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Abstract

We study the theory of spectral measures in topological vector spaces.
We extend the Hilbert space theory to this setting and generalize the
notion of spectral measures in some useful ways to provide a framework
for operator theory in this setting. The Riesz representation theorem
is proved without assuming local convexity. This theorem is applied to
give sufficient conditions for an operator (continuous or otherwise) to be
“spectral”. A uniqueness problem is pointed out and the function calculus
is extended to the case of several variables. A Radon-Nikodym theorem
is proved. We then extend the theory of spectral measures to the case
where values are assumed in the set of discontinuous (in normed spaces
”un-bounded”) operators. Examples of operators in nonlocally convex
spaces are given which have densely defined measures.
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1 General Theory

1.1 Introduction

Research in functional analysis has been relatively meager in the area of gen-
eral topological vector spaces without any local convexity hypothesis. This
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paper is an attempt to extend the spectral theory of linear operators to such
a setting and, in particular, to generalize the notion of “spectral measure”.
This will be carried out in various ways while at the same time preserving as
much as possible of the Hilbert space–Banach space results. “Regularity” of
the measures involved turns out to be a basic assumption if we are to have
sufficient structure to work with. We note here that two types of integrals
are required in order to state the theory consistently, a Riemann theory [14]
and a Lebesgue-type theory [40]. We shall see below that the properties of a
spectral measure make it possible to work in certain Banach (normed) sub-
spaces of the topological vector spaces we consider below. This fact can be
used to shorten a number of arguments considerably.

Some previous work may be compared with the results below:

1. Colojoară and Folas [2]. Their approach is to assume an operational
calculus with some family of functions, defined (at least) on the spectrum
of the operator, somewhere in scope between the analytic functions and
continuous functions.

Maeda’s work [24] is in the same direction but in certain locally convex
spaces. Our work includes much of this theory but does not subsume it
without some juggling of topologies.

2. Schaefer [35]. Schaefer’s work treats spectral theory from an order-
theoretic point of view reminiscent of the Riesz–Sz.-Nagy approach to
the spectral theorem. His work is in the locally convex case for weakly
complete spaces. Our work includes the results of this work in the com-
parable situations.

3. Other contributions have been made by Năimark [27], Marcenko [25],
Ljance [19] and Folland [12]. The work of these authors is very closely
related to the comments in Section 6.5 below.

Section 1 is divided into two parts by the consideration of continuous and
discontinuous operators and, at the same time, spectral measures that are
countably additive and those that may fail to be countably additive. In every
case, the values of our measures are continuous projections. This hypothesis
will be relaxed in sections 6 and 7 below.
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1.2 Preliminaries

In this paper we shall usually denote by “A” a sequentially complete Haus-
dorff topological algebra, i.e., an algebra whose underlying vector space is
a topological vector space with the property that the multiplication of A is
separately continuous in that topology. All topological spaces are assumed
to be Hausdorff.

A spectral measure in A is a set of function µ defined on a ring R of
subsets of some set H, which takes values in A and has the following three
properties:

(1) µ(C ∩B) = µ(C) + µ(B) (C ∩B = ∅)

(2) µ(C∩B) = µ(C)µ(B) (the product in A will be denoted by juxtaposition)

(3) µ is of bounded semivariation when considered as having its range in
B(C, A) via scalar multiplication in A. That is ([40]) for F ∈ R, ( ·∪
means disjoint union),

µ̂(F ) =

{
n∑

i=1

αiµ(Ei ∩ F )
∣∣ ·∪Ei = F, αi ∈ C and |αi| ≤ 1

}
is a topologically bounded subset of A.

From time to time we may require other properties. They will be stated
explicitly when needed.

We need the following lemmata:

Lemma 1.1 Suppose E1, . . . , El are sets in R and R(Ei, . . . , El) is the al-
gebra in R generated by E1, . . . , El. We can conclude that R(E1, . . . , El) is
a finite subset of R and there is a finite collection of mutually disjoint sets
{Km} ⊆ R such that each element of R(E1, . . . , El) is uniquely representable
as a finite union of sets in {Km}.

Proof. The proof follows by the taking the {Ki} to be all possible sets of

the form
l⋂

i=1

Mi where Mi = Ei or Mi = Ω\Ei, where Ω =
l⋃

i=1

Mi.

Lemma 1.2 Suppose A is a topological vector space and z is a closed, bounded,
convex, balanced subset of A. Denote by Az the subspace of A generate by
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z. If A is sequentially complete, then Az with the Minkowski functional z as
norm is a Banach space.

Proof. The proof may be found in [10].

Corollary 1.1 Suppose z is a closed, absolutely convex, bounded subset of
A, which is a subsemigroup of A. If A is sequentially complete, then Az (See
Lemma 1.2 for notation), with the Minkowski functional of z as its norm, is
a Banach algebra.

Proof. If a, b ∈ z, then ab ∈ z so ‖a‖ ≤ 1, ‖b‖ ≤ 1 implies ‖ab‖ ≤ 1. The
result follows immediately.

If X is topological vector space, B(X) denotes the set of continuous linear
mappings of X into itself. L(X) denotes the set of linear mappings of X into
itself, while L(A,X) is the set of linear mappings of space A into X and
similarly for B(A,X).

Remark 1.1 If Az is as in Corollary 1.1, we shall usually assume it has its
induced supspace topology (from A) unless otherwise noted.

1.3 Integration Theory

We will need a theory of integration for functions with values in a general
topological vector space with respect to a scalar measure and conversely
a theory to handle scalar functions and vector-valued measures. To carry
out our program we will use two integrals, the integration theory of [14] (a
Riemann integral) for the vector function scalar measure case and the theory
developed in [40] for the scalar function vector measure case which allows
a unified treatment of the finitely additive cases which we need here (see
Section 6 below). We give an outline of the Riemann theory here in our
setting, since [14] deals only with the Banach space case.

Definition 1.1 Let λ be a complex Borel measure on Rn (or Cn). If J is a
measurable set in Rn, with finite measure a partition of J is a finite sequence

of closed measurable sets J1, . . . , Jn such that J =
n⋃

i=1

Ji and λ (Ji

⋂
Jj) = 0,

if i 6= j. The mesh of a partition of J is the maximum of the metric diameters
of sets Ji. We shall use the symbol N{Ji} to denote the mesh of the partition

4



{Ji}. If Pn = {Jn
i } defines a sequence of partitions of J with NPn → 0 as

n→∞ and f is a function defined on J with values in a topological vector
space M and

lim Σf(tni )λ(Jn
i )

(tni is any point in Jn
i ) exists for any such sequence {Pn}, then we say that

f is integrable on J .

Proposition 1.1 Let f be integrable on J as in Definition 1.1. The value
of

lim
n→∞

Σf(tni )λ (Jn
i )

is independent of which sequence of partitions occurs in the limit as well as
the choice of the points tni .

The proof consists in using the standard technique of “meshing” se-
quences. See [29] for example.

Definition 1.2 We define
∫

J
f dλ to be

lim
n→∞

Σf(tni )λ (Jn
i )

as in Proposition 1.1 for any f integrable on J .

Proposition 1.2 Let f and g be integrable on J . Then f + g is integrable
on J with ∫

J

f + g dλ =

∫
J

fdλ+

∫
J

gdλ.

If k is a constant, then kf is integrable on J and∫
J

k fdλ = k

∫
J

f dλ.

If f is integrable on J ′ and λ(J ′ ∩ J) = Φ, then∫
J

f dλ+

∫
J ′
f dλ =

∫
J∪J ′

f dλ.

The proofs are elementary.
We must also consider integration of vector-valued functions defined in

the complex plane over some piecewise smooth curve.
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Definition 1.3 We say that f : C → M is integrable over γ, a continuous
piecewise C1 curve in C if ∫ β

α

f(γ(t)) γ′(t) dt

exists (where [α, β] is the parameter domain of γ). The usual relationships
hold for reparameterizations.

Proposition 1.3 Let f be integrable over γ. If γ1 and γ2 are parameteriza-
tions of γ, then ∫ β1

α1

f(γ1)γ
′
1 dt =

∫ β2

α2

f(γ2)γ
′
2 dt,

where γ1 and γ2 are related as γ1 composed with h = γ2 with

h(t) =
α1(β2 − t)

β2 − α2

+
β1(t− α2)

β2 − α2

.

Existence of one integral is assumed. Existence of the other is part of the
conclusion.

Proof. The proof consists in checking the Riemann sums with appropriate
use of h as in elementary complex analysis.

The usual relations for path integrals hold as a consequence of propostions
1.2 and 1.3. For example, let f be integrable over two paths γ1 and γ2 which
meet at their “end points”. If γ denotes the union of these paths in the usual
sense, then ∫

γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

Remark 1.2 We use our Riemann integral to integrate functions with vec-
tor values. It is possible to define other integrals for vector functions and
scalar measures as in [11], for example. Etter uses the concept of “ultra
convergence” which is equivalent to uniform convergence in locally convex
spaces, see [49]. We shall not describe this integral here, but we shall have
occasion to return to [11] in a later section of this paper.

When A is metrizable and “locally pseudoconvex”, it has been shown
([29]) that the integral exists for certain smooth functions, but that simple
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continuity of the integrand does not imply the existence of the integral. It is
possible to prove a number of existence theorems for the Riemann integral
in our case. We shall not go into this now, however.

1.4 Products of measures

Definition 1.4 Suppose µ1 and µ2 are two spectral measure on rings R1

and R2, respectively, with values in A. If µ1(c1)µ2(c2) = µ2(c2)µ1(c1) for
all c1 ∈ R1, c2 ∈ R2, then we define the product measure µ3 = µ1 × µ2

on R(R1 × R2) in the obvious way where R(R1 × R2) denotes the ring of
“elementary” sets (see Rudin [34]) generated by R1 and R2.

Using the notation of Definition 1.4, µ3 clearly satisfies (1) and (2) of
Lemma 1.1, but there is no assurance that it is of bounded semivariation.
We shall return to this problem below.

Definition 1.5 Suppose µ : R → A is a spectral measure and that F ∈ R.
Denote by RF (µ) the range of µ on {F ∩K | K ∈ R} and by cob(RF (µ)) the
absolutely convex hull of RF (µ). cob(RF (µ)) is the closure of cob(RF (µ)).

Lemma 1.3 cob(RF (µ)) is bounded commutative subsemigroup of A.

Proof. cob(RF (µ)) is clearly a semigroup. Consider
(*) Σαiµ(Ei ∩ F ) ∈ cob(RF (µ))(Σ|αi| ≤ 1).

By Lemma 1.1, we may rewrite (∗) as∑
m

(
∑
k≤n

αk)µ(Lm)

with Lm ∩ Ln = ∅ when n 6= m. Thus, cob(RF (µ)) ⊆ µ̂(F ) and hence the
lemma follows.

Corollary 1.2 Acob(RF (µ)) is a commutative Banach algebra, with the Minkowski

functional of cob(RF (µ)) as a norm (here, cob(RF (µ)) is the “z” of Lemma
1.2).

Remark 1.3 In general, the problem of determining when the “product” of
the two vector measures extends (in some continuous, or countably additive
(c.a.) fashion) to a vector measure on a larger collection than the “elemen-
tary” sets is difficult [30]. We note the following result. (Assume that A is
complete.)
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Theorem 1.1 Let R1 and R2 be σ-algebras in sets H1 and H2 with µ1 and
µ2 spectral measures on R1 and R2. Let R be the ring of elementary sets
generated by R1 and R2, and let S(R) denote the σ-algebra generated by R.
Suppose µ1 and µ2 are c.a. The following hold:

(1) If B ∈ S(R), h2 ∈ H2, the h2 section of B, Bh2
, is R1 measurable.

(2) The integral ∫
H2

µ1(B
h2

)dµ2(h2)

is well defined [26]. Suppose that for each neighborhood U of zero in A and
finite partition P of H2 in R2 there exists a finite set ∆(P ) ⊆ P such that if
F is a refinement of P ⊆ ∆(P ), then∑

α∈F

{range of µ}µ2(α) ⊆ U

and further that µ2 has the property that for each neighborhood of U of zero
in A, there exists a neighborhood V of zero in A, if K is a finite partition of
H2 in R2, then ∑

α∈F

(V )µ2(α) ⊆ U.

Then µ1 × µ2 extends to a unique c.a. measure on S(R) defined by the
integral 2 above.

Proof. The proof is essentially like the standard scalar case [26].

Definition 1.6 If H1 and H2 are sets, and R1 and R2 are rings of subsets
of H1 and H2, then a mapping f : H1 → H2 is called measurable (relative to
the pair (R1, R2)) if, for any F ∈ R2, f

−1(F ) ∈ R1. If H2 is a linear space
and N(f) = {t | f(t) 6= 0}, then we only require f−1(F ) ∩N(f) ∈ R1.

