

−π

∂v

∂r
dθ + λ2

∫ π

−π
vdθ = 0

or

∂2

∂r2

∫ π

−π
vdθ +

1

r

∂

∂r

∫ π

−π
vdθ + λ2

∫ π

−π
vdθ = 0

Thus we may write

(38) R(r) =

∫ π

−π
vdθ

Thus every solution of ∆w + λ2w = 0 generates a solution of (30). We
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may exploit this to obtain information about solutions of (30) which has

no solutions in terms of standard elementary functions. Suppose that w =

eax1+bx2 . Substituting this into ∆w + λ2w = 0 yields a2 + b2 + λ2 = 0. We

may choose a and b in any way, so select a = 0, b = iλ. This gives w = eix2λ.

Introducing polor coordinates again gives

(39) v(r, θ) = eirλ sin θ

Using (38) we have

(40) R(r) =

∫ π

−π
eirλ sin θdθ

It is convenient to introduce a normalizing factor into (40):

(41) R(r) =
1

2π

∫ π

−π
eirλ sin θdθ

This specifies that R(0) = 1. Using Euler’s formula and that sin is an

odd function,

(42) R(r) =
1

π

∫ π

0

cos(irλ sin θ)dθ

Now substitution of the Maclaurin series for cosine into (42) gives

R(r) =
1

π

∞∑
j=0

(−1)j(λr)2j

(2j)!

∫ π

0

sin2j θdθ
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Reduction formulae can now be used to write

∫ π

0

sin2j θdθ =
π(2j)!

22j(j!)2

It follows that R(r) has the power series representation

(43) R(r) =
∞∑
j=0

(−1)j(λr)2j

j!222j

(43) may be used to obtain approximate values of R(r).

Other forms of R(r) exist and provide other kinds of information. For

example, make the substitution ω = θ − π/2 into (42) which results in

(44) R(r) =
2

π

∫ π
2

0

cos(λr cosω)dω

Make the substitution t = cosω into (44) to get

(45) R(r) =
2

π

∫ 1

0

cos(λrt)√
1− t2

dt

The standard notation for R(r) is Jo(rλ). From (42) we observe that

(46) |Jo(rλ)| ≤ 1

For ease of computation, write λ = 1 in (32). (We can always recover R by
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substituting λr for r.) Then

(47) Jo(r) =
2

π

∫ 1

0

cos rt√
1− t2

dt

Now change variables again with rt = r − τ . Then (47) becomes

(48) Jo(r) =
2

π

∫ r

o

cos(r − τ)√
2rτ

√
1− τ

2r

dτ

Applying the cosine addition formula we get

(49) Jo(r) =
2

π
√
r

∫ r

o

cos(τ)√
2τ

√
1− τ

2r

dτ cos r+
2

π
√
r

∫ r

o

sin(τ)√
2τ

√
1− τ

2r

dτ sin r

As r →∞ ∫ r

o

cos(τ)√
2τ

√
1− τ

2r

dτ →
∫ ∞

o

cos(τ)√
2τ

dτ

with a similar result for the sine integral. Both limits can be computed

explicitly, i.e.,

∫ ∞

o

sin(τ)√
2τ

dτ =

∫ ∞

o

cos(τ)√
2τ

dτ =
√
π/2

Consequently,

Jo(r) =

√
2√
πr

[cos(r − π

4
) + o(r)] as r →∞
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Thus Jo(λr) behaves like cos(λr − π/4) for large r. Consequently when

r is large, J will have zeros in each of the intervals [mπ
λ

+ π
4
, (m+1)π

λ
+ π

4
].

Arranging the zeros of Jo(r) as

0 < β1 < β2 < β3...

we see that Jo(r) has properties similar to sine and cosine, although it is not

periodic.

Since (30) is a second order equation, it has two linearly independent

solutions. Of course there are many such pairs. Selecting another solution

in addition to J is partly a matter of usefulness. None of these solutions are

important for our heat conduction problem however: they are all unbounded

at r = 0 which violates (31). However, a common second solution, known as

Weber’s function is given by

Yo(λr) =
2

π
Jo(λr) ln r +

∑
ckr

2k

Such solutions become important if we change the geometry of the problem,

for example instead of a finite cylinder, imagine a cylinder with a hole bored

down the center. Then r cannot be zero.

Finishing the Solution to BV Problem 1. The condition R(a) = 0 implies

that λn = βn/a. Hence we have

Rn(r) = Jo(λnr), Xn(x3) = An coshλnx3 +Bn sinhλnx3
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Recall that X(l) = 0. Hence, An coshλnl +Bn sinhλnl = 0. This implies

that

An = −Bn tanhλnl

and we may define

vn(r, x3) = BnJo(λnr)(− tanhλnl coshλnx3 + sinhλnx3)

Formal Solution. We define

(50) v(r, x3) =
∞∑
n=1

vn(r, x3), v(r, 0) = f(r)

Then the question of convergence for the series (50) is decided in part by

Fourier-Bessel convergence theory.

Theorem. Let f ′(r) be sectionally continuous on [0, a]. Then for each r,

0 < r < a, the series,

∞∑
n=1

AnJo(λnr) =
f(r+) + f(r−)

2

converges and the coefficients An are given by

An =
2

a2J ′o(βn)

∫ a

0

f(r)Jo(λnr)rdr

We could define the notion of a classical solution and consider an existence
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theorem in much the same was as we have already done. However, we shall

instead consider a similar problem.

Wave Motion in Two Dimensions.

Le Ω be a circular membrane (e.g., drumhead) of radius a, occupying the

region Ω = {(x1, x2) : x2
1 + x2

2 ≤ a2}.

If the membrane or drumhead is under tension, it will vibrate when struck.

For a low-mass drumhead, the transverse displacement from equilibrium u

satisfies the equation

(1)
∂2u

∂t2
= c2(

∂2u

∂x2
1

+
∂2u

∂x2
2

), x2
1 + x2

2 < a2, t > 0

(2) u(x1, x2, 0) = uo(x1, x2), x2
1 + x2

2 ≤ a2

(3)
∂u(x1, x2, 0)

∂t
= u1(x1, x2), x2

1 + x2
2 ≤ a2

(4) u(x1, x2, t) = 0, x2
1 + x2

2 = a2, t ≥ 0

Conditions (2) and (3) specify the initial shape and velocity of the drum-

head, while condition (4) says that the drum skin is secured at the edge. As

with the vibrating string problem, we make the simplifying assumption that

u1 ≡ 0 (see p. 22). To further simplify our computations, let us assume that

a change of variable has been done to allow us to substitute 1 for c (see p.

