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1 Introduction

In this short note we examine a question about the Easton Tucker inte-
gral raised by Tucker [6] together with a version of the mean value theorem
for operator measure-vector function integrals. We will employ the integral
introduction by Bartle [1] in our exposition.

Below, X and Y are Banach spaces L(X, Y ) the space of continuous linear
operators from X to Y . If µ is a finitely additive set function on an algebra
of subsets A of some set H, with values in L(X, Y ), we define as usual for
E ∈ A,

µ̂(E) = sup{‖Σxiµ(Ei ∩ E)‖}

where the supremmum is taken over all xi ∈ Xi (the unit ball of X) and all
finite disjoint sequences {Ei}. µ̂ is called the semivariation of µ. We assume
µ̂(H) < ∞. If f is X valued and strongly measurable, then the essential
range of f on subset F of H, erF (f) 6= ∅ is defined in the usual way (relative
to µ̂). In [4] the measure µ is L(X, Y ∗∗) valued and H is compact Hausdorff
space while A may be taken as the Borel field (see [5]). We shall assume
these conditions unless otherwise noted. The lemmas immediately following
are due to Rieffel [2] in the vector case.

Lemma 1 If µ is c.a. in the weak* operator topology, then µ̂(F ) > 0 implies
that f(F ) ∩ erF (f) 6= ∅.
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Proof. If f(F )∩erF (f) is empty, then for each x ∈ F there exists εx > 0, s.t.
V (y∗µ){y ∈ F | ‖f(y) − f(x)‖ < εx} = 0 for all y∗ s.t. ‖y∗‖ ≤ 1 (because
µ̂(F ) = sup

‖y∗‖≤1

V (y∗µ). The sets

f({y ∈ f | ‖f(y)− f(x)‖ < εx}),

cover f(F ). We may assume that f(F ) is a separable metric space so there
exists a sequence {εxn} such that the balls B(f(xn), εxn) cover f(F ). F ⊆
∞⋂

n=1

{y | ‖f(y) − f(xn)‖ < εxn} which together with the c.a. of y∗µ implies

V (y∗µ)F = 0 and since sup
y∗∈Y ∗

1

V (y∗µ) = µ̂ we have µ̂(F ) = 0, a contradiction.

Lemma 2 If f is measurable and µ̂(F ) > 0 and N = {x ∈ F | /∈ f(x)erF (f)},
then µ̂(N) = 0.

Lemma 3 If f, g are measurable and µ̂(F ) > 0 with ‖f(x)−g(x)‖ < M , for
all x ∈ F , then b ∈ erF (f) implies that the distance from b to erF (g) is less
than of equal to M .

Proof. If E = {x ∈ F | ‖f(x)− b‖ < ε}, then µ̂(E) > 0. There exists y ∈ E
s. t. g(y) ∈ erE(g) ∩ erE(g), which implies ‖b− g(y)‖ < M + ε. Since ε was
arbitrary, the proof is complete.

Definition 1 Let M ⊆ X. Define

C0µ,s(M) =
⋃

E⊆S

µ(E)−1

{
n∑
1

µ (Ei ∩ E) xi

}

where xi ∈ M and {Ei} is a disjoint finite sequence.

If f is integrable in the Bartle Sense, define

AE,µ(f) =
⋃
F

{
µ(F )−1

(∫
F

fdµ

) ∣∣ F ⊆ E

}
call AE,µ(f) the µ average value of f on E and C0µ,s(M) the µ convex hull
of M . For the scalar case motivation of the next result see [3] p. 77, for
example.
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Theorem 1 (Mean value theorem.) If f is integrable, then

AE,µ(f) ⊆ C0µ,E (erEf). (E ∈ A)

Proof. Fix ∈> 0. Since f is integrable there exists a sequence of simple
functions fn such that µ̂({t | ‖ fn(t) − f(t)‖ > δ}) → 0 as n → ∞.

∫
(·) fdµ

is absolutely continuous with respect to µ̂ so we can choose δ1 such that
‖

∫
S

fdµ −
∫

E
fdµ‖ < ε/3 for µ̂(Sc) < δ1 and, furthermore, by choosing

n large we may let Sc be {t| ‖ fn(t) − f(t)‖ > e
4µ̂(H)

}. Now choose bj ∈
erEi(m)(fm) such that

f ′m(t) = Σ bjχEi(m)∩S

and µ̂(Ei(m) ∩ S) 6= 0 with f ′m(t) = fm(t) a.e. [µ]. Then by a pre-
vious lemma choose ai ∈ erEi(m)(f) such that ‖ai − bi‖ < ε

3µ(E)
. Then

‖
∫

S
f ′mdµ − Σaiµ(Ei(m) ∩ S)‖ < ε/3 so ‖

∫
E

fdµ − Σµ(Ei(m) ∩ S)ai‖ < ε.