Lemma 1.4 Suppose µ is a spectral measure on a ring R of subsets of a set

H and H is the product
n

×
i=1
Hi with Ri a ring in Hi.

Let the projection map fi of H onto Hi be measurable for each i. Then
there exist spectral measures µi on Ri such that for each measurable rectangle,
n

×
i=1
Fi,

µ(
n

×
i=1
Fi) =

n

×
i=1
µi(Fi).
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If R and Ri are δ-rings (or σ-rings, etc.), then the same result holds. Fur-
thermore, if

F ∈
n⋂

i=1

{f i
−1(Ki)|Ki ∈ Ri}),

then the decomposition
n

×
i=1

µi of µ is unique on

F ∩R = {F ∩K|K ∈ R} ,

relative to Acob(RF (µ)). (µ(F ) is the “identity” in Acob(RF (µ))).

Proof. Define µi(Fi) = µ(f i
−1(Ei)). Suppose n = 2, then

µ(F1 × F2) = µ(f i
−1(E1) ∩ f 2

−1(E2)) = µ1(F1)µ2(F2).

The proof proceeds by induction. Uniqueness is proved as follows: suppose
µ′1, µ

′
2 are such that µ(F1 × F2) = µ′1(F1)µ

′
2(F2). Then, since

µ(f 1(E)× f2(F )) = µ′1(E1)µ
′
2(F1) = µ1(E1),

and µ′2(F1) is the identity by hypothesis, the conclusion follows.

Remark 1.4 Each spectral measure on the Borel subsets of C is thus the
product of a pair of spectral measures on the real line.

Proposition 1.4 Let µ1 and µ2 be two spectral measures on ring R1 and R2

with µ1 × µ2 defined on R(R1 ×R2) as above, then (1) through (4) below are
equivalent. (∗) implies (1) as well.

(1) µ1 × µ2 is a spectral measure.

(2) µ1 × µ2 is of bounded semivariation.

(3) cob(RF (µ1 × µ2)) is bounded in A for each F ∈ R.

(∗) A is locally convex and RF (µ1 × µ2) is bounded.

(4) µ1 and µ2 are bounded with respect to each other’s range–i.e.,
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{
l∑

i=1

αi

k∑
j=1

βjµ1(Ei ∩ F 1)µ2(Fj ∩ F 2) | F 1 ∈ R1, F 2 ∈ R2, |αi| ≤ 1, |βj| ≤ 1

}
is bounded. (Here, {Ei} and {Fj} are mutually disjoint finite collections from
R1 and R2, respectively.)

Proof. 1 → 2 → 3 → 4 are obvious and 4 → 1 simply by the definition of R.

Remark 1.5 In case R1 and R2 are σ-algebras and µ1 and µ2 are c.a., one
wishes to extend µ1 × µ2 (if it is spectral) to the the σ-algebra generated by
R.

If µ has a c.a. extension, then it will have bounded semivariation and,
hence, is a spectral measure. (It is easy to check that µ is multiplicative.)
Generally countable additivity is not a desirable property for a spectral mea-
sure. However a weak form of countable additivity is necessary for further
development. We shall return to this in section 1.6.

Suppose µ is a spectral measure with values in A, defined on a subring
R of the Borel sets in the complex plane, with the property that for each
F ∈ R and Borel set C with C ⊆ F we have C ∈ R. Let S be a compact
subset of C, f(t1, t2) as continuous function from C×C to C. Suppose F is
a bounded set in R. Then f(t1, t2) is the uniform limit (on S × F ) of simple

functions which are of the form
n∑

i=1

αiχEi
where Ei is an elementary set. We

shall refer to a sequence of simple functions of this type as an “elementary
sequence”.

Proposition 1.5 Using the notation indicated above and letting F ′ ⊆ F, S ′ ⊆
S, the iterated integrals, ∫

S′

∫
F ′
f(t1, t2)dµ(t1)dλ(t2)

and ∫
F ′

∫
S′
f(t1, t2)dλ(t2)dµ(t1)

make sense and are equal. (λ is Lebesque measure.)

Proof. ∫
S′
f(t1, t2)dλ(t2)
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is bounded µ-measurable function and so its µ integral exists. Let {fn} be
an elementary sequence with fn → f uniformly on S × F and suppose

fn(t1, t2) =
Kn∑
j=1

α
(n)
j χEj

(t1, t2), Ej = E1
jn × E2

jn.

Then, ∫
S′

∫
F ′
fn(t1, t2) dµ (t1) dλ (t2) =

∫
F ′

∫
S′
fn(t1, t2)dλ(t2) dµ (t1)

Meanwhile,

lim
n

∫
F ′

∫
S′
fn(t1, t2) dλ (t2)dµ (t1)

exists and equals ∫
F ′

∫
S′
f(t1, t2) dλ (t2)dµ (t1)

Moreover,

lim
n

∫
fn(t1, t2)dµ(t1)

converges uniformly in t2, (NPn → 0) for given ε > 0,∫
fn(t1, t2)dµ(t1)−

∫
fn(t1, t

′
2)dµ(t1) =∫

fn(t1, t2)− fn(t1, t
′
2)dµ(t1) ∈ εµ̂(F ′)

for sufficiently large n. By corollary 1.2 and the Moore–Smith convergence
theorem we may interchange limits to get

lim
n

∫
S′

∫
F ′
fn(t1, t2)dµ(t1)dλ(t2) =

∫
S′

lim
n

∫
F ′
fn(t1, t2)dµ(t1)dλ(t2)

=

∫
S′

∫
F ′
f(t1, t2)dµ(t1)dλ(t2). (∗∗)

But (**) equals ∫
F ′

∫
S′
f(t1, t2)dλ(t2)dµ(t1).

This completes the proof.
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1.5 Calculation in a topological algebra

Proposition 1.6 Let µ be a spectral measure on R with values in A, and
suppose F ∈ R. Denote by Bd(F ) the collection of all bounded R-measurable
complex-valued functions on F .

The integral is a continuous homomorphism of Bd(F ) into A and into
Acob(Rf (µ)) with its norm topology, where Bd(F ) has the topology of uniform
convergence.

Proof. It is clear that for simple functions f and g,∫
F

fg dµ =

∫
F

fd µ

∫
F

g dµ =

∫
F

g dµ

∫
F

f dµ.

Since µ has bounded semivariation in A, the rest of the proposition follows
by taking uniform limits of simple functions. This completes the proof.

Proposition 1.7 Let µ be a spectral measure on R with values in A, and let
f be complex-valued and R-measurable. If f is bounded, then, for all F ∈ R
and for all bounded Borel functions g,

(*)
∫

F
gf dµ =

∫
f(F )

g(z)dmf (z)

where g f(z) = g(f(z)) and

mf (E) = µ(f−1(E) ∩ F )

with E a Borel set in C.

Proof. First note that (*) makes sense because mf has bounded semivaria-
tion. Let g = χK , K a Borel subset of C. Then∫

F

χK ◦ fdµ = µ(f−1(K) ∩ F )mf (f(F ) ∩K) =

∫
f(F )

χK(z)dmf (z)

and, therefore, the equality holds for all simple functions g and so for all
bounded Borel functions g. This completes the proof.

Proposition 1.8 Any spectral measure in A takes its values in a commuta-
tive subalgebra of A, which allows a stronger locally convex topology than the
topology induced by A.
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Proof. The inductive limit

limAcob(RF (µ)),

where F ∈ R and R is partially ordered by inclusion, works. That is, we
take the Banach space topology on each member of this increasing family of
subalgebras. It remains to check the continuity of the inclusion maps. This
is trivial from the definition. (Norms are increasing.) This completes the
proof.

Remark 1.6 At this point it is necessary to define what we shall mean by
the “spectrum” of an element in A. The usual definition of the spectrum of
an element a ∈ A is the set-theoretic complement of the set of all complex
numbers λ, such that (λe − a)−1 exists as an element of A (we assume A
has an identity e). This definition requires further assumptions we wish to
postpone. See [35] for the locally convex case. The idea that seems most
sanguine to the situation at hand is that the resolvent is locally holomorphic
on the resolvent set. However, the theory of holomorphic A-valued functions
has its own special problems. For example in A, power series are not well-
behaved in general (see [51]). They may converge at any finite number of
points and diverge elsewhere–in contrast to the case where A is locally convex
or pseudoconvex.

At this point, we do not wish to limit ourselves to the various possible
special cases.

This leads us to an indirect definition of holomorphicity, which will reduce
to the usual one in less general cases.

Definition 1.7 Suppose a ∈ A and assume that A has an identity e. The
“Morera” resolvent set of a is the collection of all complex numbers λ for
which there is a disc Nλ about λ such that if z ∈ Nλ, then (ze− a)−1 exists
in A and for each piecewise smooth simple closed curve c in Nλ the integral∫

C

(ζ − a)−1dζ

exists (in the sense of §1.2 above) and is equal to the additive identity in A.
(We mean (ze− a)−1 when writing (z − a)−1.)

The Morera resolvent set, or briefly, the resolvent set of a, which we
denote as ρ(a), is open and in the classical case Remark 4.2 implies that
(ζ − a)−1 is locally analytic on ρ(a).
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As usual we use σ(a) to mean the “spectrum of a” and define it to be
ρ(a)c = (C\ρ(a)).

Remark 1.7 λ→ (λ−a)−1 may of course be continuous and yet it may fail
to be integrable on compact sets, contrary to the condition in locally convex
spaces (see [32] and also [11] and [49].) Since we do not assume our measures
are defined on an “algebra” we must define some notion of invertiblity, useful
in this context. We therefore define “invertibility” not with respect to the
whole of A, but with respect to the measure involved. To be precise we have

Definition 1.8 Suppose a ∈ A and

a =

∫
F

λdµ(λ)

where µ is a spectral measure on R, a subring of the Borel sets of C, F ∈ R.
Then λ − a is taken to mean λµ(F ) − a and inverses are computed relative
to AcobRF (µ), of which a is certainly a member and in which µ(F ) acts as the
identity. (Whether we have the norm topology or not makes no difference
here. This is a useful ambiguity.)

The notion “regular measure” appears in the proposition below. As ap-
plied to a measure µ with values in A, we do not need the multiplicative
structure of A. This allows us to consider A as a metric space (actually as
a subspace of a product of metric spaces–this is sufficient). The notion of
regularity is therefore just the same as in the scalar case. The support of
a regular measure (on a Borel field) is the complement of the largest open
set on which the measure vanishes. (We occasionally use the term “support”
in a generalized sense elsewhere; here it is a single-valued notion.) The ex-
istence of the support is then proved by the same method as in the scalar
case, i.e., let V be the union of all open sets Vi on which µ vanishes. Then
by regularity µ(V ) must be “zero” or there is a compact set K ⊆ V with
µ(K) 6= 0. K is covered by finitely many of the sets making up V and this
leads to a contradiction since

µ(K) = µ

(
n⋃

i=1

K ∩ Vi

)
= sum of products of terms

of the form µ(K ∩ Vi) = µ(K)µ(Vi) = 0.
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Proposition 1.9 Let µ be a spectral measure of the type discussed in the
remark preceding Proposition 1.5 or immediately above, restricted to a Borel
field. In addition, suppose µ is regular in the topology of A. Identify the
support of µ as “supp(µ)” and assume this set is compact. If

a =

∫
λdµ(λ),

then σ(a) (computed in AcobRS(µ), where S = supp(µ)) is equal to the set
supp(µ).

Proof. We may extend µ to the Borel sets of C in the obvious way, and we
suppose this is done. supp(µ) is certainly a measurable set; it is a compact
set. Let z ∈ [supp(µ)]c. It will then be the case that∫

dµ(ζ)

ζ − z

exists on appropriate sets, indeed,∫
supp(µ)

dµ(ζ)

ζ − z
=

∫
F

dµ(ζ)

ζ − z
(F ⊇ supp(µ)).