13).

Changing to polar coordinates (u(x1, x2, t) = v(r, θ, t)) gives us the prob-

lem
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(5)
∂2v

∂t2
=

1

r

∂

∂r
(r
∂v

∂r
) +

1

r2

∂2v

∂θ2
, 0 < r < a, t > 0

(6) v(r, θ, 0) = uo(r cos θ, r sin θ) = f(r, θ), ∀ 0 ≤ r ≤ a, θ ∈ R

(7)
∂v(r, θ, 0)

∂t
= 0, ∀ 0 ≤ r ≤ a, θ ∈ R

(8) v(r, θ, t) = 0, r = a, ∀ t ≥ 0

(9) v(r, θ + 2π, t) = v(r, θ, t), ∀ θ ∈ R, t ≥ 0

(10) v(r, θ, t) finite, r → 0, ∀ θ ∈ R, t ≥ 0

(11) v(a, θ, 0) = 0,∀ θ ∈ R

Separation of Variables.

We perform this in two stages:

Stage 1. Assume v(r, θ, t) = w(r, θ)T (t). Substitution into (5) gives

T ′′w =
1

r

∂

∂r
(r
∂w

∂r
)T +

1

r2

∂2w

∂θ2
T

or

T ′′

T
=

1
r
∂
∂r

(r ∂w
∂r

) + 1
r2
∂2w
∂θ2

w
= −λ2

Thus

T ′′ + λ2T = 0, T ′(0) = 0 (by (7)
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and

1

r

∂

∂r
(r
∂w

∂r
) +

1

r2

∂2w

∂θ2
+ λ2w = 0

The last equation will be familiar from the previous steady-temperature prob-

lem.

Stage 2. Assume that w(r, θ) = R(r)Θ(θ). Substitution into the last

equation gives

1

r

∂

∂r
(r
∂R

∂r
)Θ +

1

r2

∂2Θ

∂θ2
R + λ2RΘ = 0

It follows that
1
r
∂
∂r

(r ∂R
∂r

)

R
r2 + λ2r2 = −

∂2Θ
∂θ2

Θ
= µ2

This implies

(12)
1

r

∂

∂r
(r
∂R

∂r
) + (λ2 − µ2

r2
)R = 0

R(a) = 0, R(0) bounded

(13) Θ′′ + µ2Θ = 0,

Θ(θ + 2π) = Θ(θ)

Solving (13) leads us to

(14) µ = ±n, n = 0, 1, 2, 3, 4, ... Θ(θ) = An cosnθ +Bn sinnθ
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(12) becomes

(15)
1

r

∂

∂r
(r
∂R

∂r
) + (λ2 − n2

r2
)R = 0 n = 1, 2, 3, ...

(12) is known as Bessel’s equation of order µ, while (15) is Bessel’s equation of

integer order. Equation (30), p. 102 is properly Bessel’s equation of order 0.

Its treatment on pp. 103-106 above suggests a similar course to understand

(15). We multiply both sides of (see top of page 112)

(16)
1

r

∂

∂r
(r
∂w

∂r
) +

1

r2

∂2w

∂θ2
+ λ2w = 0

by e−inθ and then integrate:

1

r

∂

∂r
(r
∂

∂r

∫ π

−π
we−inθdθ) +

1

r2

∫ π

−π

∂2w

∂θ2
e−inθdθ + λ2

∫ π

−π
we−inθdθ = 0

Integration by parts (twice) on the second integral yields

(17)
1

r

∂

∂r
(r
∂

∂r

∫ π

−π
we−inθdθ)− n2

r2

∫ π

−π
we−inθdθ + λ2

∫ π

−π
we−inθdθ = 0

This implies that R(r) =
∫ π

−π we
−inθdθ is a solution to (15). Equation

(39), p. 105 gives a possible solution to (16) which leads to
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(18) R(r) =

∫ π

−π
eirλ sin θe−inθdθ

As before, use of Euler’s formula shows that we may simplify (18) to

(19) R(r) = Jn(λr) =
1

π

∫ π

0

cos(rλ sin θ − nθ)dθ

where Jn is the Bessel function of order n (the π appears in front of the

integral for standardization purposes as before). We observe that Jn(0) = 0

for n 6= 0 however.

The following Fourier-Bessel Expansion Theorem is useful.

Theorem. Suppose that f ′(r) is sectionally continuous on [0, a]. For each

r, 0 < r < a,

f(r+) + f(r−)

2
=

∞∑
m=1

CnmJn(λnmr)

Moreover, the function Jn(x) has zeros 0 < βn1 < βn2 < βn3 < ....→∞ and

λnm = βnm/a. Further the coefficients Cnm are found from

(20) Cnm =
2

a2J2
n+1(λnma)

∫ a

0

f(r)Jn(λnmr)rdr

By the last equation on page 111, we have T (t) = A cosλt. This suggests

the solution of (5) is
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(21) v(r, θ, t) =
∞∑
n=0

∞∑
m=1

CnmJn(λnmr)︸ ︷︷ ︸
R

(An cosnθ +Bn sinnθ)︸ ︷︷ ︸
Θ

Dn cosλnmt︸ ︷︷ ︸
T

By construction, (21) is a formal solution to (5). It also satisfies (7), (8),

(9), (10), (11) by construction. (6) requires that

(22) f(r, θ) =
∞∑
n=0

∞∑
m=1

CnmJn(λnmr)(An cosnθ +Bn sinnθ)

(11) also suggests f(a, θ) = 0. (22) is a double series, a combination of

Fourier series and a Fourier-Bessel series. Fortunately, it can be shown that

this series and its first and second partial derivatives converge uniformly when

f is twice continuously differentiable and has smoothness at the boundary of

Ω. Moreover the coefficients CnmAn, CnmBn are computed as:

CnmAn =
2

πa2J2
n+1(λnma)

∫ a

0

∫ π

−π
Jn(λnmr) cos(nθ)f(r, θ)rdθdr

and similarly for CnmBn.

Definition. Let v ∈ C2((0, a) × [−π, π] × (0,∞)) ∩ C1([0, a] × [−π, π] ×

[0,∞)) and v(r, θ+2π, t) = v(r, θ, t),∀ 0 ≤ r ≤ a, θ, t ≥ 0. Moreover, suppose

v satisfies (5)-(11) for some f(r, θ). Then v is called a classical solution of

the vibrating membrane (drumhead) problem.