Thus,
⋃

s⊆E

{Σµ(Ei ∩ S)xi : xi ∈ er(f)
Ei∩S

} and µ(E)−1
∫

E
fdµ ⊆ COµ,E(er(f)).

Q.E.D.
Tucker [6] asked the question as to when the equivalence classes defining

the Easton-Tucker integral [3] actually contain a “function.” To answer this
question we need another definition. Let f : H → X and E ∈ A and
suppose there exists S ⊆ E such that ker µ(S) 6= X (ker stands kernel i.e.,
the null space of the operator). Suppose also there exists δS > 0 s.t. if
KS = span{Σxiµ(Ei ∩ S)}, then for all xi ∈ er(f)

Ei∩S

we have

Σxiµ(Ei ∩ S) ∈ KS\B(0, δS).

Definition 2 If f and E are as above we say that if “f is not µ-equivalent
to zero on E.”

We shall denote the Easton-Tucker norm of an integrable function re-
stricted to E ⊂ H by ‖f‖1(E).

Theorem 2 Let µ be countably additive (c.a.) in the strong operator topol-
ogy, f integrable, µ̂(E) > 0. Suppose that if E1 ⊂ E and µ̂(E1) > 0, then f
is not µ-equivalent to zero on E1. Then ‖f‖1(S) = 0 implies that µ̂(S) = 0
if S ⊂ E.

Proof. Let the fn be a sequence of simple functions determining
∫

fdµ.
Choose S ⊂ E s.t. µ̂(S) > 0 and fn → f uniformly on S. (The existence
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of S is an easy consequence of Egoroff’s theorem and the fact that xµ(·)
is countably additive). Since f is not µ-equivalent to zero on S, there is
S1 ⊂ S s.t. ker µ(S1) 6= X and δS1 > 0 with Σxiµ(E1 ∩ S1) ∈ B(0, δS1)

c, xi ∈
erEi∩S(f). Now choose a positive integer N s.t. ‖fn(t) − f(t)‖ ≤ δS1

2µ̂(E)+1
,

when n ≥ N . Let fn(t) = Σx
(n)
i χFn,i

(t) where Fn,i = En
i ∩ S1 (we can

assume {E(n)
i } partitions S1) and let bi ∈ erFn,i

(fn), then fn(t) = ΣbiχFn,i
(t)

a.e. on S1 and choose ai ∈ erFn,i
(f) s.t. ‖bi − ai‖ ≤ δS1

2µ̂(E)+1
. We have

‖
∫

S1
fndµ − Σaiµ(Ei ∩ S1)‖ <

δS1

2
, since ‖

∫
S1

fn − fdµ‖ <
δS1

2
we have

‖
∫

S1
fdµ−Σaiµ(Ei ∩ S1)‖ < δS1 so ‖

∫
S1

fdµ‖ > 0 and this gives the result.
We require one more definition which will apply in case µ is only c.a. in

the weak* topology. But first we note the following corollary.

Corollary 1 If µ is a c.a. in the weak* topology and the other hypotheses
of the theorem above hold and in addition Y ∗∗ contains no copy of `∞ then
‖f‖1(S) = 0 implies µ̂(S) = 0. (S ⊂ E).

Let f : H → X, E ∈ A. Suppose there exists S ⊂ E such that µ̂(S) > 0
and a positive number δ such that for each S1 ⊂ S with µ̂(S\S1) < δ we have
that there is S ′′

1 ⊂ S1 s.t. Σxiµ(Ei∩S ′′
1 ) ∈ B(0, δµ̂(E))c for all xi ∈ erEi∩S′′

1
(f)

where {Ei} partitions S ′′
1 .

Definition 3 If f, E and δ are as above we say that f is not δ equivalent to
zero in E.

Theorem 3 If f is (Bartle) integrable and µ̂(E) > 0 then if f is not δ-
equivalent to zero on of F whenever F ⊂ E, (µ̂(F ) 6= 0) then

‖f‖1(S) = 0 implies µ̂(S) = 0. (S ⊂ E)

The proof is similar to the preceding, and we omit it.

We now give our (partial) answer to Tucker’s question in the form of

Theorem 4 Let fn be a sequence of integrable functions and suppose that
‖fn‖1(E) → 0. If fn is not δn,k-equivalent to zero on En,k where En,k =
{t | ‖fn(t)‖ > 1/k} and inf δn,k > 0, then there is a sequence {fn`

} with
fn`

→ 0 a.e. [µ].

Proof. The proof is an easy application of the previous results.
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We leave it to the reader to formulate the corresponding results under
the stronger hypotheses of countable additivity used previously. The previ-
ous results are of course related to the Radon-Nikodym theorem. It would
be interesting to see the form of the Radon-Nikodym theorem for finitely
additive operator measures and the Bartle integral.
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