(The equality holds because it holds for the appropriate simple functions.)
Moreover, µ(F ) (or µ(supp(µ)) is the natural identity for the subalgebra
generated by the range of µ and we take this to be the identity, as noted
above. Thus,

(ze− a)−1 =

∫
F

dµ(ζ)

z − ζ

by Proposition 1.6. Therefore, (ze − a)−1 exists, and if we take a disc D
small enough about z so that ∂D(=the boundary of D) does not intersect
supp(µ) (this is possible because supp(µ) is closed), then the integral∫

∂D

(ζe− α)−1dζ =

∫
∂D

∫
supp(µ)

dµ(ζ)

ζ − λ
dζ

exists by Proposition 1.5 and is equal to the additive identity in A, again by
Proposition 1.5 and the Cauchy theorem. This shows that σ(a) ⊆ supp(µ).
Now suppose z /∈ σ(a). Choose an open disc D1, whose closure does not
intersect σ(a) (again this is possible since σ(a) is closed) so thatD1 is centered
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at z and then choose D2 with D2 ⊂ D1 with D2 again being centered at z.
We wish to show that µ (D2) = 0. This will show that z /∈ supp(µ), and,
therefore, that supp(µ) ⊆ σ(a). Let µ1 be the restriction of µ to D1 and µ2

be the restriction of µ to D1. Then µ = µ1 +µ2. Let ei = µi(C), ai = ∫ zdµi.
It follows

(λe− a)−1 − (λe1 − a1)
−1 =

∫
dµ2(z)

λ− z
(λ /∈ supp(µ))

and

(λe− a)−1 = (λe1 − a1)
−1 + (λe2 − α2)

−1

if λ ∈ ρ(a)
⋂
ρ(a1). We know that∫

C

(λe− a)−1dλ = 0

if C ⊆ D1. Now note that ∫
C′

(λe1 − a1)
−1dλ = 0

for C ′ any piecewise continuous closed curve in an annulus containing ∂D1

assuming the index of C ′ at z is zero, for σ(a1) is inside supp(µ1), which
is (properly) contained in D1 (an open disc). This follows from the usual
complex variable argument extended directly to our case. Since supp(µ2) ⊆
Dc

1, we have ∫
C2

(λe2 − a2)
−1dλ = 0

for any C2 ⊆ D1. It follows from the properties of the integral that∫
∂D1

(λe1 − a1)
−1dλ = 0

and, thus by Proposition 1.5

0 =

∫
∂D1

∫
D2

dµ1(z)

λ− z
dλ

∫
D2

∫
∂D1

dλ

λ− z
dµ1(z) = 2πiµ1(D2)

so µ1(D2) = 0 and the multiplicative property of µ shows thatD2 ⊆ [supp(µ)]c

and, thus, z ∈ [supp(µ)]c so supp(µ) = σ(a). This completes the proof.
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Definition 1.9 If a ∈ A is the integral
∫
fdµ where f and µ are as in

Proposition 1.7, then we define g(a) for g as in Proposition 1.7 to be∫
gf dµ =

∫
g(z)dmf (z).

Such elements “a”of A will be called “scalar” elements. At this point, it may
be that g(a) depends on mf .

Proposition 1.10 We use the notation of Proposition 1.7. If a is a scalar
element of A, and g is continuous, then

suppmf =
⋂

µ(M)µ(F )

f(M) = σ(a)

and
g(σ(a)) = σ(g(a)).

(The hypothesis of regularity is in force.)

Proof. Suppose µ(M) = µ(F ), then mf ((f(M))
c
) = 0 and so supp(mf ) ⊆

f(M). However,

mf (supp(mf )) = µ(F ) = µ(f−1(supp(mf ))).

This proves that the first equality above and σ(a) = supp(mf ) follows from
Definition 1.9. To see that g(σ(a)) = σ(g(a)), notice that for mfg(K) =
mf (g

−1(K)),

supp(mfg) =
⋂

mf (K)=mf (supp(mf ))

g(K) = σ(g(a)).

By assumption, g(supp(mf )) is compact since supp(mf ) is compact. To
complete the proof it remains to show that

supp(mfg) ⊇ g(supp(mf )).

To show this, suppose that λ /∈ supp(mfg) and λ ∈ g(supp)mf )). Let V be
a disc about λ not intersecting supp(mfg).∫

g−1(V )

g(z)dm =

∫
V

z dmfg(z) = 0
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by Proposition 1.7 (take “g” in Proposition 1.7 to be g(s) = s). Now, since
g is continuous, g−1(V ) is an open set, g−1(λ) ∈ supp(mf ) and g−1(λ) ∈
g−1(V ). Thus λ must be zero (g must vanish at g−1(λ) by definition of
“support”) or we have a contradiction. Suppose then that λ = 0. g−1(0) is
either an isolated point in supp(mf ) or not. If it is not isolated, g−1(V ) must
contain other points in the support ofmf which would give a contradiction by
repeating the argument above. Thus g−1(0) is an isolated point in supp(mf ),
then mf ({g−1(0)}) 6= 0. But then

mf ({g−1(0)}) = mfg({0})

and 0 ∈ supp(mfg) contradicting our original assumption. Therefore

supp(mfg) = g(supp(mf )) = g(σ(a)).

This completes the proof.
We close this section with two results on the generation of spectral mea-

sures. They serve as primitive versions of our work in section 1.6.

Proposition 1.11 Let C0(X) be the space of continuous functions vanishing
at “∞” on a locally compact Hausdorff space X. Suppose Λ is a continuous
A-valued homomorphism on C0(X). Then there exists a measure µ on the
Borel subsets of X with values in the space of linear functions on a subspace
of the algebraic dual A′ of A, so that

Λ′(f) =

∫
X

fdµ (f ∈ C0(X))

where Λ′ is Λ “lifted” to F (A′) (the space of linear self-mapping functions
with no topology–hence the term “algebraic”) in the way specified in the proof
below.

Proof. It is easy to see that as a Banach space C0(X)⊕C may be identified
with the space of continuous functions (with sup norm) on the one point
compactification of X, X̂, denoted by C(X̂). If we define multiplication on
C0(X)⊕C coordinate-wise, then C0(X)⊕C has a Banach algebra structure
(different than that of C(X̂)). Denote by “P” the projection to the first
coordinate P : (f, c) → (f, 0) ' f . Define ΛP (f, c) ≡ Λ(f). If C(X̂)1 is the
unit disc of the Banach space C(X̂)(= {f | ‖f‖ ≤ 1}, then ΛP (C(X̂1)) is a
bounded, convex, balanced subset of A. If C(X̂) is given the algebraic struc-
ture of C0(X)⊕C (for multiplication), then ΛP (C(X̂)1) is also a semigroup.
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Applying Corollary 1.1, we have that ΛP (call it Λ̂) is a bounded (hence con-
tinuous) map of C(X̂) into the Banach algebra Ac, where c is the A-closure
of ΛP (C(X̂)1) and Ac is given its norm topology. The proof of Theorem
XVIII. 2.4 of [9] may now be carried over wholesale, paying attention to the
details concerning the multiplicative nature of µ. The only alteration being
that the measure is only defined locally (not on X̂, but on the Borel subsets
of X). It is now a matter of considering Λ̂∗ from the above cited theorem (*)
has the meaning accorded it in the cited theorem),

Λ̂∗ : C(X̂) → L(A∗c).

A∗c being the Banach space dual of Ac, L(A∗c) denotes the continuous linear
self-mappings of A∗c (norm topology of Ac). Now Ac is a linear manifold in
A and f ∈ A∗c may be extended “by zero” to A making A∗c ⊂ A′ with this
extension (note: A∗ may be zero-dimensional). Identifying Λ̂∗ with Λ′ in the
obvious way gives the proposition. This completes the proof.

For Proposition 1.12 we need some notation. H will be a set, R a ring
of subsets of H, B(R) the collection of all complex-valued R-measurable
functions bounded on elements of R. Give B(R) the topology of uniform
convergence on members of R.

Proposition 1.12 Suppose Λ is a continuous homomorphism of B(R) into
A. Then there exists a spectral measure µ on R with values in A such that
Λ(χF · f) =

∫
F
dµ for each F ∈ R and f ∈ B(R).

Proof. Fix F ∈ R. The set{
n∑

i=1

αiχF∩Ei
|Ei ∈ R, ·∪(Ei ∩ F ) = F, |αi| ≤ 1

}
is bounded in B(R). ({Ei} is a disjoint finite collection.) Since Λ is contin-
uous, the image of the above set is bounded in A. Define Λ(χE) = µ(E) for
E ∈ R. It is now easy to see that µ is a spectral measure on R. First, µ is
certainly additive and multiplicative. Second, the noted boundedness above
says µ has bounded semivariation. Since

Λ(χF · f) =

∫
F

f dµ (1.1)

for all simple functions f , and both sides of (1.1) are continuous for uniform
convergence, the proposition follows.
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1.6 Unbounded operators on a topological vector space

Additional assumptions on spectral measures

We will be looking at measures with values in B(M) for a topological vector
space M. In addition to the original three assumptions on a spectral measure
µ : R→ B(M), we shall require two more.

(4) For each x ∈M, µ(.)x (which we shall denote by µx(.)) is a c.a. M -valued
measure on R.

(5) The regularity hypothesis of Definition 1.8 is satisfied.

We make some assumptions on M , B(M) and R.

(1) M is sequentially complete.

(2) The (vector) topology of B(M) is stronger than (at least as strong as)
pointwise convergence and makes B(M) sequentially complete.

(3) R is a δ-ring. (R is closed under countable intersection.)

Proposition 1.13 Suppose fn is the sequence of functions corresponding to
a measurable function f such that fn = χKn · f where

Kn = {t| 0 < |f(t)| ≤ n}.

If lim
n→∞

∫
fndµx exists in the topology of M , then f is integrable with respect

to µx (in the sense of Smith [40]).

Proof. There exist simple functions {Sm,n} such that lim
m
Sm,n = fn where

convergence is uniform. It is apparent since µx has bounded semivariation
and µ is a spectral measure (see Proposition 1.6, Lemma 1.3) that we may
choose {Smn,n} such that Smn,n → f pointwise almost everywhere and

lim

∫
Smn,n − fndµx = 0,

for F ∈ R. It follows from the Nikodym convergence theorem (e.g., [4]–[6] or
[42]) that {

∫
Smn,ndµx} is a uniformly continuous set (as in [40]). Consider
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W1, the collection of all simple functions bounded by 1. Notice that for any
k a positive integer

W1 ⊆ W 4k2

1 +
1

k
W1, (1.2)

where W 4k2

1 is the collection of all simple functions taking at most 4k2

different values bounded by 1. Let En ↘ ∅ in R and define µx,n(F ) =
µx(F ∩ En). It follows from the Nikodym convergence theorem again and
(1.2) that µ̂x(En) → 0 as n→∞. This allows us to conclude that Smn,n → f
in “measure” and, therefore, by [40] f is integrable. This completes the proof.

Definition 1.10 A linear mapping T acting in M (perhaps not defined on
the whole of M) is a scalar type operator (briefly: “scalar operator” or
“scalar”), if there is a c.a. spectral measure µ on a δ-ring R of subsets of
some set H and an R-measurable function f such that if fn = χ

Kn
· f where

Kn = {t | 0 < |f(t)| ≤ n},

then

Tx = lim
n→∞

∫
Kn

fndµx.

The domain of T (= D(T )) being

{x ∈M | lim
n→∞

∫
Kn

fndµx exists}.

Proposition 1.14 Let T be a scalar operator in M corresponding to the
spectral measure µ and measurable function f . Then there exists a countable
number of subspaces {Mn} of M such that T restricted to Mn(= T |Mn) is
continuous. Also µ(N(f))M is the continuous sum of the Mn (i.e., if x ∈
µ(N(f))M , then there exists a sequence {xn}, xn ∈Mn and x = lim

n→∞

∑
i=1

xi)

and for each n there is a continuous linear projection Pn : M → Mn. Fur-
thermore, for each x ∈ D(T ),

Tx =
∞∑

n=1

TnPnx (Tn = T |Mn).

Proof. If we let gn = f · χKn where

Kn = {t|n− 1 < |f(t)| ≤ n}
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then by Proposition 1.13, Tx =
∞∑

n=1

∫
gndµx, if x ∈ D(T ). Define Pn =

µ(Kn), it is easily seen that Tn =
∫
gndµ on Mn. Thus, TnPn =

∫
Kn
gndµ

and since
∫
gndµx = 0 if x /∈ µ(Kn)M we have Tx =

∞∑
n=1

TnPnx. If x ∈

µ(N(f))M , we know that

x = µ(N(f))x =
∞∑

n=1

µ(Kn) ∩N(f)x =
∞∑

n=1

µ(Kn)(N(f))x =

∞∑
n=1

µ(Kn)x =
∞∑

n=1

xn,

xn ∈Mn,

it follows by definition that µ(N(f))M =
∞∑

n−1

Mn. This completes the proof.

Proposition 1.15 If S is a scalar operator with µ its spectral measure and
Sx =

∫
fdµx, then D(S) is dense in µ(N(f))M . If H ∈ R and µ(H) = I,

the identity mapping, then D(S) is dense in M . Furthermore, S is a closed
operator.