Existence Theorem. If f(r, θ) ∈ C2(Ω) ∩ C1(Ω), for all r, f(r, θ + 2π) =

f(r, θ) and for all θ, f(a, θ) = 0 then there exists a classical solution v of
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(5)-(11) given by (21).

The functions

vnm(r, θ, t) = CnmJn(λnmr)︸ ︷︷ ︸
R

(An cosnθ +Bn sinnθ)︸ ︷︷ ︸
Θ

Dn cosλnmt︸ ︷︷ ︸
T

are called modes of vibration or harmonics for the drumhead. The vibration

of a drumhead has been the source of many interesting questions. For ex-

ample, if the shape is not circular, can the shape be determined by merely

listening to it? The answer is yes if the drumhead is convex and has a rea-

sonably smooth edge.34 Otherwise, the answer is no in general.

34Zelditch, “Spectral Determination of Analytic Bi-axisymmetric Plane Domains,” Ge-
ometric and Functional Analysis 10/3 (2000): 628-677.
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Chapter 7. The Propagation of Electromagnetic

Waves and The Fourier Transform.
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Appendix I: Classification of PDEs35

PDEs can be classified in different ways. Some of these are (A) geomet-

ric form, (B) historical significance, (C) associated persons, (D) “algebraic”

form.

As an example of (A) consider an equation of the type

α
∂2u

∂x2
+ β

∂2u

∂x∂y
+ γ

∂2u

∂y2
+ δ

∂u

∂x
+ ε

∂u

∂y
= F (x, y) (1)

This equation is classified as “2nd order” because the highest order derivative

is 2. The values of the coefficients may be used to give a further useful

classification. This is based on obvious correspondence to the equation

αx2 + βxy + γy2 + δx+ εy = F (2)

Geometrically, this equation describes one of the conic sections: ellipse, hy-

perbola, parabola, line. Which one depends on the relative value of the co-

efficients. The equation (1) is classified according as equation (2) is: elliptic,

hyperbolic, parabolic. For example,

y − x2 = 0 (3)

35The perusal of any university library will reveal many monographs and research articles
on equations of various types. The survey of types of equations below is by no means
exhaustive.
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is a parabola. Hence

∂u

∂y
− ∂2u

∂x2
= 0 (4)

is classified as parabolic. We see that the heat equation is parabolic, while

the wave equation (vibrating string) is hyperbolic.

It is possible for an equation to change its geometric classification if its

coefficients are variable. A simple example is the Tricomi equation:

∂2u

∂x2
= x

∂2u

∂y2

This equation is elliptic where x < 0 and hyperbolic when x > 0.

Another important classification is delivered by considering the algebraic

form (D) of the equation rather than the geometric form. For example,

u
∂u

∂x
− ∂3u

∂y3
= x (5)

The first term, u∂u/∂x, is identified as “nonlinear.”36 The reason for this is

that the form does not distribute over sums and constant multiples.

4
∂3u

∂z3
(6)

is linear since

36Nonlinear equations often present unique challenges and require customized techiques
to study their solutions and properties.
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4
∂3(u1 + u2)

∂z3
= 4

∂3u1

∂z3
+ 4

∂3u2

∂z3
(7)

while

(u1 + u2)
∂(u1 + u2)

∂x
6= u1

∂u1

∂x
+ u2

∂u2

∂x
(8)

The linear equations are precisely those of the form

∑
n1,n2,...,nk

αn1n2n3...nk(x)
∂|β|u

∂xβ
= F (x) (9)

where β = {n1, n2, ..., nk}, x = (x1, x2, ..., xk), ∂x
β = ∂xn1

1 ∂x
n2
2 ...∂x

nk
k and

|β| = n1 + n2 + n3 + ...+ nk.

No terms involving products or other nonlinear functions of u and/or its

derivatives are linear.

Classification (C) by name of person or thing. The heat and wave equa-

tions are examples. Examples of (C) and (D) classification include a nonlinear

variant of the wave equation

∂2u

∂t2
− ∂2u

∂x2
= sinu(x, t) (10)

the sine-Gordon equation.

Another nonlinear wave equation is the Korteweg-de Vries (KdV) equa-

tion

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0 (11)
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KdV describes shallow water waves, internal waves in density stratified me-

dia, some kinds of plasma waves, etc.

Sine-Gordon is a nonlinear hyperbolic equation whose name arose as a

parody of the Klein-Gordon equation:

∂2u

∂t2
− ∂2u

∂x2
= m2u(x, t) (12)

a well-known linear equation from particle physics.

An interesting parabolic equation whose solutions behave in ways like

solutions of the wave equation is the Schrödinger equation:

i
∂u(x, t)

∂t
= − 1

2m
∆u+ V (x)u (13)

The Schrödinger equation describes how the quantum state of a system

evolves. The solutions give probability densities which assign the probable

“location” of the particle or system.

PDEs are not in any way restricted to scalar-valued functions. For ex-
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ample, Maxwell’s equations (in a vacuum) may be written:

∂~u

∂t
=



0 0 0 0 − ∂
∂x3

∂
∂x2

0 0 0 ∂
∂x3

0 − ∂
∂x1

0 0 0 − ∂
∂x2

∂
∂x1

0

0 ∂
∂x3

− ∂
∂x2

0 0 0

− ∂
∂x3

0 ∂
∂x1

0 0 0

∂
∂x2

− ∂
∂x1

0 0 0 0


~u (14)

where

~u(x1, x2, x3, t) =



e1(x1, x2, x3, t)

e2(x1, x2, x3, t)

e3(x1, x2, x3, t)

h1(x1, x2, x3, t)

h2(x1, x2, x3, t)

h3(x1, x2, x3, t)


(15)

In the anisotropic case, we introduce another 6× 6 matrix, E(x1, x2, x3) as

E
∂~u

∂t
=



0 0 0 0 − ∂
∂x3

∂
∂x2

0 0 0 ∂
∂x3

0 − ∂
∂x1

0 0 0 − ∂
∂x2

∂
∂x1

0

0 ∂
∂x3

− ∂
∂x2

0 0 0

− ∂
∂x3

0 ∂
∂x1

0 0 0

∂
∂x2

− ∂
∂x1

0 0 0 0


~u (16)
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or

∂~u

∂t
= E−1



0 0 0 0 − ∂
∂x3

∂
∂x2

0 0 0 ∂
∂x3

0 − ∂
∂x1

0 0 0 − ∂
∂x2

∂
∂x1

0

0 ∂
∂x3

− ∂
∂x2

0 0 0

− ∂
∂x3

0 ∂
∂x1

0 0 0

∂
∂x2

− ∂
∂x1

0 0 0 0


~u (17)

The geometric classification can be extended by means of matrix theory

to higher dimensional 2nd order equations. Suppose we have an equation

with n variables:

n∑
i=1

n∑
j=1

aij
∂2u

∂xi∂xj
+

n∑
k=1

bk
∂u

∂xk
+ cu = 0 (18)

Then (18) is classified as elliptic when the matix (aij) has all positive eigen-

values, or all negative; hyperbolic when only one eigenvalue is negative and

the rest are positive or vice versa; parabolic when one eigenvalue is zero and

the others have the same sign. Obviously this does not cover all possible

cases - there could be two positive and two negative eigenvalues for example.

