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The wave motion of MHD systems can be quite complicated. In order to study
the motion of waves in a perfectly conducting fluid under the ‘influence of an
external magnetic field with a boundary layer, we make the simplifying assump-
tion that the pressure is constant (to first order). This is classical ‘‘cold plasma”’
approximation from the physical literature. This is still an interesting system and
is not strongly propagative. Alfven waves are still present. The system is further
simplified by assuming that the external field is either orthogonal or parallel to the
boundary layer. While it may seem presumptuous to claim anything new about
this problem the method introduced here is cumulative: it may be extended to
more complex problems of the same type. In Part I the appropriate energy pre-
serving boundary conditions are studied. For the parallel field case there are just
two possible boundary conditions which preserve energy. For the orthogonal
case, there are two one parameter families of energy preserving boundary condi-
tions. One of the boundary conditions for the parallel case is selected and from
this boundary condition, it is shown that the relevant operator is selfadjoint and
data which propagates is characterized. A crucial density result is then proved.
© 1994 Academic Press, Inc.

0. INTRODUCTION

This paper is devoted to the study of linearized equations of magneto-
hydrodynamics in the setting of media filling a half-space with the pres-
ence of a boundary layer. The pressure is assumed to be constant to first
order. This is the ‘‘cold plasma’ condition. It is well known in the MHD
literature. Our object in treating this system is to develop tools for more
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complex related problems. Part I (the present work) is devoted to estab-
lishing some necessary facts about the system and introducting some
methods useful for boundary layer problems of similar type. The results
may therefore be of independent interest. This work is based on [S1] in
which a problem is treated involving one plane boundary. We also grate-
fully acknowledge the use of facts developed in [GS], as well as unpub-
lished work by these authors. In the present work, two plane boundaries
are present. The structure of [S1] is extended to the present problem. This
system is considerably simpler than that of [S1] although it still preserves
many of the unique features of that system, including the existence of

. unbounded slowness surfaces [W]. The hyperbolic part of the linearized

equations of MHD with the assumption of constant pressure can be writ-
ten as [S1]

u%]=V><(vao)

0.1)

p%=(VXH)><H0‘

V = (8/9x;, 8/0x,, 8/3x3). The fluid is assumed to fill a half-space written
as R%, = {x € R% x3 > —a}, 0 < g < », where the boundary {x; = —a}
is energy preserving while the density and magnetic permeability are
given by p, po and u, g in the layer R? X (—a, 0) and the half-space R} =
{x ER3: x3 > 0}, respectively. To formulate this problem, let Eyand E denote
the 6 X 6 matrices

Ey = diag(pol3x3, molsxa), E = diag(plsx3, pl3x3) 0.2)

and define €(x) = x+(x3)Ep + x-(x3)E, where x; and x_ are the character-
istic functions of R = {x: x > 0} and (—a, 0), respectively. Let A(D), D; =
—ia/dx;, j = 1, 2, 3, be the 6 X 6 matrix differential operator

A(D) = EjAij .

We have studied the systems closely related to (0.1) in [S1-S4]. It will be
useful to write (0.1) in matrix form as

3
gl _ S 4 ©.3)



682

WILLIAM V. SMITH

The matrices A; are given by

A1=

A3=

-0 0
0 0
0 0
0 0
~hy Iy
| —m 0
"0 0
0 0
0 0
hZ _hl
0 0
0 -
To o
0 0
0
b 0
0 i
KK

o o o o o

o o o o <o

o o o o o <o

S © o o <

1. BOUNDARY CONDITIONS

(0.4)

0.5)

0.6)

In order to formulate and the solve the initial-boundary problem for
system (0.3) it is now necessary to discover those boundary conditions
which are energy preserving for this system. Even though this system is
not as complex as the ones studied in [S1, S2], it will be necessary to
simplify it even further so that more complex computations and results
may be carried out later. With this in mind, we shall consider the two
special cases Hy = (0, 0, ;) and Hy = (0, hy, 0) for system (0.3). In the
problems we are considering, these two cases correspond to the external
magnetic field being orthogonal and parallel to the boundary layer, re-

spectively.
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DEerINITION 1.1. A subspace S(m) of R® is a maximal conservative
boundary space for A(D) in R? if and only if {,Am)¢ = 0 for all ¢ in S(m)
and S(m) is maximal with respect to this property. Here n is to be inter-
_ preted as the unit normal to the boundary surface.

We interpret the boundary as a plane parallel to the x;, x, plane. A(p) is
the symbol of the matrix operator A(D) and therefore the meaning of A(n)
is A((0, 0, 1)). The solutions of the equation det(A(m) — AI) = 0 are
needed. These will depend on which of the two choices we make for Hy.
We need only consider the value A, = 1, since each entry of A(m) is a
multiple of h,. The same is also true of k3. A,(m) will be the matrix
associated with Hy = (0, A, 0). As(m) will stand for the other choice. The
eigenvalues and a set of corresponding eigenvectors for A,(n) are:

-1—1(0,0,1,0, 1, 0)
1—(0,0,1,0, -1,0)
0—(0,0,0,0,0, 1), 0,0,0, 1,0, 0),
0,1,0,0,0,0), (1,0,0,0,0,0).

