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Since the advent of the Lebesgue integral, many attempts have been made
to generalize it for vector-valued functions and measures. We note two par-
ticularly interesting efforts. The first is from Musielak and Orlitz [3]. They
give the following definition of an L1 space: f ∈ L1(µ) if f is measurable
with respect to some σ-algebra M on a space H and

||f ||1 = sup
||y?||≤1

∫
H

||f ||Xd|y?µ| < ∞.

Here f is a function from H to some normed linear space X and µ takes
its values in some normed linear space Y , with y? ∈ Y ? the dual of Y . There
need be no relation whatever between X and Y . y?µ(E) is then a complex
measure on H with |y?µ| the total variation measure derived from y?µ. The
usual Lebesgue spaces are defined without any reference to an “integral, ”∫

H
fdµ. Many of the usual convergence theorems translate over to this case,

such as fn → f in L1 implies fn → f in measure, etc.
Another integral for a case where f(x) ∈ X, µ(E) ∈ L(X,Y ), the

bounded linear operators from X to Y , was defined by Easton and Tucker
[1]. For this integral the above convergence theorem fails.

We now offer a general integral formulation of the Easton-Tucker type
but for which the above convergence result holds and which has many useful
applications. One such application is the theory of differential operators in
general spaces using “spectral measures.”1

1See General Spectral Measures, vol. 2, this journal.
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In the standard Lebesgue theory, the convergence theorem cited above
holds because of the “maximal” inequality:

εµ({t : |f(t)| > ε}) ≤
∫

E

|f |dµ

where E = ({t : |f(t)| > ε}. Naturally, no such inequality is useful without
a function such as “absolute-value.” Hence a deeper understanding of the
integration process is needed.2

1 Preliminaries

The letters X and Y will represent separated topological vector spaces and
the letters V and U denote balanced open neighborhoods of the origin in X
and Y respectively. L(X,Y ) will denote the vector space of linear mappings
from X to Y . Moreover, we suppose Y is complete. In many applications,
sequential completeness is sufficient.

Let H be a set and D a ring of subsets of H on which a mapping µ is
defined with range in L(X, Y ), where if E1, E2 ∈ D with E1 ∩ E2 = ∅ and
x ∈ X we have

(1) xµ(E1 ∪ E2) = xµ(E1) + xµ(E2) (µ is thought of acting on the right
of x.)

(2) A function f from H into X of the form

f(t) =
n∑

i=1

xiχEi
(t)

where xi ∈ X, Ei ∈ D will be called a D-simple function, or briefly, a simple
function. Here χ

Ei
(t) is the usual characteristic function of Ei.

(3) Let A(D) be the algebra of sets generated by D. For K ∈ A(D) and
f simple, define ∫

K

f dµ =
n∑

i=1

xiµ(Ei ∩K)

2An earlier version of this paper appeared in Revue Romain de Mathematiques Pures
et Appliquees, 1981.
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(4) A function g : H → X such that for an open set S ⊂ X, f−1(S) ∈
A(D) is called “Borel”-measurable.

(5) We say µ has bounded semivariation if for each U there exists a V
such that for all E ∈ D there exists tE ∈ C such that

µ̂V (E) = {
n∑

i=1

xiµ(Ei ∩ E) : ∪Ei = E; xi ∈ V } ⊆ tEU.

We say such a V “corresponds” to U . (4) is the weakest assumption
that will guarantee “continuity” of the integral of simple functions. (4) is
nevertheless a strong assumption. It’s effect is to introduce some convexity
as the following theorem shows. Integration is essentially a convex process.
Note that without any difference in the statement of the definition of bounded
semivariation, one could instead change the setting to where µ takes values
in a topological vector space Z with an underlying map • : (X × Z) → Y .

Theorem 1 Let 0 < p < 1 and let X = Y = Lp(0, 1) be the metrizable
topological vector space with translation-invariant metric

d(f, g) =

∫ 1

0

|f(t)− g(t)|p dt.

Moreover let µ be Lebesgue measure on (0, 1). Then (4) fails to hold.

Proof. In this case, Y is not locally convex. Moreover, µ̂V (E) is the
convex hull of V . This implies every U contains a convex neighborhood of
zero, a contradiction.

2 Integration

Definition 1 A net {fα} of functions from H into X is said to be Cauchy
in measure on E ∈ A(D) when for each U and corresponding V and each
K ∈ D, V1 ⊆ λV , (λ ∈ C − {0}), there exists α1 such that if α2, α3 ≥ α1,
then

K ∩ {t ∈ E : fα2(t)− fα3(t) /∈ V1} ⊆ Fα2,α3 ∈ D

where µ̂V (Fα2,α3) ⊆ U .
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Convergence in measure is defined in a similar fashion. If the space X is
locally convex, we may weaken the definition somewhat by restricting V1 to
be a scalar multiple of V . While we employ nets in this definition, sequences
are sufficient for many purposes.

Theorem 2 If {fα} converges in measure to f , then {fα} is Cauchy in
measure.