Proof. The collection of all finite sums from ∪Mn is dense in
∑
Mn and is

contained in D(S). This proves the first part via Proposition 1.14. Now to
show S is closed, let {xα} be a convergent net {xα} ⊆ D(S), xα → x and
suppose Sxα → Y . Sxα = lim

n→∞

∫
Kn
fndµxα by definition. Now, y = µ(N(f))y

since µ(N(f))Sxα = Sxα as a simple calculation shows. By the countable
additivity of µ,

lim
n→∞

µ(Kn)y = µ(N(f))y;

µ(Kn)y = µ(Kn) lim
α
Sxα = lim

α
µ(Kn)Sxα = lim

α

∫
fndµxα =

∫
fndµx

(fn is bounded, so by sequential completeness of L(M),
∫

Kn
fndµ ∈ L(M)).

So, lim
n

∫
Kn
fndµx exists and is equal to y. Thus, S is closed. This completes

the proof.
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Proposition 1.16 (Dunford Calculus). Let µ be a spectral measure in L(M)
on R and f and g complex-valued measurable functions. Define

S(f)(x) =

∫
fdµx = lim

n→∞

∫
Kn

fndµx

when the limit exists, with f and fn as in Proposition 1.13. Then

(a) D(S(f)) = D(S(|f |)),

(b) D(S(f)) ⊆ D(S(g)) if |f(t)| ≥ |g(t)|,

(c) S(f) ∈ L(M) if f is bounded,

(d) S(αf) = αS(f)

(e) S(f + g) extends (⊇)S(f) + S(g),

(f) D(S(f)) + S(g) = D(S(f + g))
⋂
D(S(f)),

(g) S(fg) ⊇ S(f)S(g),

(h) D(S(f)S(g)) = D(S(fg))
⋂
D(S(g)),

(i) S(f)µ (δ) ⊇ µ (δ)S(f) for δ ∈ R.

Proof. The proof is an application of proposition 1.15.
We indicate the proof:
For part (i): if x ∈ D(S(f)), then

lim
n
µ(δ)

∫
Kn

fndµx = lim
n

∫
Kn

fndµ(µ(δ)x)

exists so µ(δ)x ∈ D(S(f)).
For (g) and (h): let

δn = {t| | f(t)| ≤ n, | g(t)| ≤ b} ∩ (N(f)) ∩ N(g)).

Let

S̃(g)(x) = lim
n→∞

∫
δn

g dµx,

D(S̃(g)) = {x| lim
n→∞

∫
δn

g dµx exists},
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if lim
n→∞

∫
δn
g dµx exists, then lim

n→∞
S(g)µ (δn)x exists and limµ(δn)x exists by

the countable additivity of µ(.)x. Then µ( lim
n→∞

δn)x ∈ D(S(g)) by Proposition

1.15, but by definition

S(g)µ(lim δn)x = S(g)(x)

and, so, x ∈ D(S(g)).
If x ∈ D(S(g)) then

βn = {t| | g(t)| ≤ n} ∩ (N(g) ∩N(f))

then
lim

n→∞
S̃(g)µ(βn)x = S̃(g)(x)

exists again so x ∈ D(S̃(g)). Obviously S̃(g) = S̃(g) on D(S(g)) ∩D(S(g)).
The same facts hold in relation to S(gf) and S(f). From (i) we conclude
that if

x ∈ D(S(f)S(g)) ∩D(S(g)),

then

lim
n→∞

S(gf · χδn)x = lim
n→∞

S(g · χδn)S(f)µ(δn)x = lim
n→∞

S(g)µ(δn)S(f)x =

= lim
n→∞

µ(δn)S(g)S(f)x = S(g)S(f)x

so x ∈ D(S(gf)). If
x ∈ D)S(gf)) ∩D(S(f)),

then

limS(gχδn)S(f)x = limS(gχδn)µ(δn)S(f)x = limS(gχδn)S(f)µ(δn)x =

= limS(gχδn)x = limS(gfχδn)x = S(gf)x,

so S(f)x ∈ D(S(g)) and S(g)S(f)x = S(gf)x. This gives (g) and (h). For
(e) and (f), the proof is similar. For (b) let l(s) = g(s)/f(s) (and l(s) = 0 if
f(s) = 0), then S(l) ∈ L(M) by (c) (and so D(S(l)) = M). By (g)

D(S(f)) = D(S(l)S(f)) = D(S(f)) ∩D(S(g))

so D(S(f)) ⊇ D(S(g)). (a) follows from this, (c) is obvious by sequential
completeness. This completes the proof.
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Remark 1.8 In Proposition 1.7, we assumed that f was bounded. However,
it is evident that for any bounded Borel measurable function g : C → C the
formula of Proposition 1.7 holds in the more general present case, i.e., for
x ∈ D(S(f)), ∫

F

g ◦ fdµx =

∫
f(F )

g(z)dmf (z)x,

and, in fact, choosing fn as in Definition 1.10, gives that (taking

g(λ) =

{
λ |λ| ≤ n

0 |λ| > n

for g in Proposition 1.7)

S(fn) =

∫
Gn∩f(F )

zdmf (z) =

∫
F

fndµ.

Here we have written Gn for the set {λ ∈ C| |λ| ≤ n} and fn as in Definition
1.10. We now conclude that

lim
n→∞

∫
|λ|≤n

z dmf (z)x

exists for each x ∈ D(S(f)). This gives (applying Proposition 1.13)∫
F

fdµx =

∫
f(F )

z dmf (z)x.

In most cases we shall be interested in themf corresponding to F = N(f) (see
Proposition 1.9), for if µ finds its “support” in R, we take F = supp(µ). We
use the term “support” for F here to mean that if E ∈ R, µ(E) = µ(E ∩F ),
(and if G is any other set with this property, µ(F ∩ G) = µ(F )) since H is
not assumed to be a topological space. We have seen that a scalar operator
may be interpreted as an integral of a spectral measure. The question arises
as to the relation, in case the support of the measure is not compact (i.e.,
unbounded) between the spectrum of a scalar operator (in Definition 1.7,
(λI−T )−1 ∈ B(M) for λ ∈ ρ(T ) in addition to the integration requirements)
and the support of its spectral measure. We restrict ourselves to some of the
classical conditions.
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Proposition 1.17 If T is a scalar operator, µ its complex spectral measure,
and C ∈ R with µ(C) = I the identity operator, then σ(T ) = supp(µ). (σ(T )
in general is calculated relative to µ(supp(µ)) as in Proposition 1.9)

Proof. Suppose supp(µ) 6= C. Let D be a disc whose closure does not
intersect supp(µ), then for z ∈ ∂D,∫

C

dµ(ξ)

z − ξ

exists. We may choose an elementary sequence fn converging uniformly to
1/(z− ξ) on ∂D× supp(µ), since 1/(z− ξ) vanishes at “infinity”. The proof
of Proposition 1.5 extends trivially to show

0 =

∫
∂D

∫
supp(µ)

dµ(ξ)

z − ξ
dz

∫
supp(µ)

∫
∂D

dz

z − ξ
dµ(ξ).

Thus, σ(T ) ⊆ supp(µ). The rest of the proof is identical to Proposition
1.9. This completes the proof.

Proposition 1.18

σ(S(f)) =
∞⋃

n=1

σ(S(fn))

where f and fn are as in Proposition 1.13. S(f) is defined in Proposition
1.16.

Proposition 1.19 Let λ ∈ ρ(T ) where T is a closed operator with dense
domain. T is a scalar operator if and only if (λI−T )−1(∈ B(M)) is a scalar
operator with compact spectrum. (Assume here that µ(C) = I as above.)

Proof. Let I be scalar, µ its complex spectral measure. Since λ ∈ ρ(T ),

(λI − T )−1 =

∫
C

dµ(z)

λ− z

by Remark 1.8. Taking f( )z = 1/(λ− z) in Definition 1.9, we see that

(λI − T )−1 =

∫
C
ξdmf (ξ).
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(We remark that mf ({0}) = µ(f−1({0})) = 0 since 1/(λ− z) is bounded on
supp(µ).) Conversely if

(λI − T )−1 =

∫
C
ξdµ(ξ)

then ∫
C

dµx(ξ)

ξ

exists since

(λI − T )µ(Kn)x =

∫
Kn

dµx(ξ)

ξ

for x ∈ D(T ), Kn = {ξ| |ξ ≥ 1/n} and if x ∈ D(T ),

lim
n→∞

(ξI − T )µ(Kn)x = lim
n→∞

µ(Kn)(λI − T )x = (λI − T )x

by Proposition 1.16. Thus

Tx =

∫ (
λ− 1

ξ

)
dµx(ξ)

for x ∈ D(T ). Since T is closed, the result follows from Remark 1.8 again.
This completes the proof.

1.7 Relation to classical results

The classical definitions of spectrum and resolvent set are:

Definition 1.11 Let T : M → M be linear with domain D(T ) and range
R(T ). Let T (λ) = λI − T. Then the point spectrum σp(T ) = {λ| T (λ) is
not one to one}, the continuous spectrum σc(T ) = {λ| T (λ) is one to one,
R(T (λ)) is dense in M and T (λ)−1 is discontinuous from R(T (λ)) to D(T (λ)}
and the residual spectrum σr(T ) = {λ| T (λ) is one to one but R(T (λ)) is not
dense in M}. The spectrum σ(T ) = σp(T )∪ σc(T )∪ σr(T ) and the resolvent
set ρ(T ) = C − σ(T ). Whence ρ(T ) = {λ| T (λ) has dense range and its
inverse is a continuous mapping of R(T (λ)) onto D(T (λ))}.

The classical spectral operators are those which can be decomposed as
the sum of a scalar operator and a nilpotent operator. We make the following
formal definition.
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Definition 1.12 T is called spectral if there is a spectral measure µ such
that for all bounded sets F ∈ R and all sets E ∈ R we have

(1) µ(F )M ⊆ D(T ), Tµ(E) is continuous.

(2) µ(E)D(T ) ⊆ D(T )

(3) Tµ(E)x = µ(E)Tx for all x ∈ D(T ),

(4) σ(TE) ⊆ E where TE = T restricted to µ(E)D(T ).

(5) µ(C) = I.

The previous definition gives the following:

Proposition 1.20 For any Borel set E, we have TE is a spectral operator
with spectral measure µE (µ(G) restricted to µ(E)M for all G ∈ R). If E is
a bounded set, then TE is continuous.

Proof. From (1) we have TE is bounded. (2) shows that µE(G)D(TE) =
µE(D(T ) ∪ µ(E)X) ⊆ D(T ) ∩ µ(E ∩ G)M ⊆ D(T ) ∩ µ(E)X ⊆ D(TE). (3)
implies that TEµE(G)x = µE(G)TEx, (x ∈ D(TE). Lastly, (4) shows that
σ(TE|(D(TE) ∩ µ(G)X)) = σ(T |(D(T ) ∩ µ(G ∩ E)X)) ⊆ E ∩G) ⊆ E.

Proposition 1.21 Let T be a spectral operator. Then D(T ) is dense in M .

Proof. Since µx is countably additive, by definition 1.12 (2) and (5) the
domain of T is dense.

The nature of the point spectrum of an operator T is related to the atomic
support of its spectral measure.

Proposition 1.22 Let T be a spectral operator and assume that M is sep-
arable and that there exists U∗ such that for every V there is V ∗ ⊆ V and
t where if µ(E)tV ∗ ⊆ U∗ then µ(E) = 0. Then Ep = {λ | µ({λ}) 6= 0} is
countable.

Proof. Let λ1 ∈ Ep, for some x, µx({λ1}) = xλ1 /∈ U∗. Since µ({λ1})
is continuous, there exists V such that µ({λ1})V ⊆ U∗. Whence, xλ1 /∈ V .
Let λ2(6= λ1) ∈ Ep. Then µ({λ1)xλ2 = 0. It follows that xλ1 − xλ2 /∈ V .
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Let {xn} be a countable dense subset of M and V1 + V1 ⊆ V . Let {xn1} =
{xn | xn− xλ1 ∈ V1} and {xn2} = {xn | xn− xλ2 ∈ V1}. Since xλ1 − xλ2 /∈ V ,
{xn1}∩{xn2} = ∅. Hence Ep has cardinality less than or equal to that of the
set of disjoint subsequences of {xn} which is the cardinality of {xn} and this
completes the proof.

2 Riesz Theorem

We shall be dealing with maps of a topological vector space M into itself. All
topological vector spaces will be assumed separated and sequentially com-
plete. We make one more modification in the definition of “spectral measure”.
We shall assume the measure to be defined on the entire space and to be the
identity there (i.e., if µ is the measure and the Borel sets of C is the domain
of µ, then µ(C) = I the identity in the range space of operators under con-
sideration). This is not essential to the abstract development and is simply
a computational convenience.

The Riesz theorem has been proved in many contexts. In Banach spaces
the result is as follows:

Theorem 2.1 Let S be a compact Hausdorff space and let T be a weakly
compact operator from C(S) to X. Then there exists a measure µ defined on
the Borel sets in S and having values in X such that

(a) µ is regular and countably additive.
(b) T (f) =

∫
S
fdµ.