For A;(n) we have

—1—- (—1’ 0’ 0: 19 0’ 0)7 (07 —19 09 09 1, 0)
1-(0,1,0,0,1,0), (1,0,0, 1,0, 0)
0—(0,0,0,0,0, 1), 0,0,1,0,0,0).

By the positive eigenvectors we shall mean those Wthh correspond to
positive eigenvalues.

LEMMA. Let N(A(m)), X(n), Y(n) denote, respectively, the null space
of A(n), the subspace spanned by the positive eigenvectors of A(n), and
the subspace spanned by the negative eigenvectors of Am). Let {; be any
orthonormal base of N(Am)). Let & be any base of X(m) which is
orthonormal with respect to Am), i.e., & o Am)¢; = 8y, and let v; be any
base of Y(mn) orthonormal with respect to —A(m). Then S(n) = span{(;, & +
vj} is a maximal conservative boundary space for A(D) and any such
boundary space may be constructed in this way.

To classify these spaces, consider any basis of X @ Y for, say, As;(n).
We have ~1—v;, | = & (j = 1, 2). Let e;— and e;, be any such fixed basis.
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«

Then

Vv, = d“e]_ + d,zez_

& = cnei+ + cpeyy .

In order that the orthonormality conditions be satisfied, it must be that
cicji + cacjp = 8 and the same for [dy]. Hence [d;] and [c;] are orthogo-
nal matrices. By letting C = [c;] and D = [d;] run through all possible
such matrices, we obtain every basis of a maximal conservative boundary
space for A3(D). Two possible orientations exist for such a boundary
space. These are determined by the sign of det(CD) = =+1.

THEOREM 1.2.  Suppose that ko, koy, ki , kv , ki—, ko are orthonor-
mal (in the R® sense) eigenvectors of As(n) spanning the nullspace of A,
X, and Y, respectively. Then the subspace of RS given by S;(n) = span{ky, ,
koz, & + vi, i = 1, 2} where

vi = diki- + dpks-
& = ciukiv t cnkyt
and [cy] and [dy] belong to the orthogonal group of dimension 2,0Q2)isa

maximal conservative boundary space for A;, and every such boundary
space is obtained by letting C and D run through O(2).

THEOREM 1.3.  Suppose that kyy , koz , ks , koa, ki, ki- are orthonormal
(in the RS sense) eigenvectors of A(n) spanning the nullspace of A,, X,
and Y, respectively. Then the subspaces of RS given by S,(m) = spanfk,,
koz, koa, ki £ ki_} are maximal conservative boundary spaces for A,(n).

The next step is to obtain the associated boundary conditions for these
boundary spaces. We start with A4,. Let Py, Py, and P_; be the orthogonal
projections onto N(A,(m)), X, and Y, respectively. The projection Q(n)
onto S,(n) is then given by :

Om) = Py + 27 (ks + v12) ® (ki + »1-).
Here we take

kl+ = i2-l/2(0, 0’ 15 0’ —17 0)
and

k- = £2712(0, 0, 1, 0, 1, 0).
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The kernel of the projection I — Q(n) will determine a boundary operator
fOfAz(D). Since I = Py+ P+ P4,

[0 0 0 0 07
00000
00000
T=emW=14% 900 0
00010
[ 00 00 0_

Thus us = 0 at the boundary is a correct boundary condition. Also, u; = 0
is a correct boundary condition.

These conditions are not new; however, this method applies to more
complex related systems. We state the result for reference.

THEOREM 1.4. The energy preserving boundary conditions for Ay(D)
at the plane boundary x3 = —a are us = 0 or uz = 0.

Now we consider the operator A;(D). We have that I - Q(m) = 2-1(P; +
P, + P, + P_z) - Z—I(COS ¢(k1+ ® kl_) + (- 1)n+m cos ¢(k2+ ® k2—) +
(=1)"*! sin ¢(kpr @ ky=) + (—1)™ sin p(ky+ ® ky-) + transpose of last 4
terms). Here we have taken

[cos 0 (—1)"t!sin 0} b= [cos ¥ (—1)m+!sin 1[1}
sin@ (—1)"cos 8 B siny  (—1)" cos ¢ '

Now the result is somewhat different from Theorem 1.4. Set ¢ = 6 — .

THEOREM 1.5. There are two possible structures for S;(n) determined
by the orientation of X ® Y. These are given as the kernels of one or the
other of two projections, first for n + m even,

(1 + cos ¢)/2 0 0 0 (—1)m (sin ¢)/2 0]
0 (1 +cos ¢)/2 0 —(—1)™ (sin ¢)/2 0 0
0 0. 0 0 0 0
0 (=)™ (sin ¢)/2 0 (1 + cos ¢)/2 0 0
(—=1)m (sin ¢)/2 0 0 0 (1+cosd)2 0
0 0 0 0 0 0
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and then for n + m odd,

[ (1 + cos )/2  (—=1)" (sin ¢)/2 0 0 0 0
(—1)m (sin ¢)/4 (1 + cos ¢)/2 0 0 0 0
0 0 0 0 0 0
0 0 0 (1+cosd)2  —(=1)m (sin $p)/2 0
i 0 0 0 —(-1)"(sing)/2 (1 +cosd)2 0
| i 0 0 0 0 0 0