The geometric classification may be extended to systems of equations like

(17).
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Appendix II: Bessel Functions and Sturm-Lioville Problems

Sturm-Lioville problems often arise in separation of variables in PDEs.37

The Bessel equations are examples of singular Sturm-Lioville problems. Let

B stand for the operator

B =
1

r

∂

∂r
(r
∂

∂r
) (19)

so that

Bu =
1

r

∂

∂r
(r
∂u

∂r
) (20)

using the product rule,

Bu =
1

r

∂

∂r
(r
∂u

∂r
) =

∂2u

∂r2
+

1

r

∂u

∂r
(21)

Now suppose that

lim
r→0+

u(r) <∞, lim
r→0+

ru′(r) = 0, lim
r→0+

v(r) <∞, lim
r→0+

rv′(r) = 0 (22)

Observe that

∫ a

c

[vBu− uBv]rdr =

∫ a

c

[v
1

r

∂

∂r
(r
∂u

∂r
)− u1

r

∂

∂r
(r
∂v

∂r
)]rdr

37Phillip Hartman, Ordinary Differential Equations. Cambrige: Cambridge Univ. Press,
2002.
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=

∫ a

c

v
∂

∂r
(r
∂u

∂r
)dr −

∫ a

c

u
∂

∂r
(r
∂v

∂r
)dr

Integration by parts on both integrals gives

−[rv(r)u′(r)− u(r)v′(r)]|ac

By (22)

lim
c→0+

∫ a

c

[vBu− uBv]rdr =

∫ a

0

[vBu− uBv]rdr (23)

= lim
c→0+

−[rv(r)u′(r)− ru(r)v′(r)]|ac = 0 (24)

Thus ∫ a

0

[vBu− uBv]rdr = 0 (25)

Equation (25) is called Green’s formula for B.

Now consider the singular Sturm-Lioville problem

Bu = λ2u, u(r) is bounded as r → 0+, u(a) = 0 (26)

Suppose u1, u2 are two solutions to (26) corresponding to λ1, λ2.

Observe that

u2Bu1 = λ2
1u1u2, u1Bu2 = λ2

2u2u1 (27)

Subtracting these two equations and integrating we have

123



∫ a

0

[u2Bu1 − u1Bu2]rdr = (λ2
1 − λ2

2)

∫ a

o

u1u2rdr (28)

By (23)-(24), (26), ∫ a

o

u1u2rdr = 0 (29)

Now observe that (26) is Bessel’s equation and Jo(λr) satisfies (26) and (22)

( by (19) p. 114). Hence

∫ a

o

Jo(λnr)Jo(λmr)rdr = 0 (30)

when n 6= m. Equation (30) is called an orthogonality relation. Now suppose

that

f(r) =
∞∑
m=1

AmJo(λmr) (31)

Multiply both sides of (31) by Jo(λnr)r and integrate. This gives

∫ a

0

f(r)Jo(λnr)rdr =

∫ a

0

∞∑
m=1

AmJo(λmr)Jo(λnr)rdr (32)

=
∞∑
m=1

∫ a

0

AmJo(λmr)Jo(λnr)rdr =

∫ a

0

AnJo(λnr)Jo(λnr)rdr (33)

This shows that An is given by

An =

∫ a

0
f(r)Jo(λnr)rdr∫ a

0
J2
o (λnr)rdr

(34)
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Now recall

∫ a

c

[vBu− uBv]rdr = −[rv(r)u′(r)− ru(r)v′(r)]|ac (35)

Using (26) with u = Jo(µr), v = Jo(λmr) we have

∫ a

0

Jo(µr)Jo(λmr)rdr =
aλmJo(µa)J ′o(aλm)

µ− λm
(36)

Since Jo(aλm) = 0, take the limit of both sides of (36) (l’hôpital’s rule

can be used on the right hand side) as µ→ λm

∫ a

0

J2
o (λmr)rdr =

a2

2
[J ′o(λma)]2 (37)

—————

The Bessel functions Jn(λr) of order n also satisfy orthogonality relations.

Indeed, there are numerous identities satisfied by these functions. Setting

B1u = Bu+ n2

r2
u we see Bessel’s equation (µ = n) can be written as

B1u = λ2u (38)

Now

∫ a

c

(vB1u− uB1v)rdr =

∫ a

c

(vBu− uBv + v
n2

r2
u− un

2

r2
v)rdr (39)

=

∫ a

c

(vBu− uBv)rdr = −[rv(r)u′(r)− ru(r)v′(r)]|ac (40)
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The same argument used above now shows that

∫ a

o

Jn(λnm2r)Jn(λnm1r)rdr = 0 (41)

when m1 6= m2.

The coefficients in (20), p. 114 are computed following the same method

as (32)-(34) above.
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Appendix III: Fourier Series

We have seen that Fourier series arise in the solution of a number of

boundary value problems involving PDEs. To examine some elementary

facts about such series, consider a typical Fourier coefficient, say for a sine

series:

cn =
2

l

∫ l

0

sin(
nπx

l
)f(x)dx (42)

The important question is how fast cn approaches 0 as n gets large. Ob-

serve that if f ′(x) is sectionally continuous, integration by parts leads to

cn =
2

l

∫ l

0

sin(
nπx

l
)f(x)dx = − 2

nπ
cos(

nπx

l
)f(x)|l0+

2

nπ

∫ l

0

cos(
nπx

l
)f ′(x)dx

(43)

Note that if f(0) = f(l) = 0 then the first term on the right side of (43)

vanishes. Next, suppose that f ′′(x) is sectionally continuous. Then we may

repeat the integration by parts:

cn =
2

l

∫ l

0

sin(
nπx

l
)f(x)dx

= − 2l

n2π2
sin(

nπx

l
)f ′(x)|l0 +

2l

n2π2

∫ l

0

sin(
nπx

l
)f ′′(x)dx (44)

Since f ′′(x) is sectionally continuous, we can estimate cn by |cn| ≤ K
n2 . The

comparison test for infinite series shows that
∑
cn converges absolutely ((6)

127



on page 8) and that
∑
cn sin(nπx

l
) also converges uniformly and absolutely.

