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and define

m

o(u,y,r)= 3, rd(u,)>. (3:26)

i=1

It is easy to verify as in Example 2, that assumptions A.1, A.2, A.3, A4, and
A.5 are satisfied.
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This paper is a discussion of the perturbation of operators in certain of their
invariant subspaces. The program is carried out by the study of the simple non-
trivial example, the equations of linear elasticity.  © 1987 Academic Press, Inc.

0. INTRODUCTION

The perturbation of operators has been studied in many ways. We
introduce one more here. The method is to study the spectral properties of
operators when certain of their invariant subspaces are perturbed and
coupled by compact mappings.

One of the simplest nontrivial examples which displays just enough com-
plexity to be useful is given by the equations of linear elasticity. Rather
than propose a general abstract theory we choose to study these equations.
The invariant subspaces of interest are determined by the pressure, shear,
and stationary modes of propagation.

The propagation of waves in an elastic medium may be studied formally
through the equation

du=Au+ f(x, 1), (0.1)
where A is determined by ‘
n a
A=Ex)"" Y 4, —=+ Bu. (0.2)
o 0x;

The A4, being symmetric constant matrices and E(x) a positive real sym-
metric matrix (see [3, 8]). The difference A4 — A, of the operator (0.2) and
A, the isotropic version, is assumed to be an integral operator of Fourier
type. If this difference has special properties relative to the isotropic
pressure and shear waves then 4 may be studied using the spectral theory
for nonself-adjoint operators. Using some techniques from [§] we show
how to apply the abstract theory of [11].
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58 WILLIAM V. SMITH

The technique probably applies to any appropriate perturbation of an
equation decomposable as a direct sum of wave equations.

The study of A=4,+ (4—4,) may be thought of in terms of the
steady-state solution of (0.1). In Section 1 we outline material mostly taken
from [8]. In Section 2 we examine a portion of the steady-state solution
and this is completed in Section 3. In Section 3 the existence of a local spec-
tral measure is shown, and in Section 4 some related problems are men-
tioned.

1. ELASTIC WAVES IN UNPERTURBED MEDIA

We discuss now the case of 4,. The equations for elastic waves in an
isotropic medium may be written in the form (see [8]),

Pw=udw+ (A+u)V(Vow), (1.1)

where w is the displacement vector, A and u are the so called Lamé
parameters of the medium. Equations (1.1) may be written as a first order
system and it is this form we will study. Setting {e;} equal to the com-
ponents of the strain tensor and v = (v,, v,, v5) the velocity vector, (1.1)
may be written as

a,u:(z* A)uzA(D)u——Alu, (1.2)

where

u=E(¢” +es tess, e — ey — 2633, 811 — €3, 2815, 2e43, 243, U103, U3).
(1.3)

Here e;=3'(2;w;+2;w;), v;=2,w; and E=C" with
C=diag(h+3m uf3 w1, 1,1, (1.4)

We set C,=C with the last three rows and columns deleted. 4 is the
operator

D, D, D,
D, D, —2D,
D, —-D, O

D, D, 0 T
D, 0 D,
0 D, D,

cye
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D; has the meaning i(6/0x;), i=+/—1. The symbols Z(R", C™) and
& (R”, C™) stand for the Schwartz spaces and for fe % the Fourier trans-
form \

(<15f)(P)=fRn e=7°*f(x) dx=f(p) (1.6)

of f defines an isomorphism of & which extends by continuity to
L?*(R", C™) and by duality to the space of tempered distributions. The
relation of @ to its adjoint @* is

(@1 )(p)=F(p)= (¥ )(—p)=f(—P). (L.7)

The symbol of A(D), A(p)=DPA(D) is 9x9 matrix-valued function of
(s 4 p), p=(py1, P2, P3) €RP\{0}. The eigenvalues of A(p) are &' (p)=

+(A+2u)" |pl, &4 = +u'?|pl, &o(p) =0, each of £ having multiplicity
two while &,(p) has multiplicity three and ¢L has mu1t1pl101ty one.
Corresponding to each of these eigenvalues is an orthoprojector Pﬂ, P,
P, satisfying

A(p)Pizéi(p)Isi' (1.8)

These projectors give the resolution of the identity for A(p),

I=P_,+P, +P_,+P,+P,. (1.9)
The 9 x 9 matrices representing P; may be computed by the formula