‘ Without loss of generality, we assume that m is odd in the projections
i above. The ratio (1 — cos ¢)/sin ¢ is set to y. Then the boundary opera-

tors are
A First form:
\ 1 00000
i B. = |
A 01 0000
000 -10
| By =|" -
i 0Oy 01 0 O

2. TECHNICAL MATTERS

The linearized equations of constant pressure magnetohydrodynamics
in the layered half-space may be written now as

i0,u(x, t) = € 1(X)AD)u(x, ) = N'(D)u(x, ). 2.1
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u(x, 1) is the six-dimensional vector (v, H), v is the fluid velocity, and H is
the magnetic field vector.
We will write A'(D) as

A'(D) = x+ AAD) + x-AD) = x+Ei'A(D) + x-E7'AD). (2.2)

The problem now is to find a solution of (2.1) which is square-summable
on R, for each 7 and satisfies the initial and boundary conditions

u(x, 0) = uo(x) 2.3)
Bu(xla X2, —a, t) = 03 (2'4)

where B is a boundary operator which preserves energy. In order to
explicitly identify B for the rest of this work, we will make the assumption
that the external magnetic field is of the form (0, 1, 0), i.e., b, = 1, h; = 0,
hsy = 0 so that the external field is parallel to the boundary layer.

Here we give some properties of A? and A. These will be stated for A.
The corresponding properties for A’ may be obtained by just affixing the
index ° to all quantities containing the density and sound speed parame-
ters. The transpose of a matrix M is denoted by ‘M and the conjugate
transpose by ‘M while the adjoint of an operator is denoted by M*. The
matrices E and E, generate equivalent inner products in C® (Complex 6-
space) by the rule g(x, y) = Ex o y = xEy. In this inner product, the
symbol A(p) of A(D) is given by E~1A(p) with

[0 0 0 p, —p O]
0o 0 0 0 0 0
ap= |00 0 0 @.5)
p» 0 0 0 0 0
“pr 0 —ps O 0 0
0 0 p O 0 0]

A(p) is selfadjoint. A(p) has the eigenvalues (p = (p;, p2, p3) not zero in
R3) )

M(p) = 0 (multiplicity two) [the stationary speed];

A1(p) = £p2/(Vp V) [Alfven speeds];

Ax2p) = =|p|/(Vp V) [magnetospeeds].
Here the notation | p|? is used for p? + p} + p2. Let us define (Vp V) =

c~1. The nonzero eigenvalues above each have multiplicity one for almost
all p. Both the Alfven speed and the magnetospeed may coincide for some
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p; hence this system is not uniformly propagative. We see that it also fair
to be strongly propagative, since A+ ;(p) may vanish for nonzero p. There
exists a set of Lebesgue measure zero B such that when p € R\B, the
eigenvalues M(p ), M+1(p), A=2(p) do not coincide [S1]. We shall generally
assume p € R3B. Associated with each of the eigenvalues, there are
mutually orthogonal eigenprojectors P.;(p), Py(p) with respect to the E
inner product. They generate the resolution of the identity for A(p):

I=Pyp) + Pi(p) + P_i(p) + PAp) + P_x(p) (2.6)
A(p) = M(P)Pi(p) + A-i(p)P-1(p) + Ma(p)Po(p)
+ A-2(p)P-2p).
The P.;(p) satisfy the identities
EP.j) = EP.;, 8Py = PP} 2.7)
A(p)P+i(p) = Asj(p)P+i(p).

The P will be needed explicitly. We write these so that when “‘z’* occurs
in2 it we agree to substitute +\; = A.; as appropriate (|p[? will stand for
pi+ p3)

1
PeaP) = 5 ToRIoF
[ wplpl? 0 wppipalpl?  wipipaz —upilpliz wpipapsz 7]
0 0 0 0 0 0
poips| PP 0 ppl|pP wpipapsz —wppalpliz wpapiz
ppipapz 0 ppipapspz  upip} ~up1p2 i mp1p3p3
—upilplipz 0 —ppslplipz —wupipadlplt wlpli —pup2p3| pli
L upip2p3pz 0 ppapipz ppipips —wppapslpi wpipd
2.8)
[ pap} 0 —pipapy, ppiz 0 —ppipsz |
0 0 0 0 0 0
1 —pipeps 0 pips —ppipsz 0 ppiz
PiIZ(p)ZZ_PZI—Pﬁ pipz 0 —pip3pz p2p3 0 —pipaps
0 0 0 0 0 0
| —pip3pz 0 pipz ~pipps 0 pipy

2.9
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[0 0 0 O 0 0 7
0 [pP0 0 0 0
T B (2.10)
PEio 0 0 pt  pim2 pips
0 0 0 pipr pi P2ps3
L0 0 0 pips pops p3

Let ¥ be the space Ly(R3, C%, with the E inner product: (f, g)s =
(f, Eg) [{ -, -) will represent the usual L, inner product in this work]. &’
will denote the dual of the space ¥ = P(R”, C° of rapidly decreasing,
smooth functions. The Fourier transform

®,f(p) = @m) ™[ exp(—ip o 0)f(x) dx

is an automorphism of ¥ with inverse @ if(p) = ®,f(—p) which extends
by continuity to an automorphism of Ly(R3, C® and by duality to an
automorphism of ¥'. For any fin # the quantity A(D)f€ ¥’', and operator
with domain @(A) = {f € %: Af € %} is selfadjoint with resolvent I(z) =
(A — zI)~! given by

1)) = [, 10c, ; 2A() dy.