The theorem on page 7 is rather better than this, since it requires nothing

of f ′′(x).

One can conclude from the theorem on page 7 that if f ′(0) = f ′(l) and

f ′′(x) is sectionally continuous on [0, l] that it is possible to expand f ′(x) as

a Fourier series as well, etc.

Continuity is not necessary in the consideration of Fourier series. Indeed,

the most natural requirement turns out to be a condition like38

∫ l

0

|f(x)|2dx <∞ (45)

however, in applications, continuity is often physically obvious.

Fourier sine series appeared in our study of heat in a slab. Fourier cosine

series have much the same properties, and will arise in the slab problem when

Neumann boundary conditions appear. We have also seen general Fourier

series appear in our study of heat in a long cylinder ((7) p. 37).

Fourier series arise, just as Bessel series, from the solution of a Sturm-

Lioville problem.39 In particular, a problem such as

X ′′(x) + λ2X(x) = 0, X(0) = X(l) = 0 (46)

38The reason for this stems from the orthogonality properties of the sine and cosine
functions. One can see almost immediately that (45) implies that

∑
|cn|2 <∞.

39Fourier himself discovered Fourier series when proposing a solution to the problem of
heat in a slab: Therie Analytique de la Chaleur, 1822.
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Moreover, Sturm-Lioville problems always lead to solutions with properties

which are Fourier-like. Indeed, such series are often called generalized Fourier

series. Thus Bessel series are generalized Fourier series.

The question of whether a given function can be expanded as a Fourier

series is a complicated one and has led to very complex mathematics. Func-

tions, even highly discontinuous ones, which satisfy (45) always have conver-

gent Fourier series, at least in a certain general sense:

lim
n→∞

∫ l

−l
|

n∑
k=0

ak cos(
kπx

l
) + bk sin(

kπx

l
)− f(x)|2dx = 0 (47)

A very complex result, due to Lennart Carleson shows that functions satis-

fying (45) may be expanded as a Fourier series in the usual sense, except at

certain exceptional points which together form a set of zero length.40 On the

other hand, it has been shown that if one only requires that

∫ l

0

|f(x)|dx <∞ (48)

then the Fourier series for f(x) may not converge at any point at all. Func-

tions satisfying (45) also satisfy (48), but not necessarily the other way

around. Hence such extreme examples must satisfy (48) but not (45).

40“On convergence and growth of partial sums of Fourier series.” Acta Mathematica 116
(1966): 135-157. Carleson’s proof is so complex that it took considerable time for other
mathematicians to verify it. No simplified proof has been found. Condition (45) was
generalized to

∫ l
−l |f(x)|pdx <∞ for any fixed real value p > 1 by Richard Hunt in 1967.
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Orthogonality Relations.

The trigonometric functions satisfy orthogonality relations (see footnote

3 p. 7) which may be established directly or by means similar to those used

in appendix II above. Such relations include

∫ l

0

sin(
nπx

l
) sin(

kπx

l
)dx = 0 when n 6= k (49)

∫ l

−l
sin(

nπx

l
) sin(

kπx

l
)dx = 0 when n 6= k (50)

∫ l

−l
sin(

nπx

l
) cos(

kπx

l
)dx = 0 when n 6= k (51)

∫ l

−l
cos(

nπx

l
) cos(

kπx

l
)dx = 0 when n 6= k (52)

∫ l

0

cos(
nπx

l
) cos(

kπx

l
)dx = 0 when n 6= k (53)

As an example, let us prove (53). We use the identity

cos(A±B) = cos(A) cos(B)∓ sin(A) sin(B)

Thus

cos(
nπx

l
) cos(

kπx

l
) =

1

2
(cos(

nπx

l
+
kπx

l
) + cos(

nπx

l
− kπx

l
))
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or

cos(
nπx

l
) cos(

kπx

l
) =

1

2
(cos(

n+ k

l
πx) + cos(

n− k
l

πx))

The integral on the left of (53) is now easily done:

∫ l

0

cos(
nπx

l
) cos(

kπx

l
)dx =

l

2π(n+ k)
sin(

n+ k

l
πx)|l0+

l

2π(n− k)
sin(

n− k
l

πx)|l0

(54)

which is equal to zero as long as n 6= ±k.

The convergence theorem of chapter 1 was originally proved by Fourier

himself. A proof essentially constructed by Dirichlet will now be given.

Theorem - Convergence of Fourier Series. Suppose f ′(x) is

sectionally continuous on [−π, π] and that f(x) is 2π-periodic. Then for

each x,

f(x+) + f(x−)

2
=
∞∑
k=0

ak cos(
kπx

l
) + bk sin(

kπx

l
) (55)

where

an =
1

π

∫ π

−π
cosnxf(x)dx, bn =

1

π

∫ π

−π
sinnxf(x)dx, n = 1, 2, ... (56)

and

a0 =
1

2π

∫ π

−π
f(x)dx (57)

Proof. Step 1. Let
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SN(x) =
N∑
n=0

an cosnx+ bn sinnx (58)

(a partial sum of the Fourier series). We shall sum this expression using

Dirichlet’s technique. We insert the equations from (56)-(57) into (58) to get

SN(x) =
N∑
n=0

an cosnx+ bn sinnx (59)

=
1

2π

∫ π

−π
f(y)dy+

N∑
n=1

1

π

∫ π

−π
cosnyf(y)dy cosnx+

1

π

∫ π

−π
sinnyf(y)dy sinnx

(60)

=
1

π

∫ π

−π
f(y)[

1

2
+

N∑
n=1

cosny cosnx+ sinny sinnx]dy (61)

=
1

π

∫ π

−π
f(y)[

1

2
+

N∑
n=1

cosn(y − x)]dy (62)

We shall sum the expression

DN(z) =
1

2
+

N∑
n=1

cosnz (63)

Multiply both sides of (63) by 2 sin(z/2)