Proof. Choose V2 ⊆ V1 with V2 + V2 ⊆ V1. Then

{t ∈ E : fα2(t)− fα3(t) /∈ V1}

⊆ {t ∈ E : fα2(t)− f(t) /∈ V2} ∪ {t ∈ E : fα3(t)− f(t) /∈ V2}.

Definition 2 A function f is said to be integrable on a set E ∈ A(D)
provided there exists a net fα of simple functions converging to f in measure
on E such that for each U there exists U1 = λU for some λ ∈ C − {0} and
corresponding V1 such that for E1 ∈ D if µ̂V1(E1) ⊆ U1 then∫

E1

fα dµ ∈ U

and there exists F ∈ D such that∫
K−F

fα ∈ U

for all α and K ⊆ E, K ∈ A(D).

Theorem 3 If f is an integrable function on a set E ∈ A(D) and {fα} is
as in the previous definition, then for each K ⊆ E, K ∈ A(D) we have

lim
α

∫
K

fα dµ = ηf (K)

exists and the convergence is uniform in K. Furthermore the limit does not
depend on {fα}.

Proof. Fix U and choose U2 ⊆ U such that U2 +U2 +U2 +U2 +U2 ⊆ U . Now
choose U1 ⊆ U2 and a corresponding V1 such that when µ̂V1(E1) ⊆ U1 then∫

E1

fα dµ ∈ U2
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by definition 2. Choose also a set F ∈ D such that∫
E−F

fα dµ ∈ U2

as in definition 2. Now pick tF such that µ̂tF V1(F ) ⊆ U2. We can pick such
a tF since V1 corresponds to U1 ⊆ U2 so in fact V1 corresponds to U2 as well.
Now choose α1 such that α2, α3 ≥ α1 implies that µ̂V1(E2) ⊆ U1 where

{t ∈ F : fα2(t)− fα3(t) /∈ tF V1} = E2

by Theorem 1. Thus∫
E2

fα2 dµ−
∫

E2

fα3 dµ ∈ U2 − U2 = U2 + U2.

Let E3 = F − E2. Then∫
E3

fα2 dµ−
∫

E3

fα3 dµ ∈ U2

since
fα2(t)− fα3(t) ∈ tF V1

on F − E2 = E3. Therefore for any K ∈ D, K ⊆ E we have∫
K

fα2 − fα3 dµ =

∫
K∩F

fα3 +

∫
K−F

fα2 − fα3 dµ

=

∫
E2∩K

fα2 − fα3 dµ +

∫
E3∩K

fα2 − fα3 dµ +

∫
K−F

fα2 − fα3dµ

∈ U2 + U2 + U2 + U2 + U2 ⊆ U.

This shows that the limit exists uniformly in K. Uniqueness is established
in a similar way.

Definition 3 Let f be an integrable function. For K ∈ A(D), define∫
E

f dµ = ηf (E).

The integrals of integrable functions have the equicontinuity properties
of definition 2. This is
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Theorem 4 Let f be integrable and E ∈ A(D). Then for each U there exists
U1 = λU and a corresponding V1 such that for E1 ∈ D if µ̂V1(E1) ⊆ U1 then∫

E1

f dµ ∈ U

and there exists F ∈ D such that∫
K−F

f dµ ∈ U

for all K ⊆ E, K ∈ A(D).

Proof. This holds by the uniform convergence of theorem 3.

Theorem 5 Let f, g be integrable, β1, β2 be scalars. Then β1f + β2g is in-
tegrable and moreover for E ∈ A(D),∫

E

β1f + β2g dµ = β1

∫
E

f dµ + β2

∫
E

g dµ

Proof. For integrable f and g, the sum of the corresponding nets is a net
for f +g. Since the theorem holds for simple functions, it holds for integrable
functions.

Theorem 6 Let {fα} be a net of integrable functions converging in measure
to f and suppose further that this net satisfies the conditions of definition 2.
Then f is integrable and

lim
α

∫
E

fα dµ =

∫
E

f dµ

for all E ∈ A(D).

Proof. Given the uniform convergence in theorem 3, we may select a net from
those defining the integrals

∫
E

fα dµ whose integrals converge to
∫

E
f dµ.

Definition 4 Let {fα} be a net of functions on H with values in X which
converges to f . We say it converges uniformly to f if for every V , there
exists α1 such that if α2 ≥ α1 then fα2(t)− f(t) ∈ V for all t ∈ H.

Theorem 7 Let {fα} be a net of measurable simple functions which converge
uniformly to f . Then f is integrable and for E ∈ A(D),

lim
α

∫
E

fα dµ =

∫
E

f dµ.
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3 Convergence in Measure

The theorem of the introduction requires some preliminary definitions mainly
required by the nature of operator-valued measures (see example 1 below).

Definition 5 a set K ∈ A(D) has zero measure if µ(M) is the zero operator
for all M ∈ D, M ⊆ K.