Im(z) # 0 and I(x, y; z) = I(x — y; z) is the fundamental solution
[A(D) — d(x; 2) = d(x), » (2.11)

where 1 may be obtained from (in &¥’)

I(:; 2) = 2m) — 3120%[A() — zI]'D. (2.12)

[A(:) — zI]7! may be determined by the spectral theorem from

[A(p) — 17" = Z [Nax(p) — 2I7'Pi(p). (2.13)

To proceed, we shall require explicit formulas for I on hyperplanes or-
thogonal to the x; axis. To get these formulas, write p = (£, n), £ € R?,
and extend A+ (p) to complex n by the requirement xre\.,(p) = 0 upon_
replacing p by (¢, 7) where T = m + ik. Then A.;(p) becomes A+ (€, 7)
with P, (&, 1) satisfying

409/188/2-24
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A, )P (€, 7) = Nk (€, T)Pi (€, 7).
For £ not zero define
Tea(€, 2) = c7I(z2 — cEP), (2.14)

where £imr.; = 0 in the z-plane with branch cuts (—, —c|£]), (c|€], ®).
Note that \.+1(£, 7) is a constant function of 7. Observe that

(€, 2) = —79(, 2), Twa§, 2) = —TA§, 2). (2.15)
The matrix [A(&, 7) — zI]7! is regular in 7 except for poles in the upper

(iower) half plane at the zeros of det[A(£, 7) — z[], that is, at 7.4(7—), and
in a neighborhood of these poles

[AC¢, 7) — 217! = 2Nk (€, 7) — 217 'Pui(€, 7). (2.16)
If we now apply @, to both sides of (2.12), we obtain, in &', the relation

D,I(¢, x33 y; 2) = Qm) 2™ fR e INAE, 7) — ] dr. (2.17)

In order to simplify the notation in the evaluation of this integral, we shall
from here on employ the definitions 7 = 7., 7° = 7%. An elementary
computation gives

D¢, —a, y; 2) = iQm)'c eV kM@ TIP(E, 7, —1)

D¢, 0, y; 2) = iQ2m) e 2e ™ ée™izr T IP(€, 2, —7), —a<y; <0
D,1(£, 0, y; 2) = iQm) lcgle ™ Ee™zr 0 IPYE, z, —79), 0 <y;.
(2.18)

Here P(¢, z, 7) is given explicitly by (2.8) [ ps is replaced by 7]. In actual
fact, a trivial term must be added to these functions to account for the
projections P.y. In order to simplify the treatment, we shall leave this
term off, and account for the action of P.; in Section 5.

P, z,7)isa soiution of
A, TP, z, 1) = ZP(¢, 2, 7). (219

PY%(¢, z, 7°) is obtained from (2.8) by replacing p and ¢ with py and co,
respectively. It satisfies

AYE, PYE, 2, 7% = ZPYE, 7, 19). (2.20)
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The identities

EP(¢, 2, (¢, 7)) = EP(£, 2, —1(£, 2)) (2.21)
(B PYE, 7, T, 7)) = EgPY¢, z, —1%(¢, 2)) (2.22)

hold.

3. SELFADJOINT OPERATORS

The operator A’ is a selfadjoint operator in the space consisting of
functions f, g in L,(R?,, C¢ with the € inner product:

(f, &) = (f, 88) = [, 0B dx.

The operator A’ is a Hilbert space operator whose action is defined by
the differential operator A’'(D) with the boundary condition (Theorem 1.4)

Bf(x', —a) = 0 3.1)
B=10,0,0,0,1,0] or fs(x', —a) =0.

The construction of the operator A in Ly(R?>,, C%) from A(D) (see (0.2))
is sufficient to define A’ (with the same boundary condition) and will done
now. We introduce here the required definitions and spaces for this task.
The notation L,(R_,, H*) denotes the space of functions square-integrable
on R_, = (—a, ») with values in H*, s € R, the Sobolev space of order s.
P(Q), Q) C R, is the Schwartz space of compactly supported C* func-
tions on Q. (R, is the set of C* functions on R3, with bounded
support in R? ;; @(R",, H?) is the set of C* functions on R", with values
in H*, having bounded support in R",; C,(R_,, H®) is the space of
bounded, continuous functions from R_, to H* with norm

fle, = sup{lf@lw: 1 € R_.}.

WR_,) = {f fE€ L,(R_,, HY, 3,f € L,(R_,, H ")} is the Hilbert space
with norm

1% = (flew_, 1o + (8@, un)?