Px)=(—2mi) " | [A)-¢N7de (110)

1€ilx)—¢l=

The computation is tedious and we simply list the results .

y CZ (w +D% (w
iz(W)=%[ 626( ) 63 ):l} (1.11)
iE'3><6(M)) ‘F%X3(W)
where p/|p|=w and-
1—w?  wiw, wyw,
Fi(w)= [Wlwz L—w3 wyws ] (1.12)
wiws  wows 1 —wj

with
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C2, o(w)=A(w) (ﬂ;ﬂ) A*(w), (1.13)
B =(T) Ao (1.14)
2 ~ FZ("’))
3 =4 . .
D5 5(w) (w)( p (1.15)

PJrl may be computed by substitution of F'=T1—F? for F*in (1.11) and
A+ 2u for pin (1.13)—(1.15). Po(w) may then be computed by (1.9).

We shall set H=L*R?, C°) and consider solutions of (1.3) in terms of
H. The orthoprojectors P, define selfadjoint projectors on H via the
operators

P =0*P . (w)®, j=0,1,2 (1.16)
From this point on we write

P=P_,+P,,. (1.17)

These projections commute with 4(D) where the domain of 4(D) is taken
as

D(A(D)) = {ue L¥(R?, C°) | A(D)ue LA(R* C°)}. (1.18)

The derivatives in (1.18) are taken in the distributional sense.

The projections P, determine the modes of propagation of solutions to
(1.2) with P, H being the stationary data. To obtain a solution to the wave
propagation problems considered below for so-called globally acting per-
turbations, it appears that the difference operator B must be restricted
somewhat in terms of its distortion of the pressure, shear, and stationary
waves. Basically, we allow for such waves to be “globally coupled” by B
only in a restricted fashion (though not necessarily with bounded support).
Set H,=P, H, H,= P, H. There exist mappings 7,, ¢, on H,

o;: H—BL(R: (A+2u)"2 C)@ LR C),  (1.19)
o¥: BL(R? (1+2u)" C)@® LX(R?, C) > H, (1.20)
oy H—BL(R?, p2, C?) @ LX(R?, C?), (1.21)
o¥. BL(R3 u'2 C?)@® LA(R> C*)~> H, (1.22)

with P,c¥=0¥ o,P,=0, and P,0%=0%, 0,P,=0,. Here BL refers to
Beppo-Levi space (the distributions on R* with square integrable
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gradient). The mappings ¢, and o, are given by the pseudodifferential
operator kernels ¢,, 6,, where

WA+ 2uN2 6 _ ap(w)IXG 0,43 :|
(2(A+2u)) 7 64(w) [ Orve i)y s Jans’ (1.23)
- x(w)2x6 07
(2003 +w3)" ° w0
wi+w3))" 6,(w)= Onre  ib(w)ars lirs (1.24)

2 172
a,(w)= ((i—i— 3#) , (g) (1 —=3w2), u (w2 —w2), 2u"w, w,, (1.25)

2uwyws, 2u'w, W3>=

b (w):((2.+2u)1/’ wi, (A+20)" wy, (A+2u)? wy), (1.26)
o (w) :I: 2wy wy wi—w? WoW3 —WiW; }
3w3(w +wld) wi(w2—w2) 2wywows w(2wi—1) w(2wi—1)]
(1.27)

w5

S(w)= .
wiwy wows  —(wi+w3) (1.28)

Here a, a,, b, b, are obtained as eigenvectors spanning the subspaces of
C® generated by P, and P, as in [8]. (Note that A(D) has rank 6.)
The mappings o*, and ¢¥ are obtained by substitution of the adjoints
‘a,, 'by, ‘a,, 'b, for ag, etc, in (1.23)—(1.24) (change i to —i).
Now we make the following assumptions on B=4 — 4,:
(1) Bis a closed operator and D(B) =2 D(A4).
(2) P;Bis closed.
(3) P;BP;is compact if i # j.

(4) P;BP;is the “preimage” of an L matrix function (j#0) (K%) on
o;H;. (ThlS is the form a perturbation would take in the “wave equation”
format (1.1).)