2 sin(z/2)DN(z) = sin
z

2
+

N∑
n=1

2 cosnz sin
z

2
(64)

= sin
z

2
+

N∑
n=1

sin((n+ 1/2)z)− sin((n− 1/2)z) (65)
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The sum telescopes to a single term. Thus

DN(z) =
sin((N + 1/2)z)

2 sin(z/2)
(66)

Thus

SN(x) =
1

π

∫ π

−π
f(y)DN(y − x)dy (67)

Step 2. Define

g(y) =
f(x+ y)− f(x+)

2 sin(y/2)
, 0 < y ≤ π (68)

Then g(y) is sectionally continuous (note that g(0) = f ′(x+)). We shall show

that

∫ π

0

g(y) sin((N + 1/2)y)dy → 0, as N →∞ (69)

First, if g(x) is any continuous function on [−π, π], let [a, b] be any subinterval

of [−π, π]. Then

∫ b

a

sinnxdx =
1

n
(cosnb− cosna)→ 0, as n→∞ (70)

Now, let

gk(x) =
k∑
j=1

g(xj)χ[xj ,xj+1)(x) (71)

where {xj} is a regular partition of [−π, π]. Then it easy to see that gk(x)→
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g(x) uniformly. Moreover (70) shows that

∫ π

−π
gk(x) sin(nx)dx→ 0, as n→∞ (72)

Now observe ∫ π

−π
g(x) sin(nx)dx (73)

=

∫ π

−π
gk(x) sin(nx)dx− {

∫ π

−π
gk(x) sin(nx)dx−

∫ π

−π
g(x) sin(nx)dx} (74)

=

∫ π

−π
gk(x) sin(nx)dx−

∫ π

−π
(gk(x)− g(x)) sin(nx)dx (75)

Therefore

|
∫ π

−π
g(x) sin(nx)dx| ≤ |

∫ π

−π
gk(x) sin(nx)dx|+

∫ π

−π
|gk(x)− g(x)|| sin(nx)|dx

(76)

≤ |
∫ π

−π
gk(x) sin(nx)dx|+

∫ π

−π
|gk(x)− g(x)|dx (77)

Given ε > 0, k sufficiently large

∫ π

−π
|gk(x)− g(x)|dx < ε/2 (78)

Now let n be large enough so that

|
∫ π

−π
gk(x) sin(nx)dx| < ε/2 (79)
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Then for all such n,

|
∫ π

−π
g(x) sin(nx)dx| < ε (80)

Since ε was arbitrary, this gives (69).41

Step 3. A direct computation based on (63) shows that

∫ π

−π
DN(z)dz = 1 (81)

moreover, since (63) is an even function

1

2
=

∫ π

0

DN(z)dz =

∫ 0

−π
DN(z)dz (82)

Step 4.

SN(x) =
1

π

∫ π

−π
f(y)DN(y − x)dy =

1

π

∫ π

−π
f(y)DN(y − x)dy (83)

=
1

π

∫ π−x

−π−x
f(t+ x)DN(t)dt =

1

π

∫ π

−π
f(t+ x)DN(t)dt (84)

Step 5.

SN(x)− f(x+) + f(x−)

2
=

1

π

∫ 0

−π
f(x+ t)DN(t)dt− 1

2
f(x−)

41Actually g being sectionally continuous, requires a slight modification of the proof,
breaking up the integral over the intervals of continuity. The conclusion is the same.
Moreover, the same conclusion holds for the cosine. The result of step 2 is a version of
the “Riemann-Lebesgue Lemma” which holds for much less well-behaved functions g.
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+
1

π

∫ π

0

f(x+ t)DN(t)dt− 1

2
f(x+)

Now

1

π

∫ 0

−π
f(x+t)DN(t)dt−1

2
f(x−) =

1

π

∫ 0

−π
f(x+t)DN(t)dt− 1

π

∫ 0

−π
DN(t)dtf(x−)

=
1

π

∫ 0

−π
f(x+ t)DN(t)dt− 1

π

∫ 0

−π
f(x−)DN(t)dt

=
1

π

∫ 0

−π
(f(x+ t)− f(x−))DN(t)dt

By step 2, the last integral goes to zero as N → ∞. A similar statement

holds for

1

π

∫ π

0

f(x+ t)DN(t)dt− 1

2
f(x+)

QED.

Corollary. If f(x) is an odd function, then only the sine terms appear

in the expansion. Alternatively, if f(x) is even, then only the cosine terms

appear in its Fourier series expansion.

Proof. This a simple consequence of (56), (57) above. In the odd case for

example, an will clearly be zero, since cosnxf(x) will be odd, therefore its

integral is even. Hence integrating over the symmetric interval must give zero.

Corollary. If f(x) is only defined on [0, π], it may be extended as

either an even or odd function to [−π, π]. Hence, it can be given a sine or
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cosine expansion. Moreover in this case, the integrals in (56), (57) can be

written as integrals over [0, π].

The Fourier series itself is defined on all (−∞,∞) and therefore gives a

periodic extension of f(x) to all of R.

Corollary. The expansion theorem can be extended to functions satis-

fying the hypotheses of the theorem on any interval [−l, l]. The use of [−π, π]

was merely a convenience to reduce the size of expressions. Exactly the same

proof works for any symmetric interval. See page 7 for a version of this more

general case (for sine series).

A useful fact which we have (sometimes silently) employed throughout

the text is the following.

Theorem.42 Suppose un(x) is a sequence of continuous functions, each

defined on the interval [a, b]. Suppose further that the series

∞∑
n=1

un(x)

converges uniformly to a function u(x). Then u(x) is continuous on [a, b].

42This theorem may seem obvious, but even the great Cauchy had trouble understanding
it.
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Moreover, if the functions un are differentiable and the series

∞∑
n=1

dun
dx

converges uniformly on [a, b] then indeed du
dx

exists and

∞∑
n=1

dun
dx

=
du

dx
.

In order to understand the proof, we need a clear idea of uniform conver-

gence. We give the following adequate definition:

Definition of Uniform Convergence of a Sequence of Func-

tions. Let gn(x) be a sequence of functions defined on a set Ω. We say

the sequence {gn(x)} converges uniformly to a function g(x) on Ω if for any

ε > 0 ∃N such that if n ≥ N then |gn(x) − g(x)| < ε for all x ∈ Ω. Since

a series can be thought of in terms of the sequence of its partial sums, the

definition also applies to series, i.e. suppose we have a series
∑
un(x). To say

it converges uniformly to u(x) means that for any ε > 0 there is a positive

integer N such that if k ≥ N then

|
k∑

n=1

un(x)− u(x)| < ε

for all x ∈ Ω.