[LM, p. 13]. Recall that H'(R_,) is isomorphic to {f: f € Ly(R—,, H!),
3.f € Ly(R-,, H%}. The notation j, will refer to the operator of tangential
mollification: j € B(R?), j = 0, j(x') = j(—x'), supp(j) C {x": |x| = 1},
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[rej = 1;for e >0, let j,(x') = £ 2j(s"'x"), and for f € Ly(R2,), define J.f
to be j, * f, the convolution of j and f. Writing x € R3,as (x', 1)

Tfoe, 0 = [ e = 20, 1) dz (3.2)

whenever this is meaningful pointwise; otherwise J.f is that element of
Ly(R%,) defined by (J.f, ¢) = {f, j. * ¢) for all ¢ in H'(R®,). It will be
necessary to state the following elementary embedding result (see [LM]
for example):

LEMMA 3.1.  The set D(R-,, HY) is dense in W(R-,) and PR, HY) is
dense in HI(R2,). Further,f € W(R-,) implies f € Cy(R-,, H ') gnd fe
H!(R3,) implies f € C,(R-,, H'?). These are continuous embeddings.

COROLLARY 3.2. Iff € W(R_,) and y € H\(R2,), then

if-a), w(—a) = [ [DSO, @) di ~ (£, Dsp),  B3)

where the [, -] on the left is the [H™'2, H"2] duality bracket, while in the
integrand it is the [H™', H'] duality bracket. Also from f € W(R_,) it
follows Jynf = f, € W(R-,) and f,, — fin W(R_,) as n — ®; hence on any
hyperplane, x3 = ¢ also f,(, ¢) = fle, ¢) in H™'2,

Let B be the kernel of the matrix operator B in C¢. By (0.6)
ASB = 1(09 09 _BSs 0, _ﬁ3’ 0), B S CG'

From Section 1 above, we know that [A;B]* = B. Now if f € L,(R%,, C9),
then Af € Ly(R%,, CS) means that there is an element g € Ly(R2,, C°)
such that (g, ) = (f, A¢) for all ¢ € D(R?2,, C%) [g = Af]. If both fand Af
belong to Ly(R%,, C%) then

AsDif = Af — A\Dif — AyDof € Ly(RE,, H™Y)
so that Asf is in W(R_,) and therefore in Cy(R_,, H™'?) by Lemma 3.1.
We now discuss the so-called weak and strong versions of A [A,,, Al

DEFINITION 3.3. f € D(A,,) [domain of A,] if and only if f and Af
belong to Ly(R%,, C®) and A;fl>, —a) belongs to B+ in H~'?; that is, [A3f(c,
—a), ¢] = 0 for all ¢ € H'2 such that B$ = 0.

DEFINITION 3.4. The operator A, is Ly(R%,, C®) is defined as the
graph closure of A°, the operator A(D) on

DAY = {f € IR?2,, C%: Bf(x', —a) = O}. (3.4)
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LEMMA. A, is a selfadjoint operator in L,(R>,, C6).
Proof. We first note the following facts:

1) ue WR-,) implies Jy,u = u, € W(R_,) and u, — uin W(R_,)
as n — o, (see above).

() (v, au) = (w, u) for, all u such that u and Au € L,(R%,, C%)
implies that v, ,-Av, € L,(R%,, C®), (v,, au) = (w,, u), and Av, = Ji,Av—
Av = win L,(R%,, C9).

3) u € D(A,) implies u, € D(A,,).

It follows from the definition of derivative d,u in Ly,(R_,, H™Y) that 9,u, =
Jind:u. 8;u, is defined as an element of B(R-,, H™Y), i.e., as a linear map
from @ (R-,) into H™1, by 8,u,({) = —u,(3,¢) for all ¢y in B(R-,). Thus, if
Y € DR-p), ¢ € H', then for almost all ¢, [8,u,(1)(Y(2)), ¢] =
—[u, (0@, (@), ¢] = —w@OP®), éu]l = [B,u®) @), il
[J 10, u(@)((2)), b]. Furthermore, |J1,0,u(t)|f1-+ =< |8,u(t)| f-+ so that 8,u,
Jimdet € Ly(R_,, H™Y) and limye [ 4 [Jy0:u(t) — 8,u(t)|3-1 dt = 0 by the
dominated convergence theorem since g € HS implies Jy,,g — g in HS for
any s. This shows (1). To check (2), note that if ¢ € B(R_,), then
Wn, @) = (W, d,) = (v, Ady) = (v, JinAd) = (v, Ad) so that Av, = w, in
LyR3,, C%, and Av, = Jy,,Av (Av = w in Ly(R?,, C%)). Repeating this
with u in place of ¢ gives (v,, Au) = (w,, u). On the basis of (2) it need
only be shown that Au,(c, —a) E BLinH 2, Letp € H and {&;} (k= 1,
..., 5) a fixed basis (see Sect. 1, above) for B. Then [Asu,(c, —a), ¢p&] =
[Asuc, —a), &) =0,k =1, ..., 4, since Asu(c, —a) € B+. Hence Azu,(°,
—a) € B! and so u, € D(4,). Since B(R-,) C D(4,), A, is densely
defined. We now check that A,, C A}. Let u, f € D(A,). Define uy, f; as
Juru and Jy;f, respectively. By (3), ux, f; € D(A,) and Asuy, Asf; €
HI(R3__,, , C%). Therefore, u, ‘@, the components of i, f; in the range of A;,
are in H'(R>,). Fori =1, 2,

i

(AiDiuy, fj) = f: [A;:Djuy, f;1 dt = f: [ur, AiDifi] dt = (ux, AiDif).
Thus by Corollary 3.2,