Definition 6 The essential range of a function f on F ∈ A(D) is defined as
{x ∈ X : {t ∈ F : f(t)− x ∈ V } does not have zero measure for all V }. We
denote this set by Rf (F ). A function f is called an essential range function
if for each F ∈ A(D) which does not have zero measure, Rf (F ) ∩ f(F ) 6= ∅.

When the range space is not a normed space, or the measure is not count-
ably additive, various pathologies may arise, compared to the classical theory.
For example

(1) There may exist functions which are not essential range functions.[2]

(2) A sequence of functions may converge in measure to one function but
converge point-wise to another.[5]

(3) A sequence of functions may converge in measure, but no subsequence
converges point-wise.[4]

Lemma 1 Let f and g be essential range functions where for some V and
E ∈ D we have f(t)− g(t) ∈ V for all t ∈ E. If b ∈ Rf (E) then for each V1,
there exists a ∈ Rg(E) such that b− a ∈ V + V1.

We now state the general form of a sufficient condition for the convergence
theorem of the introduction to hold.

Definition 7 A net of functions {fα} is said to dominate sets {Bα} (subsets
of Y ) on sets {Eα} ⊆ A(D) relative to {Uβ} when there exist sets {Sα} in
D and collectons {USα

α } and corresponding {V Sα
α } such that if S

′
α ∈ D and

µ̂Vα(Sα−S
′
α) ⊆ USα

α then there exist sets S”
α ∈ D, S”

α ⊆ S
′
α and µ̂α(Sα−S”

α) ⊆
USα

α and when any sum of the form

n∑
i=1

xiµ(Ei ∩ S”
α) ∈ Uβ,
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where xi ∈ Rfα(Ei ∩ S”
α), then Bα ⊆ Uβ.

Theorem 8 Let {fα} be a net of Borel measurable essential range functions,
integrable on some set E ∈ D. Let EαV

= {t ∈ E : fα(t) /∈ V } and suppose
for each V1 where V1 corresponds to some U1 and V ⊆ λV1 for some λ, fα

dominates µ̂V1(EαV
)α with respect to UβV

on EαV
. If

∫
K

fα dµ → 0 uniformly
in K ⊆ E, K ∈ D, then fα → 0 in measure.

Proof. Fix V . Let {gα
β} determine

∫
fα dµ on E. Choose sets Uα and

Uα
1 ⊆ Uα

2 and V α
1 corresponding to Uα

1 . Choose V2 ⊆ tEV α
1 such that V2+V2 ⊆

tEV α
1 and µ̂tEV α

1
(E) ⊆ Uα

2 , where µ̂V α
1
(Sα − S

′
α) ⊆ Uα

1 . Then
∫

Sα−S′
α
fα dµ ∈

Uα
2 . Since gα

β → fα in measure, we can choose Qα
β ∈ D such that (for “large”

β) Qα
β ⊇ {t ∈ EαV

: gα
β (t) − fα(t) /∈ V2} where µ̂V α

1
(Qα

β) ⊆ Uα
2 satisfies the

conditions on S
′
α in definition 7. So choose S”

α as in definition 7.
Now gα

β (t) =
∑

xiχEi
(t) and since simple functions are essential range

functions, we can choose bi ∈ Rgα
β
(Ei∩S”

α) when Ei∩S”
α is not of zero measure.

By lemma 2 we choose ai ∈ Rfα(S”
α ∩ Ei) with bi − ai ∈ V2 + V2. Therefore∫

S”
αgα

β
−

∑
aiχEi

dµ ∈ Uα
2 . Since

∫
fα dµ is the uniform (on D∩EαV

) limit of∫
gα

β dµ we have for all large β,
∫

fα dµ−
∫

gα
β dµ ∈ Uα

2 on D ∩ EαV
. Since∫

Sα
fα dµ−

∫
S”

α
fα dµ ∈ Uα

2 , we have∫
Sα

fα dµ−
∫

S”
α

fα dµ +

∫
S”

α

fα dµ−
∫

S”
α

gα
β dµ

+

∫
S”

α

gα
β dµ−

∫
S”

α

∑
aiχEi

dµ ∈ Uα
2 + Uα

2 + Uα
2 ⊆ Uα.

Therefore
∫

Sα
fα dµ −

∑
aiµ(Ei ∩ S”

α) ∈ Uα. Since Uα was arbitrary the
conclusion now follows.

The hypotheses of theorem 8 are satisfied of course when µ is a positive
measure and the functions take values in the complex numbers, etc. The
rather complicated conditions of definition 7 and theorem 8 take a somewhat
different (and more familiar form) in Banach spaces or in locally convex
spaces, but are still required there in general. A simple example shows this
is true.

Example 1 Let X = Y = R2 and (x, y)µ(E) = (xµ(E), 0) where E is a
Borel subset of [0, 1] and µ is Lebesgue measure on [0, 1]. Let fn(t) = (0, n),

then
∫ 1

0
fndµ = (0, 0) for all n but fn does not converge in measure.
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