2. THE PROJECTED PROBLEM

DEerFINITION 2.1.  Set

0=0,Q0,, (2.1)
c*=0¥®0c%, (2.2)
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where
o: H— (BLxL?),® (BLxL?),, (2.3)
o*: (BLxL?),® (BLxL?),—H, (2.4)
by .
af =0,f®0,f, (2.5)
o*(hy®@hy)=0cFh,+o5h,. (2.6)
Note that
a(I—Py)=ao, (2.7)
(I—Py)o*=c™ (2.8)

Consider the equation
i0,Pu=P(A(D) u)+ PBu, 2.9)
where P=1— P,. We then have
i0,Pu= A(D) Pu~+ PBPu+ PBP,u, (2.10)
i0,Piu=A(D)P,u+ P,BP,u+ P,BP,u+ P,BP,u,
id0,Pyu=A(D) P,u+ P,BP,u+ P,BP,u+ P,BPyu,
A(D) Piu+ P,BP,u+ P,BP,u+ P BPyju— (P u=P,f,
A(D) Pyu+ P,BP,u+ P,BP,u+ P,BPyu— (P u=P, f.

(2.11)

The second two equations in (2.11) are the steady-state equations for fre-
quency & and source function f.
We have

P,BPu= Z Wi (u, Py P (E#7), (2.12)
=1
where (¥¥, /)=, and (, ) denotes the inner product of H.
We shall consider the problems of (2.11). To begin, we shall suppose that
the operator

D)+ Y P,BP,—¢l=T— 51 (2.13)

j#0

has a bounded inverse (T'— éI)~! on H for all ¢ in C except for points on
the real axis together with points in a discrete set of complex numbers
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which generally lies both above and below the real axis. (These
assumptions will be justified below.) Now with the equations

PA(D) u+ PBu— Péu—Pf, (2.14)

A(D) Pu+ PBu— £Pu=Pf,
(T—¢D) u+ Au=Pf, (2.15)
+(T—ED)~ ' Au=(T— ¢~ Pf, (2.16)
u=(I+(T—EN~' 4) " (T—¢N~! Pf (2.17)

We see that a solution u to (2.14) exists if the inverse operators in (2.17)
exist. It is therefore not to be expected that a solution to (2.14) will exist in
H when ¢ is real. Our procedure is to first establish conditions under which
(T—¢&N)~ ' and (J+(T—¢&I) A=)~ exist and then to apply this infor-
mation to the solution of (2.1) via the limiting absorption principle. We
shall require certain information concerning A(D).

LEMMA ‘2.1. Suppose & ¢ R. Then for Ry(&n)o = PoRy(E) =
Pa(A(D)—-¢nt

[ £ 1 T
0 0
win*—& win? =&
¢ 0o Lt
wln?—¢ uln)*—=¢&
Ry(& )= 2
0 é‘|’7| _ f . 0
=&+ ulnl ponlm =&
ALk 0 ¢
i —E+pun? wln* =& |
_ £ 1
o| EHGF T —Er@ra | (g
(A+2u) In)? ¢

=&+ @A+2m) Inl* =&+ (A+2p) In|?

We now take up the task of computing the “resolvent” of the operator T’
designated above. Since existence—uniqueness results for

Tu—Etu=f (2.19)

are not available in immediate form, our task requires us to examine A(D)
and its relation to 7" .carefully.

409/121/1-5
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3. THE HELMHOLTZ EQUATION FOR T

To begin, we use the transform ¢ on (2.19) to obtain

UTG*g—%g:af, (3.1)

where we suppose a*g e D(T). For the moment let us suppose that B=0.
Then

g=(cTo*—AI)~"' of. (3.2)

The inverse of aTa* — Al being defined by (2.18). In the general case B#0
the method of solution is to seek g in terms of the solution of (3.2) when
B=0. If the solution of (3.2) in the general case is to be anything like the
simple solution, some asymptotic conditions must be placed upon

2
s Y P.BPc*. (3.3)

i=1

We have already assured that (3.3) is determined by an L? function. More
specifically, we have
2

a P,BP,=K;®K,0, (34)
=i
where
i j@} (1+ [x])t* K (x)]1? dx < 0 (3.52)
and
(1+|x)+92 K H*xH'<cH'xL® (3.5b)

for some &>0. The condition (3.4) has a natural interpretation when B is
similar to an integral operator in L*(R?, C°). We shall further require some
conditions on certain of the rows and columns of (3.4). Such will be
specified below. The condition (3.5) is a measure of the influence of B (in
the appropriate subspaces of L2*(R? C°)). Condition (3.5) does not
necessarily indicate that the influence of B decreases with distance from the
origin.
The following lemmas are required.