(Auk,ﬁ) = (A3D,uk,ﬁ) + <A|D1uk,fj"> + <A2D2uk,fi>
= (DtAeuk, ]gj> + (uk, Allej‘> + (uk’ AZD?jD (35)
= i[A3uk(_a)9 \Bj(—a)] + <uk9 Aﬁ) =-<uk’ Af})

since A, u(°, —a) € Bt and ‘(lj(O, —a) € B. Passing to the limits j — « and
k — o gives (Au, f) = (u, Af). It remains to show that A, D A}. First,
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v € DA if and only if there exists w in Ly(R>,, C6 such that
(v, Au) = {w, u) for all u € D(A,). D(R_,) C D(A,,), so that thus Av = w
in Ly(R%,, C%. Hence, A;v € W(R_,). By (2), v, = Jinv € D(A¥) and
Av, = w, = Jy,,w so that A;v, € H'(R?,, C¢). Setting u;, = Jyu € D(A,,)
and repeating (3.5) gives :

Wy, ) = Uy, Aty
i[AgU,,(_a), Wk(_a)] + (Avna uk)
i[Ag,U,,(‘d), Wk(_'a)] + (Wru uk>9

Il

I

and thus [Asv,(—a), uw(—a)] = 0. Since Asv € W(R_,) and A3v, — Asv in
W(R_,) by (1), it follows that A;v,(—a) — As;v(—a) in H~'2, Therefore,
[Asv(—a), w(—a)] = 0 for all u € D(A,). Take ul(x’, ) = YE)P(x")&
where y € D(R), $(0) = 1, ¢ € H!, and {£;} is the base for B; it is clear that
u € D(A,). Thus

0 = [Asu(—a), w(—a)] = [Asv(—a), di&i]l = [Asu(—a), diéil,

or = Juxd, for any ¢ € H'. The set {¢: ¢ € H'} is dense in H'2,
Therefore Asv(—a) € BL in H™12, Thus, v € D(4,,) and for all ¥ € D(4,,),
(A¥, v, uy = (v, A,u) = (A,v, u), This completes the proof of the lemma.

It will now be shown that A, = A,,.

LEMMA 3.5. If f, g € LyR%,, C% and (f, Ap) = (g, ¢) for all
¢ € DAY, then (Af, ) = {f, AP (AF = g in L,(R>,, C9)).

Proof. Asabove, set f, = Jy,.f, and g, = Jy,g. Then Af, = J1,, Af = g,
in Ly(R2,, C%) implies that A;Dsf, = g, — A D1f, — AyDaf, € Ly(R2,, C9)
and hence Asf, € HI(R?,, C9). Thus A,f, and {» belong to C,(R_,, H'?).
If ¢ € D(AY), then also ¢, € D(AY, and so by Corollary 3.2,

(8ns d) = (g, dn) = {fs Adn) = {fu, Ad)
= l”‘[A.gj‘;l("’, _a)’ (i)(a’ _a] + (gn’ ¢>s

and so Asf,(e, —a) € B* and hence n&,(O, —a) € B. By Corollary 3.2,

(Af;la f;1> = i,[Agﬂ(", —a),f;z(o, '—a)] + (fna Aﬁz) = (ﬁl,Afn>v

Now let n — o,

DEFINITION 3.6. Let J: LyR3,, C¢ — % where ¥ is the space
L,(R?,, C%) with the € inner product, J being the identification map, Jf =
f- Define A’ in ¥ by D(A") = JD(A,) and for f € D(4,,), A'f = €1 Af.
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ProPOSITION 3.7. A, = A,.

Proof. This will be shown by proving that A, is a selfadjoint operator.
To this end, we establish that the deficiency indices def(A, = il) = (0, 0).
First we show that R(A; = iL), the range of A; = iI, is closed. Let g belong
to the closure of R(A, = iI). Then there is a sequence {¢,} contained in
D(A,) such that (A, = il)$,—> g. Now, will |lo| as the norm in Ly(R%,, C9),,

||¢n - ¢;n” = 2_1|<(As * iI)(d)n - d)m)a d’n - d’m)
- <¢n - d)ma (As * il)((l)n - ¢m))|
=< lbw = ¢l 45 = Db = )

so that ¢, — ¢ in LyR>,, C9), and so Asp, — ¥ in LyR?,, C%). This
implies that ¢ € D(A,) and A, =, so g = (A; = il)p = = i} is in
R(A, = il). Next, R(A, = i) is dense in Ly(R?,, C®): if f€ Ly(R2,, C) is
orthogonal in Ly(R%,, C%) to R(A, = iI), then 0 = (f, (A, = i[)¢) and thus
(f, A¢) = (= if, ¢) for all ¢ in D(A). By Lemma 3.5, 0 = (Af, /) — (/, Af) =
+2i|f]1?, so that f = 0. This shows that the deficiency indices are both zero
and therefore that A, is selfadjoint. A, is therefore maximally symmetric
and the conclusion follows.

