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Abstract

This paper is devoted to a proof of the characterization without du-
ality theory, using strong integrals, while eliminating any assumptions of
barrelledness or equicontinuity.
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1 Introduction

In [1] we will indicate that some results regarding the characterization of
scalar type operators in Banach spaces can be generalized to the locally
convex case rather simply. In this note we will indicate briefly how this can
be done with a result of Kluvanek [2] (see Kantorovitz [3]).

Kluvanek’s paper [2] is concerned with a problem somewhat more general
than the one we will look at but the interested reader will see that we could
carry out his program by the same technique as used here.
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One interesting aspect of our work here is that we are able to construct the
proofs entirely without duality theory. The use of linear functionals is kept to
a minimum, and while some of the results (especially some lemmas) appear
to depend on local convexity, this can even be avoided as in [1]. However,
local convexity, is apparently necessary to avoid certain problems with some
of the integrals involved and to allow the use of results in [4]. The reader
will also note that the spaces involved are not assumed to be barrelled nor
the spectral measures equicontinuous. This is an improvement over previous
work in the area.

2 Notation and Preliminaries

L(X) will be the continuous endomorphisms of a quasicomplete separated
locally convex topological vector space X; we assume L(X) is quasicomplete
for simple convergence. S will be a locally compact Hausdorff space and
C0(S) will be the continuous complex valued functions on S which vanish at
infinity. ‖f‖∞ will denote the supremum norm of f , and f̂ will denote the
Fourier transform of a function f on R′ the real line.

Lemma 2.1 Let B be the Borel subsets of S. Suppose P : B → L(X) is a
regular countably additive set function and D is a dense subalgebra of C0(S).
If S is a metric space and∫

fgdP =

(∫
fdP

) (∫
gdP

)
for f , g ∈ D, then P is multiplicative (i.e., P (E1 ∪ E2) = P (E1)P (E2) =
P (E2)P (E1)).

Proof of Lemma 2.1. The proof may be done using the fact that P has
bounded semivariation and by considering the argument in (2.5) of [1].

Lemma 2.2 Let D be as in Lemma 2.1 and consider φ : D → X. Suppose

(∗) = {φ(f) | ‖f‖∞ ≤ 1, f ∈ D}

is relatively weakly compact in K.
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Then φ is a continuous operator and there is a unique X-valued countably
additive regular set function m such that

φ(f) =

∫
fdm

for f ∈ D. Conversely, if such an m exists, then (∗) is relatively weakly
compact.

Proof of Lemma 2.2. See Lewis [5], page 164; or, when [6] appears, use
Theorem 4 with the proof of Lemma 2 in [2].

Remark 2.1 The fact that φ is continuous on all of C0(S) can be inferred
from the fact that in a locally convex space weakly bounded sets are bounded
and from the fact that bounded linear maps from an F -space to a topological
vector space are continuous.

3 Characterization

Theorem 3.1 Let T ∈ L(X). T is scalar with real spectrum if and only if

(+) =

{∫ ∞

−∞
f(s)eisT xds

∣∣∣∣∣ ‖f̂‖∞ ≤ 1, f ∈ L1(−∞,∞)

}
is a relatively weakly compact subset of X for x ∈ X.

Proof of Theorem 3.1. The map f̂ →
∫

f(s)eisT ds is continuous and weakly

compact and, therefore, by Lemma 2.2,
∫∞
−∞ f(s)eisT xds =

∫
f̂dµx for each

x ∈ X. If x′ ∈ X ′ the continuous dual of X then recalling that µx is bounded∫ ∞

−∞
f(s)(eisT x, x′)ds =

∫
f̂d(µx, x

′)

=

∫∫ ∞

−∞
f(t)eistdt d(µx(s), x

′)

=

∫ ∞

−∞
f(t)

∫
e−istd(µx(s), x

′)dt

=

∫ ∞

−∞
f(t)

∫
e−istd(µx(s), x

′)dt
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and, therefore,

(eitT x, x′) =

∫
eistd(µx(s), x

′)

by continuity of eitT x in t. Since eist is bounded,

eitT x =

∫
e−istdµx(s). (3.1)

Define P (E)(x) = µx(E). Then P is L(X) valued countably additive and
regular (in the strong operator topology). Now it is easy to see that if
f ∗ g(x) =

∫∞
−∞ f(x− y)g(y)dy, then∫

f ∗ g(s)eistxds =

∫
f(t)eitT dt

∫
g(u)eiuT xdu

for all f , g ∈ L1(R1). Therefore since f̂ ∗ g = f̂ ĝ, (Px(E) = P (E)x)∫
f̂ ĝdPx =

∫
f̂dP

∫
ĝdPx

for all f , g ∈ L1(R1). Since L̂1(R1) is dense in C0(R1), by Lemma 2.2, P
is multiplicative and setting t = 0 in (3.1) gives P (R1) = I the identity in
L(X). Hence P is a spectral measure.

Notice eist−1
it

→ s as t → 0 and using Proposition (4.1) and Proposition
(5.4) of [1] we have (the proof of (5.4) is what is required)

Tx = −
∫

λdPx

for all x in a dense subset of X and if δn = [−n, n], then it is clear that
TP (δn)x = P (δn)Tx → −Tx for all x by continuity of T and since

∫
λdPx is

closed and lim
n→∞

∫
δdP (δn)x = −Tx we have −

∫
λdPx = Tx for all x. There-

fore, T is scalar. Conversely, if Tx = −
∫

λdPx, then eisT x =
∫

eiλsdPx and
one can show that eisT x is continuous in s and bounded as in [2]. Further-
more,

∫∞
−∞ f(s)eisT xds exists as a Pettis integral by Thomas [4] for every

f ∈ L1(R1), and this implies

f̂ →
∫ ∞

−∞
f(s)eisT xds =

∫∫ ∞

−∞
f(s)eisλdP (λ)xds
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or (∫
f(s)eisT xds, x′

)
=

(∫∫
f(s)e−isλdPx(λ)ds, x′

)
=

∫∫
f(s)e−isλd(Px(λ), x′)ds

=

∫∫
f(s)e−isλdsd(P (λ)x, x

′)

and so
∫

f(s)isT xds =
∫

f̂(λ)dPx(λ) and, therefore, (+) is relatively weakly
compact by Lemma 2.2. This completes the proof.

A very well-known result of Bochner is:

Theorem 3.2 If φ(t) is continuous for −∞ < t < ∞ and has the property
that ∣∣∣∣∣

n∑
r=1

crφ(tr)

∣∣∣∣∣ ≤ K sup
z∈R

∣∣∣∣∣
n∑

r=1

cre
zitr

∣∣∣∣∣
holds for all finite complex sequences {cr} and rational sequences {tr} then
there exists a complex measure ν such that

φ(t) =

∫ ∞

−∞
eitzdν(z), ‖ν‖ < K.

Using this result and the methods of 3.1 above and Lemma 7 of [3], we obtain
the following (we omit the proof).

Theorem 3.3 Suppose the operator T ∈ L(X) satisfies the following where
x ∈ A a bounded subset of X and x′ ∈ A′ an equicontinuous subset of X ′

sup
x∈A

x′∈A′

∣∣∣∣∣
n∑

r=1

crx
′e−2πitrT x

∣∣∣∣∣ ≤ M sup
t∈R

∣∣∣∣∣
n∑

r=1

cre
−2πitrt

∣∣∣∣∣ .

Suppose in addition that X is weakly sequentially complete. Then T is a
scalar operator with real spectrum.
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