Conversely, if µ satisfies (a) and (b) for T , then T is weakly compact, that
is, the image of some neighborhood in C(S) is relatively compact in the weak
topology of X (see [8] VI.7.3). The theorem has seen extension in a number
of directions. For example, instead of C(H) (where H is compact Hausdorff),
one may consider C(H,Z) where Z is a Banach space and T : C(H,Z) → X
is the mapping (see [1], [3], [47] for example). The case where Z and X
are locally convex and quasi-complete has also been studied (see [13]). Even
weaker requirements on Z and X have been studied [45]. The requirement
that H be compact may also be relaxed to local compactness, etc. We desire
to extend the result above to the case where X is only assumed to be a topo-
logical vector space (without assuming local convexity). Our procedure will
be to prove a form of the Riesz theorem, following the Bourbaki approach
and then, translate the result into the one which we want. To carry out this
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program we shall need some notation and some elementary facts.

Definitions and Facts H will stand for a locally compact Hausdorff space.
K(H) shall be the space of continuous functions with compact support on
H. M is a topological vector space. It will make the notation simpler to
assume that M is metrizable with translation invariant metric | . |. We will
be able to discard this assumption at the conclusion of this section. If Λ is
a continuous linear map of K(H) into M (i.e.. for each ε > 0 and compact
K ⊂ H there is δ > 0 such that sup

t∈H
|φ(t)| < δ and support (φ) ⊂ K,

implies |Λ(ϕ)| ≤ ε), then define Λ0(f) = sup
|ϕ|≤ f

|Λ(ϕ)| for nonegative lower

semicontinuous functions f (abbreviate lower semicontinuous as l.s.c.)

Λ0(f) = inf
f≤ g

Λ0(g) (g is l.s.c.)

for f with compact support and, finally, for arbitrary f :

Λ0(f) = sup
h≤ f

Λ0(h)

h with compact support (but not necessarily continuous). If A ⊂ H, then
Λ0(χA) = 0 shall be the criteria for determining sets of “measure zero”.
(This gives meaning to “almost everywhere” (a.e.) type phases.) The above
definition is consistent and the following are true:

(i) if f ≤ g, then Λ0(f) ≤ Λ0(g).

(ii) Λ0(0) = 0.

(iii) Λ0(f1 + f2) ≤ Λ0(f1) + Λ0(f2).

(iv) Λ0(Σfn) ≤ ΣΛ0(fn) for any sequence {fn}.

(v) Λ0(f) = 0 implies f = 0 a.e.

(vi) If f is bounded with compact support Λ0(f) <∞, then lim
λ→0

Λ0(λf) = 0.

L1(Λ) shall be the collection of all functions of f such that for each ε > 0,
there exists ϕ ∈ K(H) for which Λ0(|f−ϕ|) ≤ ε. L1(Λ) is a topological vector
space with metric Λ0 and the functions equal to zero almost everywhere
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constitute a closed subspace of L1(Λ). Λ can be extended to L1(Λ) with this
topology in the obvious way. We note that if h is bounded and continuous
then hL1(Λ) ⊂ L1(Λ).

Λ will be called a Radon measure, if L1(Λ) contains all the bounded Borel
functions with compact support on H.

Theorem 2.2 Let the range of Λ be bounded on the unit ball of K(H). These
are equivalent:

(1) L1(Λ) contains all bounded Borel functions.

(2) Λ is a Radon measure and 1 ∈ L1(Λ).

(3) For every bounded l.s.c. f ≥ 0 and ε > 0, there exists ϕ ∈ K(H) with
0 ≤ ϕ ≤ f , and Λ0(f − ϕ) ≤ ε.

(4) Λ0 is regular, u.e., if χE ∈ L1(Λ) and ε > 0, then there exists a compact
K and open O s.t. K ⊂ E ⊂ O and Λ0(O \K) < ε.

(5) For each {ϕn}, ϕt ∈ K(H) such that
∞∑

n=1

|ϕn(t)| ≤ 1, lim
n→∞

Λ(ϕn) = 0.

(6) Λ maps weakly compact subsets of C0(H) into relatively compact subsets
of M (Λ can be extended to C0 by the boundedness condition).

Proof. We shall outline the proof of (6) → (5) → (3) → (2) → (1).

(6) → (5). Suppose Σ|ϕn(t)| ≤ 1. Then, ϕn(t) → 0 weakly. Thus
{Λ(ϕn)} is relatively compact by 6). Choose any subsequence {Λ(ϕnk

)}
which converges. (Metrizability of M allows us to use sequences.) Let
lim
k→∞

Λ(ϕnk
) = m and assume Σ|m − Λ(ϕnk

)| < ∞ by passing to a sub-

sequence, if necessary. Then lim
n→∞

[
n(m)− Λ

(
n∑

k=1

ϕlk

)]
= y exists, so

lim Λ

(
1

n

∑
(ϕlk)

)
= m. But, |

∑
ϕlk| ≤ 1 and so

1

n

∑
ϕlk → 0 uniformly

in C0; therefore, m = 0. This is (6) → (5).
(5) → (3). Let f ≥ 0 be a l.s.c. bounded function and ε > 0. There

exists ϕ ∈ K(H) with O ≤ ϕ ≤ f and Λ0(f − ϕ) ≤ ε. Suppose not. Then
there is ε > 0 and f such that

|Λ0(ϕ1)| > ε, |Λ0(f − ϕ1)| > ε
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and ϕ2 such that
|Λ(ϕ2)| > ε and |ϕ1|+ |ϕ2| < f

with Λ0(f − ϕ1 − ϕ2) > ε. By induction we get a sequence {ϕn},

Λ0

(
f −

k∑
1

|ϕn|

)
> ε, (Λ(ϕk+1)) > ε,

etc. But
0 ≤ Σ|ϕk| < f,

and this contradicts (5).
(3) → (2). From (3) it follows that we may extend Λ by continuity of Λ0

to χO where O is any relatively compact open set in H. It follows also that
characteristic functions of compact sets are in L1(Λ). If we define B(Λ) to be
all subsets E of H with the property that χE∩K is in L1(Λ) for all compact
K, then it can be shown that B(Λ) is a σ−algebra containing the Borel sets
of H. Let us show that if f is measurable with respect to B(Λ), then for
each compact K ⊂ H and ε > 0 there exists K ′ ⊂ K with Λ0(K −K ′) ≤ ε
and f |K′ is continuous (f is “almost” continuous on K). For suppose f is
B(Λ) measurable. Assume without loss of generality that 0 ≤ f ≤ 1. It is
enough to show that ϕf is almost continuous for each ϕ ∈ K(H). Since ϕ is
a Borel function, we can assume 0 ≤ f ≤ χK for some compact K. Since f is
a bounded B(Λ)−measurable function, there exists {fn}, a sequence of B(Λ)

simple functions with 0 ≤ fn ≤ χK , and |fn− f | ≤
1

n
. We have fn ∈ L1(Λ),

so since

Λ0(f − fn) ≤ Λ0

(
1

n
χK

)
→ 0,

we have f ∈ L1(Λ). Now let {ϕn} ⊂ K(H) be chosen so that

Λ0(f − ϕn) <
1

(2n)4

and write f(t) = limϕn(t) a.e. Define fn = ϕn − ϕn−1 (ϕ0 = 0).

Then Λ0(|fn|) <
1

2n
. Define

h(t) =
∞∑

n=1

n| fn(t)| <∞
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and Oα = {t : h(t) > α}. Oα is open since h is l.s.c. If α > 1, then

χOα ≤
1

α
h ≤

∑ n

α
|fn| and so,

Λ0(Oα) ≤ ΣnΛ0

(
1

α
| fn|

)
≤

N∑
n=1

nΛ0

(
1

α
| fn|

)
+

∞∑
N+1

n

2n
≤ ε

for large N and α. If t ∈ Oc
α, then Zc = H�Z

n
∑
k≥n

| fk(t)| ≤ h(t) ≤ α,

so
∑
fn(t) converges uniformly to f on Oc

α. This shows f is almost contin-
uous. We have seen already that B(Λ) must contain the compact sets in H
and the open sets with compact closure. Thus, Borel functions with compact
support are B(Λ) measurable and are therefore almost continuous. Let K
be compact, K = supp(f), f a bounded Borel function. Then for some

vp ∈ K(H), |f | ≤ ϕ, and for some K1 ⊂ K, Λ0(K�K1) ≤
ε

2n
(ϕ ≤ n) and

f |K1 is continuous. Let f be a norm preserving continuous extension of f off
K1. Define ψ = inf(ϕ, f), then ψ ∈ K(H),

Λ0(f − ψ) ≤ Λ0(χK1(f − ψ)) + Λ0(χK�K1(f − ψ))

≤ Λ0(2n(K�K1)) ≤ 2nΛ0(K�K1) < ε

Thus, f ∈ L1(Λ). This gives (3) → (2). (The fact that 1 ∈ L1(Λ) follows
from (3) for f = 1.)

(2) → (1). Notice now that if f is any bounded Borel function and K is a
compact subset of H with Λ0(χH/K) < ε

M
, M = [max | f |] ([.] is the greatest

integer function) (we can choose such a K since, by (2), 1 ∈ L1(Λ)), we can
choose ϕ ∈ K(H), f(t) ≤ ϕ(t) on K and let

g = inf(Φ, f)χsupp(ϕ).

Then, g ∈ L1(Λ) by (2), so

Λ0(f − g) ≤ Λ0(χK(f − g)) + Λ0(χH�K(2M)) ≤ 2ε,

so f ∈ L1(Λ) and (1) follows from (2).
The proof is complete.
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Remark 2.1 It is now easy to relate to our previous development. If Λ sat-
isfies one of the hypotheses of Theorem 2.2, then for any Borel set E ⊂ H, we
may define µ(E) = Λ(E) = Λ(χE). Thus µ is, we claim, a regular countably
additive M -valued Borel measure. The regularity follows from Theorem 2.2,
but we may give the following argument for countable additivity: let {En}
be a sequence of Borel sets decreasing in monotone fashion to ∅. Since each
En ∈ L1(Λ) for any ε ϕ > 0, we can choose Hn with Hn compact in H where
Λ0(En�Hn) ≤ e

2n for there exists ϕ ∈ K(H) with Λ0(χEn − ϕ) ≤ ε
2n ). Let

Hn = supp(ϕ), then

Λ0(En�Hn) ≤ Λ0(χEn − ϕ) + Λ0(χHc
n
· ϕ).

Now, choose Ln ⊂ Hn with χEn|Ln continuous and Λ0(Hn�Ln) ≤ ε

2n
. Then

let Kn = Ln ∪ En, so Kn is compact. Now let Mn =
n⋂

i=1

Ki, then En�Mn ⊂

m⋃
i=1

(Ei�Ki), so Λ0(En�Mn) < ε, but Mn ↑ ∅, so Mn = ∅ for some n.

Thus, Λ0(En) < ε for some n. This implies µ(En) → 0 as n → ∞. This
implies the countable additivity of µ. It is easily seen that µ is of bounded
semivariation because Λ0 is continuous on the bounded Borel functions with
the topology of uniform convergence (in particular, on the simple functions
with this topology) because 1 ∈ L1(Λ) by (2). (If f is a bounded Borel
function, let {fn} be a sequence of simple functions converging to f : |fn −

f | ≤ 1

n
. We have |Λ(f − fn)| ≤ Λ0

(
1

n

)
→ 0.) It follows easily that µ must

have bounded semivariation. It is now evident that (see [38])

Λ(f) =

∫
H

fdµ

for all bounded Borel functions on H. This now gives the usual version of
the Riesz theorem (see [33], p. 310, for example in the scalar case). We state
this as

Proposition 2.1 Let Λ satisfy the initial hypothesis of Theorem 2.2. If
Λ maps weakly compact subsets of C0(H) into relatively compact subsets of
M , then there exists a unique regular countably additive Baire measure with
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values in M which has bounded semivariation and such that

Λ(f) =

∫
H

fdµ (f ∈ C0(H)). (∗)

Proof. The existence of such a µ has been shown above. The uniqueness may
be shown as follows. Let µ1 and µ2 be two such measures satisfying (∗). We
may choose a sequence {fn} of functions in K(H) converging monotonically
to χK where K is a compact Gδ set in H. The dominated convergence
theorem (7.2.7 of [48]) shows that µ1(K) = µ2(K) and the “monotone class
theorem”, together with the countable additivity of µ1 and µ2, imply that
µ1 = µ2 on the Baire sets of H.

Remark 2.2 For our purpose it makes no difference whether we have the
Baire or Borel sets as the domain of the measures in Proposition 2.1, since
we shall apply the theorem only in the case where H = C or Cn.