Now we construct a proof of the theorem on uniform convergence. First

we dispose of the continuity of limits portion. So suppose each un(x) is

138



continuous on [a, b] and that
∑
un(x) converges uniformly to a function u(x)

on [a, b]. We want to show that u(x) is continuous on [a, b]. To this end,

suppose ε > 0. Let N be large enough so that

|
k∑

n=1

un(x)− u(x)| < ε

for all x ∈ [a, b] whenever k ≥ N . Now each un(x) being continuous means

that for any xo ∈ [a, b] there exists δn > 0 so that if |x − xo| < δn then

|un(x)− un(xo)| < ε/k. So choose x so that |x− xo| < min δn Thus

|u(x)−u(xo)| = |u(x)−
k∑

n=1

un(x)+
k∑

n=1

un(x)+
k∑

n=1

un(xo)−
k∑

n=1

un(xo)−u(xo)|

≤ |u(x)−
k∑

n=1

un(x)|+ |u(xo)−
k∑

n=1

un(xo)|+ |
k∑

n=1

un(x)−
k∑

n=1

un(xo)|

< 2ε+
k∑

n=1

|un(x)− un(xo)| < 2ε+
k∑

n=1

ε/k = 3ε

Hence if |x− xo| < min δn ≡ δ then |u(x)− u(xo)| < 3ε. This shows that

u is continuous on [a, b].

For the second portion of the proof concerning differentiability it is some-

what simpler to prove the following lemma:

Lemma. Suppose fn(x) is a sequence of differentiable functions converg-

ing uniformly to f(x) and suppose also that there exists a function g(x) such
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that f ′n(x) converges uniformly to g(x). Then f ′(x) exists and is equal to

g(x).

Proof of Lemma. Observe that the mean value theorem implies that for any

x, y ∈ [a, b] there a z ∈ [x, y] (note that z depends on both n and m) such

that,

(fm(x)− fn(x))− (fm(y)− fn(y)) = (x− y)(f ′m(z)− f ′n(z))

If follows that

|fm(x)− fm(y)

x− y
− fn(x)− fn(y)

x− y
| ≤ |f ′m(z)− f ′n(z)|

Observe also that

|f ′m(z)−f ′n(z)| = |f ′m(z)−g(z)+g(z)−f ′n(z)| ≤ |f ′m(z)−g(z)|+|g(z)−f ′n(z)| ≤ ε

if n,m are sufficiently large, independently of z ∈ [a, b] by uniform conver-

gence of f ′n(x).

Thus, for any x, y ∈ [a, b] and n,m sufficiently large

|fm(x)− fm(y))

x− y
− fn(x)− fn(y)

x− y
| < ε

Now let m→∞ to get

140



|f(x)− f(y))

x− y
− fn(x)− fn(y)

x− y
| < ε

Observe that we have

|f(x)− f(y))

x− y
−g(y)| = |f(x)− f(y))

x− y
−g(y)+

fn(x)− fn(y)

x− y
− fn(x)− fn(y)

x− y
|

≤ |f(x)− f(y))

x− y
− fn(x)− fn(y)

x− y
|+ |g(y)− fn(x)− fn(y)

x− y
|

= |f(x)− f(y))

x− y
− fn(x)− fn(y)

x− y
|+ |g(y)− f ′n(y) + f ′n(y)− fn(x)− fn(y)

x− y
|

≤ |f(x)− f(y))

x− y
− fn(x)− fn(y)

x− y
|+ |g(y)− f ′n(y)|+ |f ′n(y)− fn(x)− fn(y)

x− y
|

The first term on the right is < ε no matter what n or x or y happen to be

as long as n is large. For the second term, if n is large, we can force it to be

less that ε by uniform convergence. Once such a large n is selected for terms

1 and 2, we can choose |x − y| small enough so that the third term is < ε.

Thus

|f(x)− f(y))

x− y
− g(y)| < 3ε

for |x − y| close to zero. This shows that not only does f ′(y) exist, but it

must be equal to g(y), which is the conclusion of the lemma.

Now to apply the lemma, we take f(x) = u(x), g(x) =
∑
u′n(x), fn(x) =∑n

k=1 uk(x). QED.
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An often useful theorem attributed to Weierstrass is the “Weierstrass M-

Test.” The name arises from the statement of the theorem:

Theorem Weierstrass M-Test. Suppose
∑
un(x) is an infinite series of

functions defined on [a, b]. Suppose that there is a sequence of constants

{Mn} with the property |un(x)| ≤Mn for each n = 1, 2, 3, . . . . Suppose also

that
∑
Mn converges (as a series of non-negative constants). Then

∑
un(x)

converges uniformly.

Proof. By the hypotheses,
∑
un(x) is absolutely convergent and therefore

converges. Let

UN(x) =
N∑
n=1

un(x)

and let

g(x) =
∞∑
n=1

un(x).

The theorem is proved if we can show UN(x) converges uniformly to g(x) as

N →∞. Let ε > 0. Choose K large enough so that

∞∑
n=K+1

Mn < ε

It follows that
∞∑

n=K+1

|un(x)| < ε.
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Now we have

|g(x)−UK(x)| = |
∞∑
n=1

un(x)−
K∑
n=1

un(x)| = |
∞∑

n=K+1

un(x)| ≤
∞∑

n=K+1

|un(x)| < ε.

It follows that |g(x)− UN(x)| < ε for any N ≥ K. QED.

Remark 1. The test may be used with functions of more than one vari-

able. The proof is the same.

Remark 2. The theorem on uniform convergence is stated for functions

of one variable, but the following more general theorem has essentially the

same proof:

General Theorem on Uniform Convergence. Suppose that un(x) is a se-

quence of functions defined on an open subset Ω of Rk. Suppose also that∑
un(x) converges uniformly on Ω, and that for some one of the variables of

x, say xi,
∞∑
n=1

∂u

∂xi
(x)

converges uniformly. Then, if we define u(x) =
∑
un(x), it follows that

∂u

∂xi
=
∞∑
n=1

∂un
∂xi

for all x ∈ Ω.
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Proof. The proof consists of reducing this general case to the one variable

proof. First, by hypothesis, Ω ⊆ Rk. Hence x ∈ Ω =⇒ x = (x1, x2, x3, ...xk).