LemMMa 3.1. There exist bounded matrix-valued functions Kj, K such
that

(K)~'K,e LR, C™),  i=1,2,n,=4,2
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and
Ki(x :
Z J | X < 00. (3.6)
ysR3i 1
LeMMma 3.2.
K ®K,: (H*xHYWQH’xH") > (H'xL*)*® (H'x L)%
LemMma 3.3.
(B*Ro(P, £))(x— y) = Ro(x, y) + Ro(x, », ),
where
0 0 0 0
0 0 0 O 0 0
R 3
oBN=156-y 0 0 0 LS(x—y) o} 37
0 5x—y) 0 O
and
Rf(x,9,8) im ¢ >0
Ry(x,y,6)=13%° . ’ .
iy ={ g e 638)
where
E 0 10
Cooexp(xipdPElx—yl |0 & 01
R =u;12C 5
0 0 [x— ¥l &£ 0 ¢ 0
0 & 0 ¢

; 1/2 _
(A+2 ) 1/2 ,,eXp(iz(l [;2_.[1;4 ilx yl lifj 2:| (39)

Let Ry, be~ the operator generated by Ry(x,y), R, the operator
generated by R .

The proofs of the preceding lemmata are elementary computations based
on the assumptions about B and (2.18). Note that (2.18) and Lemma 3.3
give another proof that the spectrum of 4(D) is entirely continuous except
for £ =0 which is a point in the discrete spectrum with infinite multiplicity.
In the following lemmas unless otherwise stated, we consider the domain of
an operator to be in. L*(R3? C*)® L*(R?, C?).
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Lemma 34. Let ]
K, @K, RF (K1) ™' K, ® (K3) ™' Ko = (s (x, », £)) ® (a5 (x, 3, ©))-
Then

M(lmf Ymax{|¢]% 1}, imé>0

J‘RBJ IS (x y: 5)|‘dxdy< N Z “K1||L2maX{|§l4, l}, lm£>0,

=1 (3.10)
j j lagt (x, y, E)|2 dx dy < {similar t0 (3.10);
[R3 R3

a similar set of inequalities holds for s—,a".

Lemma 3.5. Let
[ (@K Rol, p)(KD) T KD @ (K3) ™ Ka)udy=Aw. (3.11)
R3

Then for K, ® K, = (k}) ® (k3),

o 0 o0 O
o 0 0 O 0 0

Hu= ® [ 7 ] (3.12)
ki, ki, ki kis ko ki

ki ks Ky ki
Suppose that | A (x)| ~O(|x| ~'~%), |x| » 0, >0, and zero is not in the
essential range of
(y—k1)(y —kia) —kiakas  or  y? vk, V
then (yI—A")~" exists as a bounded operator on L*(R®, C*)® L*(R®, C?).

Proof of Lemma 34. We do only the + case for im £>0. To simplify
notation we write (K") ™" (K') = (k}),
exp( 2lmélx y) 2

’)

&) ky(y)

it

)
(n) exp(— 71m§|x yl)

2 Ix— y|?

ey ()1

2

(5 a5 0)

2
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where 6,(£)=1,0, &, or &% Equation (%) is equal to

4 4 - —21 -
ny2) 22 Imfllzx y')lk;-’(x)lzléﬂ(é)lzlké‘(y)lz

|x —

2
2 ﬂnexp( lmilzlx yl) kL ()2 |k (¥)? dx dy

X |511
exp(—2im £|x —y|)

. dx.
— P (At ) =

<l 5 max{[El% 1) su

and a similar argument gives the result for a*, etc.
The proof of Lemma 3.5 is left to the reader.
LemMMA 3.6. Ler z be fixed. Denote by s(z) the operator generated by

(s*®a*)(w, y, z). Then for y and A" satisfying the hypotheses of Lemma
3.5 we have

I+ A +3(2) " =+ K) 7 = I+ K) 7 {IT+s(z) (I + K)
xs(z)(y[+K)~? . (3.13)
when the appropriate inverses exist.