In this section we have restricted ourselves to metrizable complete spaces
as the range of Λ. However, ifM is simply assumed to be quasicomplete (close
bounded sets are complete), then the results above still go through because
we may consider M as a subspace of the product of metrizable spaces. One

may show that if L1(Λ) is defined as
⋂
i

L1(Λi) where Λi is the ith projection

of Λ into the product space above, then the results above go through. The
justification of this is more or less standard and is left to the reader.

3 Scalar type operators in a topological vec-

tor space

We shall use the letters w.c.p. to stand for the “weak compactness property”
of Proposition 2.1. That is, a mapping Λ has the w.c.p. if the image under
Λ of weakly compact subsets is relatively compact.

Proposition 3.1 Suppose M is a topological vector space. Let B(M) be the
set of continuous endomorphisms of M and assume B(M) is quasicomplete
in the “strong operator topology”. (M is therefore quasicomplete.) Let T ∈
B(M) be such that σ(T ) is real and compact. Suppose that the mapping
which takes the space of polynomials P (σ(T )) in one real variable on σ(T )
with supp norm topology into B(M) by P → P (T ) is continuous and has the
w.c.p. Then T is a scalar type operator.
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Proof. We assume as in the hypothesis thatB(M) is quasicomplete. P (σ(T ))
is dense in C(σ(T )) by the Stone–Weierstrass theorem. Applying Proposition
2.1—Remark 2.2 to the mapping f → f(T ), we obtain

T =

∫
σ(T )

λdµ(λ).

To see that µ is multiplicative, we note the continuity of P → P (T ) shows
that ∫

fgdµ =

∫
fdµ

∫
gdµ

for all f, g ∈ C(σ(T )). Now appealing to the same argument used to show
uniqueness in Proposition 2.1, we may conclude that µ is multiplicative on
the Borel sets of σ(T ), and we can extend µ “by zero” to the Borel sets of
C. This concludes the proof.

Proposition 3.2 Let Λ be a continuous homomorphism of C0(X) into B(M),
and suppose Λ has the w.c.p. Then there exists a unique c.a. regular spectral
measure on µ on the Baire subsets of X with

Λ(f)x =

∫
x

fdµx.

Proof. Since Λ has the w.c.p., the existence of µ follows from Proposition
1.5. Since Λ(fg)x = Λ(f)Λ(g)x, we have

∫
fgdµ =

∫
fdµ

∫
gdµ. Processing

as in the proof that previous proposition, we obtain the fact that

µ(δ1 ∩ δ2) = µ(δ1)µ(δ2)

for δ1 and δ2 compact Gδ sets. Therefore the proposition follows.

Proposition 3.3 Let T be linear operator in M (perhaps unbounded and/or
discontinuous), and suppose T is closed and densely defined with non-empty
resolvent set ρ(T ). Suppose that for some λ ∈ ρ(T ), (λI − T )−1 satisfies the
hypothesis of Proposition 3.1. Then T is a scalar operator.

Proof. Proposition 3.1 shows that (λI − T )−1 is a scalar operator and an
application of (5.91) shows that T is a scalar operator. This completes the
proof.
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Remark 3.1 In the case of Hilbert space the “Cayley transform” of an un-
bounded operator can be used to prove the spectral theorem for unbounded
operators. (See Riesz–Sz.-Nagy [31, p.320], and von Neumann [28].) It can
be used in our context as well. If T is a scalar operator with σ(T ) in the unit
circle, we shall refer to T as a “unitary” operator. If we have

T =

∫
λdµ,

then let us denote the mapping
∫
λdµ by T ∗ in analogy to the locally convex

case (Hilbert space).

Assuming µ(C) = I, suppose that T is a scalar operator. It is unitary iff
TT ∗ = I. To show this, suppose T is unitary. Then

TT ∗ =

∫
σ(T )

λλdµ(λ) =

∫
σ(T )

|λ|2dµ(λ) =

∫
σ(T )

1dµ(λ)

=

∫
σ(T )

dµ(λ) = µ(σ(T )) = µ(C) = I.

If TT ∗ = I, then we have

TT ∗ − f(T ) =

∫
σ(T )

f(λ)dµ,

where f(λ) = |λ|2. The spectral mapping theorem (4.81) shows that f(ρ(T )) =
{1}. Hence if λ ∈ σ(T ), f(λ) = 1. Now we consider

Proposition 3.4 T is a scalar operator with real spectrum if and only if its
Cayley transform in unitary.

Proof. If T is scalar with spectral measure µ, then

∫
z − i

z + i
dµ is scalar. We

know
z − i

z + i
takes the real line into the unit circle. If (T − iI)(T + iI)−1 is

unitary, then a similar argument shows that T is scalar. For let

f(z) =
z + 1

i(z − 1)
.

If

(T − iI)(T + iT )−1 =

∫
λdµ,
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then

T =

∫
f(λ)dµ(λ)

and therefore T has real spectrum. This completes the proof.

Remark 3.2 Before going on we observe that a number of results of the
kind we have given above can be stated in a somewhat simpler form in the
locally convex case. For example:

Proposition 3.5 Let M be locally convex and for f Lebesgue integrable (f ∈
L1(R), R = the real line) let f denote its Fourier transform. T is a scalar
operator with real spectrum on M if for each x ∈M the set{∫ ∞

∞
f(t)e−2πitTxdt| |f |∞ ≤ 1, f ∈ L1(R)

}
is weakly relatively compact in M .

The idea of course is that the set above is the range of a transformation
whose domain is L1(R), a superset of C0(R) and the transformation is con-
tinuous and thereby the compactness criteria. The integral which appears
above may be interpreted as a Pettis integral. The compactness condition is
equivalent to the w.c.p. ( [15]). A proof is found in [38].

4 Product measures and functions of several

operators

Remark 4.1 Suppose µ1, . . . , µn are commuting complex spectral measures
in the sense of Remark 1I. Then as in Definition 4I we can define the “prod-

uct” of µ1, . . . , µn on the ring of “elementary sets” generated by
n
×
i=1
B(C)

(B(C) is the Borel field for C). If
n
×
i=1
µi has bounded semivariation on

n
×
i=1
B(C), then we can define∫

f(z1, . . . , zn) d

(
n
×
i=1
µi

)
for continuous functions which are linear combinations of continuous func-
tions of one variable with compact support. Since we assume µi to be defined
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on all of B(C), and µi(C) = I,
n
×
i=1
µi will be defined on

n
×
i=1

C and be the iden-

tity there. We may therefore, extend (by a standard density argument) the

integral to C0

(
n
×
i=1

C

)
= C0(Cn). (See the remarks preceeding Remark 5I).

Let us refer to the mapping f →
∫
fd

(
n
×
i=1
µi

)
as

Γ(f) =

∫
Cn

f(z1, . . . , zn) d

(
n
×
i=1
µi

)
.

Proposition 4.1 Suppose Γ has the w.c.p. Then there exists a unique reg-
ular c.a. measure on B(Cn) (the Borel field) such that

Γ(f) =

∫
Cn

fdµ (f ∈ C0(C
n)).

Furthermore, µ(E) =

(
N
×
i=1

µi

)
(E) for any elementary set E. (See the re-

mark following Proposition 4I).

Proof. The existence of µ follows from Proposition 2.1. The fact stated

concerning µ and
n
×
i=1

µi follows from considering elements of C0(C
n) of the

form
f1(z1)f2(z2)f3(z3) . . . fn(zn)

and using an argument similar to the uniqueness argument of Proposition
2.1. This completes the proof.

Remark 4.2 We have not addressed the problem of uniqueness of spectral
measures, and we will now do this before proceeding further. For unbounded
operators with nonempty resolvent set we can reduce the problem to the case
of compact spectrum by considering the spectral measure(s) of the resolvent
operator at some fixed point in the resolvent set. Suppose then that

T =

∫
σ(T )

λdµ1 =

∫
σ(T )

λdµ2

with σ(T ) compact. Let us also suppose that T can be decomposed uniquely
as the sum of scalar operators with real spectrum, T1 and T2 so that

T = T1 + iT2
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and the product of the spectral measures for T1 and T2 exists. Such a de-
composition obviously exists. Let

µ1 = µ′1×µ′′1, µ2 = µ′2×µ′′2

and

S1 =

∫
λdµ′2, S2 =

∫
λdµ′′2, T1 =

∫
λdµ′1, T2 =

∫
λdµ′′2,

then uniqueness implies that∫
λdµ′1 =

∫
λdµ′2

and the Weierstrass theorem, together with the considerations of Proposition
2.1, imply that µ′1 = µ′2 and, so, µ1 = µ2. In less general settings the proof
of uniqueness is based on Liouvilles theorem and the so-called “single-valued
extension property”.

Unfortunately, Liousville’s theorem is false without local convexity (see
[48, p.196]), and if we look this argument it appears that using some fur-
ther results of [48, Chap.VIII], one might construct examples of operators
with nonunique spectral measures. We shall meet this problem again below.
In any case, if we agree that a function calculus may depend on the spec-
tral measure involved, we shall not have troubles with ambiguity. We state
the following for completeness (the function theoretic notions used here are
defined for example in [17]).

Proposition 4.2 Let T be a scalar operator with compact spectrum, and
suppose that the function algebra R(σ(T )) (uniform closure of rational func-
tions with poles off σ(T )) has one of the following properties:

(i) σ(T ) is the Choquet boundary of R(σ(T ))

(ii) The planar measure of σ(T ) is zero.

(iii) σ(T )�E has planar measure zero where E is the set of peak points of
R(σ(T )).

Then the spectral measure for T is unique.
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The proof consists in noting that any of (i), (ii) or (iii) implies that
R(σ(T )) = C(σ(T )). (Unfortunately, (i), (ii) and (iii) are not “topological”
properties of σ(T ); that is, not invariant under homeomorphism, and neither
is “R(σ(T )) = C(σ(T ))” a topological property of σ(T ), and there is no “ge-
ometric” property of σ(T ) known to be equivalent to “R(σ(T )) = C(σ(T ))”.

Remark 4.3 Let T1, . . . , Tn be continuous scalar operators with compact
spectrum and let f be a Borel measurable function of n complex variables.
Then we define

f(T1, . . . , Tn)x =

∫
Cn

f(z1, . . . , zn) d

(
N
×
i=1
µi

)
provided

n
×
i=1
µi exists and

∫
f(z1, . . . , zn)d

(
N
×
i=1
µi

)
exists (Remark 4.2). It is also possible to define functions of scalar operators
with unbounded spectrum. In this case the definition above results in a slight
problem: the case where polynomial functions are considered. The definition
above gives an extension of the natural operator one associates with the
polynomial. We state this as:

Proposition 4.3 Let T1, . . . , Tn be scalar operators whose spectral measures
commute and whose product exists as in Remark 4.3. If f is a Borel mea-
surable function on Cn, then f(T1, . . . , Tn) is a scalar operator with complex
spectral measure, and for any polynomial Q in n variables, Q(T1, . . . , Tn)
defines an operator with a scalar extension.

Proof. If µ =
n
×
i=1
µi, and

f(T1, . . . , Tn)x =

∫
Cn

fdµx,

then Remark 1.8 implies that f(T1, . . . , Tn) is a scalar operator with spectrum
in f(supp(µ)).

We can extend Proposition 1.16 as
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Proposition 4.4 Let the hypothesis of Proposition 4.3 on µ =
n
×
i=1

µi hold,

and suppose f and g are measurable on Cn. Then

(a) D(f(T1, . . . , Tn)) = D(|f |(T1, . . . , Tn)).

(b) D(f(T1, . . . , Tn)) ⊆ D(g(T1, . . . , Tn)) if |f | ≤ |g|.

(c) f(T1, . . . , Tn) ∈ L(M), if f is bounded.

(d) (f + g)(T1, . . . , Tn) ⊇ f(T1, . . . , Tn) + g(T1, . . . , Tn).

(e) D(f(T1, . . . , Tn)+g(T1, . . . , Tn)) = D((f+g)(T1, . . . , Tn))∩D(f(T1, . . . , Tn)).

(f) D((fg)(T1, . . . , Tn))∩D(g(T1, . . . , Tn)) = D(f(T1, . . . , Tn)g(T1, . . . , Tn)).

(g) f(T1, . . . , Tn)µi(δ) ⊇ µi(δ)f(T1, . . . , Tn) for all Borel sets δ and all i =
1, . . . , n.

(h) f(T1, . . . , Tn) ⊇ µ(δ)f(T1, . . . , Tn).

Remark 4.4 In Proposition 4.4 the order in which integration is carried out

is immaterial. That is, µ(E) = (
n
×
i=1

µi)(E) where the factors µi may occur in

any order.
A useful addition to Proposition 4.4 is to allow the functions to be Cn-

valued. The argument may be carried out component-wise.