Fix x ∈ Ω and consider a small box, Bδ = {y ∈ Ω : yj = −δ ≤ xj ≤ δ} ⊆ Ω

containing x. In the proof of the one variable case, replace [a, b] by [−δ, δ]

and x by xi.
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Appendix IV - Limits

The purpose here is to give some brief definitions of useful limit ideas.

The most important are

lim sup and lim inf

To define these, we need to know what sup and inf are. Sup stands for

supremum, inf stands for infimum. These in turn are synonyms for least

upper bound and greatest lower bound respectively. It is a fact that any set

of real numbers has both a supremum and infimum. For example,

sup{x|x < 4} = 4

and

inf{ 1

n
|n = 1, 2, 3, 4, . . .} = 0

and

sup{x|x > 0} =∞

This brings us to the notions of lim sup and lim inf.

Let N(a, ε) = {y|0 < |y − a| < ε} then we define

lim sup
x→a

f(x) = lim
ε→0

sup{f(x)|x ∈ N(a, ε)}
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Observe that when ε1 > ε2, {f(x)|x ∈ N(a, ε1)} ⊇ {f(x)|x ∈ N(a, ε2)}.

Thus sup{f(x)|x ∈ N(a, ε1)} ≥ sup{f(x)|x ∈ N(a, ε2)}. It follows that

lim sup
x→a

f(x)

always exists (∞ or −∞ are allowed possibilities) in contrast to ordinary

limits.

Similarly for lim inf,

lim inf
x→a

f(x) = lim
ε→0

inf{f(x)|x ∈ N(a, ε)}

whereas

inf{f(x)|x ∈ N(a, ε1)} ≤ inf{f(x)|x ∈ N(a, ε2)}

whenever ε1 > ε2.

When more than one variable is involved, the definitions remain essen-

tially the same.

Let N((a, b), ε) = {(c, d)||(c, d)− (a, b)| < ε}. Then we define

lim sup
(x,t)→(a,b)

f(x, t) = lim
ε→0

sup{f(x, t)||(x, t) ∈ N((a, b), ε)}

In one variable, we can define one-sided limsup and liminf:
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lim sup
x→a−

f(x) = lim
y→a

sup{f(x)|y ≤ x < a}

Observe that

sup{f(x)|y1 ≤ x < a} ≥ sup{f(x)|y2 ≤ x < a}

whenever y1 ≤ y2 because

{f(x)|y1 ≤ x < a} ⊇ {f(x)|y2 ≤ x < a}

Hence as y → a, sup{f(x)|y ≤ x < a} is decreasing as y increases toward a.

So its limit exists, in fact

lim
y→a

sup{f(x)|y ≤ x < a} = inf{sup{f(x)|y ≤ x < a}|y < a}

Similarly for liminf,

lim inf
x→a−

f(x) = lim
y→a

inf{f(x)|y ≤ x < a}

and

lim
y→a−

inf{f(x)|y ≤ x < a} = sup{inf{f(x)|y ≤ x < a}|y < a}
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with

lim inf
x→a+

f(x) = lim
y→a

inf{f(x)|a < x ≤ y}

and similarly for

lim sup
x→a+

f(x)

Theorem

lim
x→a

f(x)

exists if and only if

lim sup
x→a

f(x) = lim inf
x→a

f(x)

The same statement is true for one-sided limits as well as for functions of

more than one variable.

Example.

Let

f(x) = sin(
1

x
), x 6= 0

It is clear that

lim
x→0

f(x) does not exist.

However,

lim sup
x→0

f(x) = 1, lim inf
x→0

f(x) = −1

lim sup and lim inf give information about a function’s behavior at a

148



point and can be used to control or estimate such behavior as in Theorem 2

on page 91.

When more than one variable is involved, we don’t have a concept of

“one-sided” limit exactly, but sometimes it is useful to restrict the idea of

lim sup, lim inf in a somewhat similar way. For example,

lim sup
x→xo,t→0+

f(x, t)

would mean that we choose

N((xo, 0), ε) = {(x, t) | 0 < |(x, t)− (xo, 0)| < ε, t > 0} and

lim sup
x→xo,t→0+

f(x, t) = lim
ε→0

sup{f(x, t) | x ∈ N((xo, 0), ε)}

———————————————————————

Promised extended argument from page 9 above:

To extend the argument a bit on uniform convergence of

∞∑
n=1

−n2(
π

l
)2cn sin

nπx

l
e−k(nπ

l
)2t

which is the (term by term) derivative of u(x, t), with respect to t, suggests

that we consider the following estimate:

| − cn(
π

l
)2n2 sin

nπx

l
e−k(nπ

l
)2t| ≤ |cn|(

π

l
)2n2 sin

nπx

l
e−k(nπ

l
)2t
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≤ n2e−k(nπ
l

)2t

provided n is large enough so that |cn|(πl )
2 ≤ 1, say for all n ≥ m for some

m. Now fix to > 0 and δ > 0. For t > to + δ we claim that for large enough

n, that

n2e−k(nπ
l

)2t ≤ e−k(nπ
l

)2to

Let k(π
l
)2 = c. Restating, we have

n2e−cn
2t ≤ e−cn

2to

This is equivalent to

n2e−cn
2(t−to) ≤ 1

Now note that

n2e−cn
2(t−to) ≤ n2e−cn

2δ

Observe that l’Hopital’s rule implies that

n2

ecn2δ
→ 0

as n→∞. Thus for sufficiently large m, we have that if n ≥ m then

n2

ecn2δ
≤ 1

150



or

n2e−cn
2(t−to) ≤ 1

Taking Mn = e−cn
2to gives us the correct hypothesis for the Weierstrass M-

test provided we can show that

∞∑
n=m

Mn <∞

However l’Hopital’s rule again shows that

n2

ecn2to
→ 0

as n→ 0 and therefore that

1

n2
≥ e−cn

2to = Mn

for all large n and therefore

∞∑
n=1

−n2(
π

l
)2cn sin

nπx

l
e−k(nπ

l
)2t

converges uniformly. Actually we only established the estimate

|n2(
π

l
)2cn sin

nπx

l
e−k(nπ

l
)2t| ≤Mn

for n ≥ m but this is sufficient. Now since to and δ were arbitrary, we
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have term by term differentiability for all t. Also, since the second partial

derivative with respect to x of u(x, t) delivers a similar series, we have that

both sides of the heat equation are defined for u(x, t) (provided that f satisfies

the conditions of the Fourier convergence theorem).
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