TurorReM 3.8. A’ is a selfadjoint operator in I, the space LyR>.,, C9)
with the € inner product.

Proof. For f, g € DN, (f, A'g)x = (f, Ag) = (Af, &) = (A'f, &) is
therefore a symmetric operator. It must be maximally symmetric, other-
wise A would have a symmetric extension and this is impossible. This
completes the proof.

Iffa Af € LZ(R%-(J’ CG)’ then A3f = t(Oa 05 —.fS’ Oa _ﬁ’ 0) iS in Cb(R~a’
H~12), Thus Asf is continuous across any plane x; = constant > —a, and
in particular across the interface x; = 0. Hence for Lf = '(f3, f5),

Lfle, 0—) = Lf(e, 0+) (3.6

in the sense of H~12, Note that this is also implied byu the fact that A’ is
selfadjoint, ,

0= (Alf’ ¢)7{ - (.fa A,¢)‘.7C = i[{A3f(°’ 0+) - A3f(°a 0_)}’ ¢(°a 0)]

for f€ D), ¢ € DR, €9, and thus Asf(c, 0+) = Asf(c, 0—) in the
sense of H 12, If f also is smooth (say, f € D(A%) then (3.6) holds
pointwise.

It will be necessary to characterize data in N(A')t, the orthogonal
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complement of the null space of A’. A dense setin N(A') = JN(A) will be
sufficient.

LEMMA 3.9. The set § = {0, ¢, 0, V{): ¢, ¢ € DR>,)} is dense in
N(A). (Vf = "(D\f, D,f, Dsf).)

Proof. Suppose that f € N(A), and f L S. Then f, = 0, Dif; + Dsf; =
0, and thus [Af = 0 shows D,f; = D,f; = 0] Dy(f, f2,f3) = 0. Since fi, f>, f»
are in L,, it follows that (f}, f5, f3) = 0in L,. f € N(A) then further implies
that D, fs — D,fy = 0, and Dsfs — D,fs = 0. f L S implies that D f; + D,fs +
D:fs = 0. If follows then that Afs = 0. Now because Bf = 0, fs(>, —a) = 0 in
H~'2_ Then we have fs € H! [LM, p. 151] and so f5(c, —a) € H"2 but then
fs € H(R2,) [LM, p. 161]. This implies that f; = 0 and thus f; = f; = 0.
This completes the proof.

ProrosITION 3.10. A function f = '(fi, f», fa, 4, fs, fo, f7) in X is
orthogonal in X to N(A') if and only if :

f = 0and div(fs, f5, f5) = 0 in Ly(R3%, C%) and in LyR? X (—a, 0), C5)

(3.7)
and
(&Ne(x’, 0—) = (&f)e(x’, 0) (3.8)
(&, —a) = 0 (3.9)
in H-12,

Proof. A function fin ¥ belongs to N(A')! if and only if gf = g is
orthogonal in Ly(R%,, C®) to S. Thus we must show that g in L,(R3,, C5)
is orthogonal to S if and only if (3.7)—(3.9) are satisfied. First we show that
(3.7)-(3.9) are necessary conditions. g is orthogonal in L,(R®,, C9) to §
implies that div(gy, gs, g¢) = 0, and g, = 0. In other works, (g, /(0, 0, 0,
grad(y))) = 0 and therefore v is in C,(R_,, H™'2), It follows that g¢(x’,
0—) = g¢(x', 0+). This implies (3.8). Now since § € B(R>,), and (g4, gs,
ge) L grad(y) we have Jy,(gs, &5, g&6) = (&fu)4, (&f)s, (€fn)s) L grad(y).
Since div(Jyn(gs, &5, 86)) = Jundiv(gs, gs, g86) = 0 we have (8f,)s €
H!(R2,). Therefore Corollary 3.2 shows that

(&), (BF)s, E)o), grad@)) = —il(€f)s(c, —a), Y(c, —a)]
+ <diV(Jl/n(g4v 85, g6))9 lll),

—il(&f)e(c, —a), Y, —a)l.

Letting n — o gives (3.9).
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Now suppose that (3.7)—(3.9) are satisfied. Let (0, ¢, 0, grad(y)) be in
S, and let f, = Jy,.f. Equations (3.7)—(3.9) hold for f,. Equation (3.7)
implies that (f,)s € H!(R3) and (f;)s € H'(R? X (—a, 0)) [see the proof of
Lemma 3.9 above]. Therefore, ‘

(@f)sr @F)s> (EF)e), grad))
= [, TE)s, Eaf)l) erad(p() d

+ ) T(Efa» Ef)s, (Efp)e)](x) grad@)(x)) dx

R%X(—a,0

= [, T, s, (R d
o T e (s, (V) d

+ i[{(Eof)s(x', 04) — (Efpe(x', 0-)}, Y(x’, 0)]
+ i[(Ef)s(x', —a)}, ¥(x', —a)] = 0.

Now let n — o and this gives that (&f, (0, ¢, 0, grad(y))) = 0 and
completes the proof.