5 A Radon–Nikodym property

The following interesting result is related to the Radon–Nikodym theorem.

Proposition 5.1 Let µ1 and µ2 be complex spectral measures with the range
of µ1 containing the range of µ2 in L(M). Then there exists a Borel measur-
able function f s.t.

µ2(E) =

∫
χE ◦ fdµ1

for all Borel sets E τ i.e., µ2(E) = µ1(f
−1(E)).
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Proof. Let {En
i }∞i=1 be a Borel partition of the support of µ2, with diameter

(En
i ) ≤ 1

n
, and let Zn

i ∈ En
i for each i and n. We shall suppose that {Em

i }
refines {En

i } if m > n. Since µ1 and µ2 are spectral measures, it is easy to
show that we may associate Borel sets {F n

i } for each n to {En
i } such that if

m > n, then

(i) for each Fm
i there is a unique set F n

ji such that F n
ji ⊃ Fm

i and

(ii) Fm
i ⊂ F n

j if and only if Em
i ⊂ En

j .

(iii) µ1(F
n
i ) = µ2(E

n
i ) for all i, n.

(iv) F n
i ∩ F n

j = ∅ if i 6= j (if not, the standard procedure for constructing
disjoint sequences preserves (i), (ii), and (iii); (i), (ii), (iii) follow easily
from the range assumption on µ1 and µ2).

Define fn(z) =
∞∑
i=1

zn
i χF n

i
(z), zn

i ∈ En
i , then fn(z) → 0 for z ∈ C�

∞⋂
n−1

∞⋃
i=1

F n
i

and |fm(z) − fn(z)| ≤ 1

n
(m > n), on

∞⋂
n−1

∞⋃
i=1

F n
i , so fn → f uniformly on

∞⋂
n−1

∞⋃
i=1

F n
i , and f is bounded and Borel measurable. Let g be continuous

with compact support. Let gn(z) =
∞∑
i=1

g(zn
i )χEn

i
(z), we have

∫
gndµ2 =

∫
g ◦ fdµ1.

From 7.2.7 of [47], we may show that gdµ2 = g◦fdµ1 and so by the argument
for uniqueness in Proposition 2.1,

µ2(E) =

∫
C
χE ◦ fdµ1

This concludes the proof.
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6 Measures with values among the discontin-

uous operators

6.1 Review

We have shown above that if σ(T ) (spectrum T ) is defined as the complement
of

{λ | there is a disc Dλ centered at λ and for each piecewise

smooth simple closed curve c in Dλ,

∫
c

(zI − T )−1dz = 0, (6.1)

(zI − T )−1 is a continuous operator for z ∈ Dλ},

then the support of the spectral measure for T is σ(T ). This was also shown
to be the case for discontinuous operators as well. Part of the definition is
that the Riemann integral above exists. The Fubini theorem has also been
shown to be valid in the cases where we require it.

The Riesz theorem was proved:

Theorem 6.1 Suppose X is a quasicomplete TV S, B(X) is sequentially
complete for the strong operator topology. Let Λ be a continuous mapping
from the continuous functions vanishing at “∞” with sup norm topology
on a locally compact Hausdorff space Ω to B(X). Suppose Λ maps weakly
compact sets to relatively compact sets in B(X). Then there exists a regular
countably additive Baire measure µ of bounded semivariation such that

Λ(f) =

∫
Ω

fdµ. (6.2)

Further, if Λ(fg) = Λ(f)Λ(g) then µ is multiplicative.

We shall require a slightly different version to be stated in Section 8 below.
We now begin the extension of the theory to a wider class of operators.

6.2 Extension of the Abstract Theory

Let X be a (not necessarily locally convex) topological vector space which is
quasicomplete. B(X) denotes the continuous endomorphisms of X. R shall
be the class of the Borel sets of a metrizable locally compact Huasdorff space
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H (usually the plane). Suppose µ is a set function on R with values in the set
of linear mappings from A into X where A is a subspace of X which depends
on the value of µ under consideration. If D(µ(δ)) represents the domain of
the operator µ(δ) we suppose that there is a subspace K of X such that⋂

δ∈R

D(µ(δ)) ⊇ K (6.3)

and that K has the property that if x ∈ K, µ(·)(x) is a countably additive X-
valued measure which has bounded semivariation. We say that µ is densely
defined if K is dense in X and if µ(δ)(x) ∈ K for all δ ∈ R and x ∈ K. If,
in addition,

µ(δ1)(µ(δ2)(x)) = µ(δ1 ∩ δ2)(x) (6.4)

for all δ1, δ2 in R and x in K, then we say µ is a densely defined spectral
measure. It is not necessary to assume K is dense in X but then our results
become localized to a greater extent. Such measures where K is not dense
will be called ”locally defined.”

Multiplicative nature of

∫
fdµ.

We write µx(·) for µ(·)(x) where µ is some densely defined or locally defined
spectral measure, and if the expression for x is complicated then we write
µ( )(·)(z) where z is the expression.

Suppose f and g are simple Borel functions. Then it is easily shown that
(x ∈ K) ∫

fdµ( )

(∫
gdµx

)
=

∫
fgdµx =

∫
gdµ( )

(∫
fdµx

)
. (6.5)

Now let g approach a bounded Borel function (which we still call g) uniformly.
Then (6.5) defines ∫

fdµ( )

(∫
gdµx

)
. (6.6)

In particular, for f = χδ (characteristic function of δ ∈ R) (6.5) defines

µ( )(δ)

(∫
gdµx

)
. (6.7)
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From (6.5) it follows that the integral (6.6) is a map, continuous on the simple
functions with the topology of uniform convergence and therefore

µ( )(·)
(∫

gdµx

)
(6.8)

has bounded semivariation. We may and shall suppose therefore that

µ( )(δ)

(∫
gdµx

)
∈ K. (6.9)

Definition 6.1 If µ is a densely defined spectral measure, the support of
µ = supp(µ) is defined as the closure of the union of the supports of the
measures µx, x ∈ K.

Remark 6.1 It will be convenient in applications to consider an operator
T as “having a densely (or locally) defined spectral measure µ” if D(T ) ⊆
X ′ ⊆ X and

Tx =

∫
H

λdµx (x ∈ D(T ) ∩K)

where X ′ is a subspace of X with its induced topology and X ′ is not neces-
sarily invariant for values of µ. It is also possible that we may wish to place
some ”weaker” topology on X. In any case we have

Theorem 6.2 If T ∈ L(X) and

Tx =

∫
H

λdµx (x ∈ K) (6.10)

(H is the plane) then
supp(µ) ⊆ σ(T ).

(Inclusion may be strict.)

Note first that the following lemma can be proved as in Proposition 1.7
and Remark 1.8 above.

Lemma 6.1 Let f be a Borel function and g be a bounded Borel function,
and for x ∈ K, define (B, F are Borel sets)

mf,x(B) = µx(f
−1(B) ∩ F ). (6.11)
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Then ∫
F

g ◦ fdµx =

∫
f(F )

gdmf,x. (6.12)

Proof of Theorem 6.2. If λ ∈ ρ(T ) then there exists an open disc Dλ,
such that ∫

c

(z − T )−1dz = 0 (∀c ⊆ Dλ). (6.13)

If, on the other hand,

λ ∈

( ⋂
x∈X

{z | there exists Dz such that for all c ⊆ Dz, (6.14)

∫
c

(z − T−1)xdz = 0}

)0

,

then λ ∈ ρ(T ). Here, S0 means the ”interior” of S. However the set in (6.14)
is contained in ( ⋂

x∈K

{z | same as in(6.14)}

)0

. (6.15)

If z ∈ (supp (µ))c, then (z − T )−1x is∫
dµx(λ)

z − λ
(x ∈ K) (6.16)

by (6.5) if z is in (6.15) we may choose a disc Dz with center z such that∫
c

(λ− T )−1xdλ = 0 (c ⊆ Dz, x ∈ K). (6.17)

Let D′
z ⊂ Dz and define

µx = µx|D′
z
+ µx|D′c

z
(x ∈ K) (6.18)

we have, by an argument similar to that of Proposition 1.9 above, that

µxD′
z
(D′

z) = 0 (6.19)

so z ∈ (supp (µ))c and this gives the result.
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Remark 6.2 It can be shown that for each x ∈ K there is a unique open
maximal continuous extension of∫

dµx(z)

λ− z
(λ /∈ supp(µ)). (6.20)

Let f1(λ), f2(λ) be any two extensions with range in K and such that µ(·)
is continuous relative to f1(λ), f2(λ). Define f(z) = f1(z) − f2(z) in the
intersection of the domains of f1 and f2. Suppose Dz0 is a disc such that
f(z) 6= 0 in Dz0 . Choose zn → z0 in Dz0 . (z0I − T )f(z0) = 0 and∫

M

dµ()(z)

z0 − z
(z0I − T )µx(M) = µx(M) (6.21)

where M is closed, z0 /∈M . For x = f(z),

(z0I − T )µx(M) = µ()(M)(z0I − T )(x) = 0 (6.22)

hence µx(M) = 0. Whence taking M = {zn} and x = f(zn),

0 = µ{z0}(µ({zn})f(zn)) = µ({z0})f(zn) → µ({z0})f(z0). (6.23)

Let Mn be an increasing sequence of closed sets,
⋃
n

Mn = C \ {z0}. Then

0 = µ(Mn)f(z0) → µ

(⋃
n

Mn

)
f(z0) = 0 (6.24)

so
µ({z0})f(z0) = f(z0) = 0,

a contradiction.

Theorem 6.3 Suppose T is an operator with dense domain D(T ) where
D(T ) ⊆ X ′ ⊆ X. Suppose also that T has a densely defined spectral measure
µ so that

T (x) =

∫
λdµx (x ∈ K ⊆ D(T )), (6.25)

then
(i) supp(µ) ⊆ σ(T ).
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(ii) For any measurable complex-valued function f , there exists a dense
subspace Kf of K such that if x ∈ Kf , then∫

fdµx (6.26)

exists,
(iii) If f is as in (ii), then there exists a densely defined measure vf such

that

vf,x(B) = µ(f−1(B) ∩ F )(x);

∫
F

fdµx =

∫
f(F )

λdvf,x (x ∈ Kf ).

(iv) For polynomials P ,

P (supp (µ)) ⊆ σ(P (T )). (6.27)

(v) If f and g are measurable functions, there exist dense subspaces Kf ,
Kf,g, etc., such that in and for these subspaces

(a) Kf = K|f |,

(b) Kf,g ⊂ Kf+g, Kf,g ⊂ Kfg,

(c)
∫
fdµx exists if x =

∫
gdµy, y ∈ Kf,g,

(d)
∫
f ◦ gdµx =

∫
fdvg,x, (x ∈ Kf◦g),

(e)
∫

(f + g)dµx =
∫
fdµx +

∫
gdµx, (x ∈ Kf,g),

(f)
∫
fgdµx =

∫
fdµ()(

∫
gdµx), (x ∈ Kf,g),

(g) if fn(t) → f(t), fn, f Borel functions then∫
fndµx →

∫
fdµx

for all x in a dense subset of K,

(h) if |f | ≤ |g| then Kf ⊃ Kg, and if fn(t) → f(t), |fn(t)| ≤ |g(t) then∫
fdµx

exists for all x for which
∫
gdµx exists and lim

n→∞

∫
fndµx =

∫
fdµx for such

x.
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Proof.
(ii) Let

Kf =

{
x |x ∈

∞⋃
n=1

Kn

}
, Kn = µ(δn)(K), δn =

{
t
∣∣ |f(t)| ≤ n

}
.

Since δn → C if x ∈ K, then there is a sequence {xn} ⊆ Kf such that
xn → x; therefore, Kf ⊇ K.

(iii) For x ∈ Kf ,
∫

F
fdµx exists and in the right-hand integral we are

integrating over f(F )∩ f(δn) for some n. The equation follows from Lemma
6.1.

(iv) If p(λ) =
n∑

i=0

aiλ
i then

∫
p(λ)dµx =

∫
p(supp(µ))

λdvp,x (6.28)

and Theorem 6.2 shows (i) with only a slight modification.