Proof. Multiplication of the right side of (3.13) by y/+ K+s(z) on
either the left or right results in the identity.

LemMa 3.7. s(z)(pI—K)™' is an analytic operator-valued function in z,
continuous in the closed upper and lower half z planes.

Proof.

(s(21) = $(22))/(z1 — 22) = —K{ ® K3 Ro(z1) Ro(2:)(K}) ™' K, ® (K3) 7' K,
by the resolvent identity. Since

Ro(z1) Ro(z2) = — K| ® KlzRo,oRo,1(Z1)(Ki)_1 K, ®(K;) 'K,
— K1 ®K5R,1(25) Roo(K7 ) K1 ® (K3) ™' K,
- [Ki1® K] Ro,1(22)[(K1_1) K ® (ng)71 K]

and since K, K, are bounded, it suffices to show that R,,(z)[K{ ') K, ®
(K3) "' K,] is a continuous function of z when im z>0. Since the matrix
portion of R, is certainly continuous in z it remains to show that the

associated integral operator R, q(k;)~" (k;)® (k3)~ 'k, is a continuous
function of z in the complement of the real axis. Ry, is of the form
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clexp(ziz |x—y|) |x—yl| ~1the + or — is chosen according to whether z
is above or below the real axis. Here we think of the real axis as having a

top and bottom “edge.” We define R, , on the “top” edge using +, on the

“pottom” edge using —. Let [|-|| denotes the Hilbert-Schmidt operator
norm. We have (im z > 0)

IHRO,I,O(ZI)[(KI)—I Kl ® (Kz)-l Kz] _Ro,l,O(Zz)[(K1)_1 K1 ® (Kz)—l Kz]“l
ZL@ JRz LK) K ® (Ky) ™ Ko 1(x)1?

X IRO,I,O(X’ Y, Zl) _RO,I,O(xa Y, 22)12 dx dy'

This integral may be decomposed over the four domains

(Ix| <R, |yI<R),
(IxI >R, [y| <R),
(
(

|x| >R, |y| > R),
|x| <R, |yl >R).

D,
D,
D,
D,
Over D, we use the estimate

|exp(iz, |x — y|) —expliz; |x — y])| < |z, — 22| [x =yl (3.14)

and for z,, z, in a bounded set (im z,>0) the integrals in the other three
domains may be made uniformly small by taking R large enough. To see
that s(z) is continuous down to the edge of the real axis, we have
(im z, >0, im z, >0),

lls(z,) — s(z) I

expliz, = 1) =explizz e —31) 5.
[x—yl
X |(Ky) ™ K, ® (K3) ™! Ka(p)]? ' (3.15)

=[] o+ [+ [+ [ . e
x| <R Y|yl<R |x| >R Y|y|<R |x] <R Y|y|>R |x|>R “|yl<R

Since the last three integrals in (3.16) are uniformly small for z;, z, in a
compact set and for large R we consider the first integral in (3.16):

o(zy)

=[ [ ke
RS

R3

J f < f |K} ® Ki(x)|?
<R pl<k  dx<rI<r  [X— )7

x[(K1) 7' K ® (K5) ™! K, |? B(x, p, 21, 25) dx dy, - (3.17)
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where
“B(x, , 21, 2,) = (18(z,)| lexp(iz, |x — y|)| —exp(iz, |x — y|)
—16(z,) — 6(z,)| lexp iz, |x — y||)? (3.18)

and &(z,) is the tensor in (3.9). Using the estimate (3.14) and noting that
4(z) and (exp iz |x — y|) are continuous in z we obtain the required result.

LemMa 3.8. Suppose ye p(A"). There exists a closed nowhere-dense set
of measure zero S on the real axis and a discrete set S¢ ((perhaps unboun-
ded) in C\R such that for z in C\(Sgu S¢), (I+K+s(z)) " exists as an
operator-valued continuous function of z in the upper and lower closed half-
planes.

If K, ® K, is very rapidly decreasing the function s(z) may be extended
analytically to the unphysical sheet in z. This means that S U S is a dis-
crete set.