We write from now on, ¥ for % N N(A')L. In examining the conditions
(3.7)-(3.9), we see that they are satisfied by any function in the range of
A'(D) provided such a function vanishes near the plane x; = 0. That there
are other functions which satisfy these conditions is perhaps of indepen-
dent interest. Define the function Z® by

@, ZR(E, x3; @) = xr(|ED{x+(x)a(€)exp(—|€|(xs + a))'(0, 0, 0, d(£))

+ pox-(xs)e(€)a(f)lexp(—|€|(xs + a) (0, 0, 0, d(£)),
+ exp(|¢[(xs + @))'(0, 0, 0, d(£)]}-

(3.10)
The functions a(¢), e(¢), xr( &), and d(¢), are deﬁnefi as:
a(¢) is square summable in neighborhoods of zero and
e~akl|o|1 2y ’is square summable in neighborhoods of %} G.1D
d(§) = (&1, &, il¢)
e()=(»1 - ezm“}"
xr(€) = XO,R)('fl)-‘
Then define '
Z(x; @) = LIM.psuZB(x; o). 3.12)
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Note that the components of Z are harmonic functions in the sense of
B(RY) and B(R?2 X (—a, 0)). The components are therefore ordinary
harmonic functions in R, — {x; = 0} and are therefore smooth in R, —
{xs = 0}. Z(x; o) satisfy (3.7)—(3.9) and are square-summable by condi-
tions (3.11).

DEerFINITION 3.11.
T ={A'(D)¢: ¢ € DR, C%), supp() N {x3 = 0} = &} (3.13)

and T is the c_losure in % of the set T. [Z]_is the set of al_l_functions of the
form (3.10). A is the part of A’ in X, D(A) = D(A’) N K.

CoroLLARY 3.12. % is the €-orthogonal direct sum of [Z] and T.
Furthermore, D(A) N [Z] = {0}.

Proof. First we check that [Z] is orthogonal to T. Let ¢ € B(R3,, CF),
supp(¢p) N {x3 = 0} = &. Then i(A' (D), Z(e; a)) = i (A(D)d, Z(°; @)) =
limg-,. {A(D)¢, ZR(>; a)). Now note that we may replace Z%(c; o) by a
perfect gradient. This shows that (A(D)¢, ZE(c; a)) = 0 by Proposition
3.10. Suppose now that f € ¥ is orthogonal to T. Then it is easily seen that
as in the proof of Lemma 3.9, f;, j = 4, 5, 6, must be harmonic in the sense
of Ly(R? X (—a, 0)) and Ly(R3). It follows that

Dofi(€, x3) = c*(£)exp(—|€|(xs + @)  In R}
Dofi(€, x3) = c™(£)exp(—|€|(xs + a)) + d(£)exp(|€)(x; + a)),
inR? X (—a,0),j=4,5,6.
By the above remarks, f has the form [Z].
Finally, it is important to have a smooth core of functions in D(A).
ProrosiTiON 3.13. Iff € D(A), then there exists a sequence {f,} in
D(A) converging of fin graph norm with the properties.
Lf, € CRL) N H'(RY) (3.14)
and

(f)s € Co(R? X [—a, 0)) N Cp(R3) N H'(R? X (—a, 0)) N H!(RY)
(3.15)

has a finite jump across x; = 0 given pointwise by (3.8).

Proof. Define f, = Jy,.f. Since f, € D(A), it follows that Af, and hence
Lf, are in H'(R%,). There (%f,)s and Lf, are in C,(R_,, H"). Now write



FLUID BOUNDARY LAYERS, 1 699

f;l'(-xlb t) = Jl/rlj(x,v tl= [Jl/n(x_, - 0)9 f(09 t)] Ehere_[o, O] iS the HNZ, H—UZ
duality, Now since Af, = Ji,Af, |f — ful + |Af — Afy] = 0as n— =,

REFERENCES

[GS] D.S. GiLLIAM, AND J, R, SCHULENBERGER, Electromagnetic waves in a three-dimen-
sional half space with a dissipative boundary, J. Math. Anal. Appl. 89 (1982), 129~
185.

[LM] J. L. Lions AND E. MAGENES, ‘‘Problems aux Limites non Homogenes,” Vol. I,
Dunod, Paris, 1968,

[S1] W. V. SmitH, Waves in a perfectly conducting fluid filling a half-space, IMA J. Appl.
Math. 43 (1989), 47-69,

[S2] W. V. SmiTH, The analysis of a model for wave motion in a liquid semiconductor:
Boundary interaction and variable conductivity, SIAM J. Math. Anal. 22 (1991), 352—
378. . .

[S3] 'W. V. SmiTH, Boundary conditions for the MHD equations, in ‘‘Differential Equa-
tions and Applications, II,”” pp. 412415, Ohio University Press, Columbus, OH,
1989.

[S4] W.V.SmiTH, Average stability and decay properties of forced solutions of the wave
propagation problems of classical physics in energy and mean norms, J. Math. Anal.
Appl. 143 (1989), 148-186. )

[W] C. H. WiLcox, Wave operators and asymptotic solutions of wave propagation prob-
lems of classical physics, Arch. Rational Mech. Anal. 22 (1964), 37-78.