(v) If f and g are measurable, Kf = K|f | is obvious. Define Kf,g =
∞⋃
1

Kn

where

Kn = µ(δn)(K), δn = {t
∣∣ |f(t)| ≤ n} ∩ {t

∣∣ |g(t)| ≤ n} (6.29)

then (b) holds. For (c) we note that∫
fgdµx =

∫
fdµ( )

(∫
gdµx

)
(6.30)

for simple f(g is bound for all practical purposes) and the result follows since
the left-hand side is continuous in uniformly convergent sequences {fn}. Thus
(f) follows too. (e) certainly holds by definition of Kf,g. For (d) choose

δn = {s
∣∣ |f(s)| ≤ n} ∩ f−1{s

∣∣ |f(s)| ≤ n}. (6.31)

For (g) choose

δn = {s
∣∣ |f(s)| ≤ n} ∩ {s

∣∣ |fk(s)− f(s)| < 1}. (6.32)

(h) follows from the proof of Proposition. This completes the proof.
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Note. Stronger results can be had provided one is willing to assume
something of the sort:

lim
n→∞

∫
fndµx exists (6.33)

implies

lim
n→∞

∫
gdµ( )

(∫
fndµx

)
exists (6.34)

for bounded g. See Proposition 1.13 above.

6.3 Examples

Theorem 6.3 develops the rudiments of an operational calculus. We might
define

f(T )(x) =

∫
fdµx (x ∈ Kf )

for a Borel function f . It can be shown that f(T ) may be discontinuous
even when f is bounded on supp(µ) and T is continuous. This is because
the representation

f(T )(x) =

∫
fdµx

may not be defined for all x ∈ D(T ).
We now illustrate the foregoing theory with a family of examples in a

non-locally convex space.

Example 6.1 Consider the operators Tf defined on Lp[0, 1](0 < p < 1) by

(Tfx)(t) = x(F (t))f(t) (x ∈ Lp) (6.35)

F (t) =

∫ t

0

|f(s)|pds, F (1) = 1, f > 0 in Lp. (6.36)

The lack of duality theory for Lp(0 < p < 1) has made these spaces fill a
pathological role mathematically (c.f. (1.2) of [16]). The continuous map-
pings on Lp(0 < p < 1) are essentially of the character of this example.

Theorem 6.4 Suppose X = Lp[0, 1] and T ∈ B(X). Then σ(T ) is compact.
Suppose σ(T ) is contained in a Jordan arc, and consider the map (x is fixed)

P|σ(T )
→ P (T )x ∈ X, (6.37)
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where P is a polynomial on σ(T ). Suppose the map is continuous when its
domain is given the sup norm topology. Then there exists a unique X-valued
Borel measure µx such that

P (T )x =

∫
σ(T )

p(λ)dµx(λ). (6.38)

Proof. Follows from a result in [37] and Theorem 2.2 above. The compact-
ness of σ(T ) is shown in [11].

Lemma 6.2 If P and Q are polynomials and the hypotheses above hold on
T and further if K0 is some nontrivial subspace of X and

P|σ(T )
→ P (T )x (6.39)

is continuous for all x in K0, then

x→ µx(δ) (6.40)

defines a linear map with range in X for all δ.

Proof. Consider x→ µx(δ), which is well defined by uniqueness (see Propo-
sition 1.5) for fixed δ. x1 +x2 certainly makes P → P (T )(x1 +x2) continuous
if x1 and x2 do, so we may indeed say K0 is linear.

P (T )(x1 + x2) =

∫
σ(T )

P (λ)dµx1+x2 =

∫
σ(T )

P (λ)dµx1

+

∫
σ(T )

P (λ)dµx2 = P (T )x1 + P (T )x2

(6.41)

and therefore
µx1+x2(B) = µx1(B) + µx2(B)

for all compact Gδ sets B and thus for all Borel sets.

Definition 6.2 Let K be the smallest linear manifold containing K0 which
is invariant under all the mappings

∫
fdµ( ) where f is a bounded Borel

function.
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We must now establish the existence of a subspace such as the one in the
Definition 6.2. Theorem 6.4 and the reasoning leading to expression (6.8)
show that when for some x, P → P (T )x is continuous then µ( )(δ)(

∫
fdµx)

is defined for all bounded Borel functions f . Now if we take K̃ to be the
largest subspace with the property that x ∈ K̃ implies

P → P (T )x (6.42)

is continuous, then K̃ is invariant under the maps
∫
fdµ( ). This argument

extends beyond Lp if the weak compactness property is added to the hypoth-
esis. We have no need of this however. Thus the collection of linear manifolds
containing K0 with the invariance property of K is nonempty and we have

Lemma 6.3 The subspace Kexists.

Lemma 6.4
µ(δ1 ∩ δ2)x = µ(δ1)µ(δ2)x (x ∈ K). (6.43)

Proof. For δ1, δ2 compact Gδ sets there exists polynomials Pn, Qn such that
Pn → χδ1 , Qn → χδ2 in bounded fashion on σ(T ). Then∫

Pk(λ)Qn(λ)dµx →
∫
χδ1∩δ2dµx,∫

PkQndµx =

∫
PkdµQn(T )x →

∫
χδ1dµQn(T )x =

∫
Qndµµ(δ1)x →

∫
χδ2dµµ(δ1)x

by the proof of Proposition 1.4. Thus

µ(δ1 ∩ δ2)x = µ(δ1)µ(δ2)x

and the lemma follows.

Lemma 6.5 ∫
fdµ( )(

∫
gdµx) =

∫
fgdµx

for all bounded Borel functions and x ∈ K.

Proof. This follows by Lemma 6.4 and the results of section 6.2.
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Remark 6.3 Consider again Tf defined in Example 6.1 above. It is easily
seen that σ(Tf ) = C1, the unit circle. For computational purposes we select
a specific f(t):

f(t) = (1 + kp)1/ptk, 0 < kp+ 1 < 1.

Note that ∣∣|Tf (x)|
∣∣p
Lp =

∣∣|x|∣∣p.
T−1

f exists and is defined by

(T−1
f x)(t) =

X(F−1(t))

f(t)
, (6.44)

F−1 is the inverse of F . Tf has a decomposition not unlike that of a spectral
operator and is the limit of operators with densely defined measures. To
show this, let 1/2 > δ > 0. Define

(Pδx)(t) = χδ(t)x(t) (6.45)

where χδ is the characteristic function of (δ, 1 − δ). The spectrum of PδTf

is contained in the unit disc and includes C1. Consider PδL
p[0, 1] and let

Tf act on this subspace of Lp[0, 1]. PδL
p is not invariant under Tf so we

consider the space PδB(X) (X = Lp) as acting on PδL
p. We shall show that

PδTf has a densely defined measure µδ supported on C1 (thus verifying the

parenthetical statement in Theorem 6.2). First suppose Q(x) =
n∑
−n

akz
k is

a trigonometric polynomial (|z| = 1). Consider the mapping

Q→ PδQ(Tf )x, x ∈ Pδ(L
p) (6.46)

We write T for Tf in what follows.

∣∣|PδQ(T )x|
∣∣p =

∫
|χδ(t)(a0x(t)+a±1T

±1x(t)+· · ·+a±nT
±nx(t))|pdt, (6.47)

T nx(t) = x(F n(t))
n−1∏
m=0

f(Fm(t)), T−nx(t) =
x(F−n(t))

n−1∏
m=0

f(Fm−n(t))
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where

F n(t) = F (F n−1(t)), F 0(t) = f(t)F−n(t) = F−1(F−n+1(t)).

It can be shown that PδT
±kx(t) = 0 for all that t and all large ±k (how

large depends on δ, see 6.56 below). Parseval’s equality therefore shows
that Q → PδP (T )x is continuous and therefore by (a slight modification
of) Theorem 6.4, we might have our measure µδ. It can be shown that the
same argument holds for x ∈ PβL

p[0, 1] whether β = δ or not. Thus µδ is

densely defined (K =
⋃

1/2>δ>0

PδL
p[0, 1]). If χδ, is the characteristic function

of [0, 1]\(δ, 1− δ), then
Tf = PδTf + pδ′Tf . (6.48)

Define Nδ = Pδ′Tf . Then

Tf =

∫
C1

λdµδ(λ) +Nδ (6.49)

(on K). Therefore Tf has a decomposition on a dense subspace similar to
that of a spectral operator. It is clear that Nδ → 0 as δ → 0. However Nδ is
not “quasi-nilpotent”, PδTf (pointwise) is! We do have

lim
δ→0

∫
C1

λdµδ x = Tfx. (6.50)

The question of computing µ is a vital one in any application and since the
solution of this problem for Tf leads to an interesting functional equation we
include it here.

Proposition 6.1 Let T = Tf . If (eis1 , eis2) is an “interval” (counterclock-
wise) on C1, then x ∈ K implies

µδ(s1, s2)x = lim
ε→0

1

2πi

∫ s1

s2

[Rδ(T, (1 + ε)eiθ)−Rδ(T, (1− ε)eiθ)]xd(eiθ).

(6.51)

Proof. Follows immediately from (6.39)-(6.43) (Rδ = PδR) and the Cauchy
integral theorem (see Proposition 1.5).
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To use (6.51) we must compute (λI−T )−1 directly since in Lp(0 < p < 1)
there is no hope for a kernel representation. This means that we must solve
the equation

λx(t)− x(F (t))f(t) = U(t) (6.52)

for x ∈ Lp, λ ∈ C. It is natural to expect two solutions, one for |λ| > 1 one
for |λ| < 1. They are

x(t) =
∞∑

n=0

λ−(n+1)U(F n(t))
n−1∏
m=0

f(F n−1−m(t)) (|λ| > 1),

−x(t) =
∞∑

n=0

λn U(F−(n+1)(t))
n∏

m=0

f(Fm−(n+1)(t))

(|λ| < 1).
(6.53)

Formally then

(µσ(s1, s2)x(t)) =

= lim
ε→0

Pδ

∞∑
n=0

{(
bn+1(t)(1 + ε)n+1

n+ 1
+

an(t)

(1 + ε)n+1(n+ 1)

)
[cos(n+ 1)s2−

(6.54)

− cos(n+ 1)s1] +

(
an(t)

(1 + ε)n+1(n+ 1)
− bn+1(t)(1− ε)n+1

n+ 1

)
i[sin(n− 1)s2 − sin(n+ 1)s1]

}
+ s2 − s1

where

an(t) = U(F n(t))
n−1∏
m=0

f(F n−1−m(t))

(n = 1, 2, . . . , t ∈ (0, 1)) (6.55)

bn(t) =
U(F−n−1(t))

n∏
m=0

f(Fm−(n+1)(t))
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Given our choice of f(t), we have

an(t) = U(t(kp+1)n

)(1 + kp)n/ptk
(

1− (kp+ 1)n

−kp

)
,

bn(t) = U(t(kp+1)−(n+1)

) · 1

(1 + kp)(n+1)/pt1/p
1− (kp+ 1)−(n+1)

1− (kp+ 1)−1

(6.56)

For
U ∈ K =

⋃
1
2
> δ> 0

Pδ(L
p[0, 1])

we have U(t) ≡ 0 for

t ∈ (0, δ(U)) ∪ (1− δ(U), 1)

where δ(U) depends on U . Since t(kp+1)n → 1 and t(kp+1)−n →∞, we see that
if t ∈ (δ, 1 − δ) then the terms in (6.56), and hence in (6.54) are eventually
zero. That is,

(Pδan(t))2 + (Pδbn(t))2 = 0.

It is not true that (an(t))2 + (bn(t))2 vanishes. Thus µδ may be computed
explicitly and so many projections of solutions to (6.53). Of course, the series
(6.53) converges in Lp. It may diverge pointwise as (6.56) shows.

Theorem 6.5 Let T be an isometry of Lp[0, 1] and suppose σ : [0, 1] → [0, 1]
is measure preserving and g : [0, 1] → R1 is Lebesgue measurable with g ≥ 0.
Suppose

(Tx)(t) = x(σ(t))g(t)

where σ(t) 6= t except perhaps on a nowhere dense (countable) set. Suppose
g(t) is bounded away from zero except on a set of a measure zero. Then T
has a “spectral” decomposition of the form

T =

∫
σ(T )

λdµδ +Nδ (6.57)

with Nδ → 0 as δ → 0.
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Proof. A Relatively easy modification of the previous discussion. The points
σ(t) = t become “nodal points” which must be “projected out”. The result
may be extended in various ways at the cost of simplicity (to Orlicz spaces
for example). We may extend

f(T ) = lim
δ→0

∫
f(λ)dµδ (6.58)

(f a Borel function), when it exists, to all of Lp in case f is analytic on σ(T )
(via the Dunford integral, see [11] to see that the integral of the resolvent
exists). This is also the case with many differential operators, i.e., we must
sacrifice generality of the operational calculus to obtain everywhere defined
spectral integrals.

7 Differential operators

For differential operators, the situation is somewhat different than in the
preceding examples. The reason for this is that most differential operators
are treated in the context of Hilbert spaces. “Most” of the projectors in the
range of the associated measure are bounded (but not Hermitian in general).
This makes it possible to obtain complete eigenfunction expansions in certain
cases (see [12]).

For a detailed treatment of some of these problems, we refer the reader
to [41] and [43].
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