Proaf of Lemma 3.8. By Lemmas 3.6 and 3.7 it is sufficient to show that
(I+s(z)(d+ )1~ (3.19)

has the properties listed above. Since s(z)(a+ #) ™' is compact it may be
approximated by finite rank operators in the uniform topology. Let z, be a
point on the real axis by Lemma 3.7 there is a positive number r such that

Is(zo) el + A7)~ —s(z) el + ) <3 (3.20)
when |z —zy| <r, im z >0, say. There is a finite rank operator s such that
Is(z)(eI+A) ' —s| <i. (3.21)
Inequalities (3.20) and (3.21) imply that |
Is(z)(aI+ )" —s]l <1 (3.22)
for |[z—zy| <, iIm zéO. It follows that
(I+s@E@) oI+ )"t —5)7! (3.23)
has a Neumann expansion for |z —z,| <r. We define
G(z)=s(T+ (s(z)(el+ A )1 —s)"". (3.24)
Then
T+sE)I+ ) =T+ G2)I+sz)p [+ A )" —s). (3.25)
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By (3.24) and (3.25) the existence and continuity of (3.19) depends upon
those same properties for

(I+G(z))~ (3.26)

Since s has finite rank we may write

s(8)= Y (&:8)/s (327)

Let
gu(2)=I+sE@)I+A) 7 —s)" ¥ g, (3.28)
$0 (3.26) exists oply if the determinant of
Lsn—(fi: 842))i; (3.29)

is nonzero. We call this determinant I'(z). I'(z) is evidently analytic in
|z—zol <r, imz>0. Write Z,_={z||z—z<r, imz>0} Z=
{z||z—2z0l <r, imz=0}. Set &=r"'(z—z), w= (E24+iE+1)(E>—
i£+1)""; w takes Z to the unit disc D,, in the w-plane with im z=0 going
into dD,,. It is easily checked that w(-) preserves sets of measure zero.
Define

M(w)=s(w™'(w))=s(z). (3.30)

Appealing fo Theorem 15.19 of [7], we see that s(z) vanishes on a set of
linear measure zero on imz=0. A similar argument holds in a
neighborhood of any 4, in C. This completes the proof.

Lemma 3.9. | Define for ze C\(S¢ U R),
R(z)=Ry(z) — Ro(2)[(K}) "' K, ® (K3) ™' K> ]
x (I+K+s(z))7' K{® K5 Ro(2); (3.31)
then R(z) is a bounded operator on
(H'(R?, C*) @ LX(R®, C*)) ® (H'(R?, C)® L*(R’, C)).

Proof. By Lemma 2.1 the range of Ro(z) on L*(R? C*)® L*(R?, C?)
is in (HAR? C*) @ L*(R%, C?)® (H*(R? C)@® L*R’, C)). An appeal to
the Schwartz inequality and the hypothesis of Lemma 3.5 shows that the
range of Ro(z)(K)) 'K, ® (K3)~'K, on (H'(R? CH®LYR? C*))®
(HY(R?, C)@® L*(R?% C)) lies in the space (H'(R? CH@ LA(R? C*)®
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(H'(R’,C)® L*(R* C)). Since K;® K3 is a bounded operator, the con-
clusion of the lemma follows.

CoroLLARY 3.10. For any z as in Lemma 3.9, R(z) maps
(BL(R®, C*)@ L*(R®, C*)) ® (BL(R? C)® LX(R?, C)

to itself.

THEOREM 3.11. 0*R(z) o is the resolvent of T.

Proof.  That R(z) is a resolvent follows from the easily established fact
that R(z) is a pseudoresolvent with trivial null space. First, R(z) is seen to
satisfy the first resolvent equation since 4=K;®K, B= (KD)'K,®
(K5)~! K, we obtain

R(z,) R(z3) = Ro(z,) Ro(z,) — Ro(z,) Ro(z5) B(I+5,(25)) ™" AR(z,)
—Ro(zy) B(I+35,(2,)) ™" ARo(z,) Ro(z5
+ Ro(z,) B(I+35,(2,)) ™" ARo(z,) Ry(z,
X B(I+5,(z5)) "' BRy(z,). (3.32)

)
)

Now using the fact that Ry(-) is a resolvent we have
Ro(z1) — Ro(z5)
Zy—2,

_ Ro(z,) — Ro(25)
Z,—2z,

R(z,) R(z,) =

B(I+5,(25)) ARy(z5)

— Ro(z)) G +8,(z,))+ 4 Rol2) = Rolz2)

Zy— 2,
+ Ro(z,(B(I+5,(z,)) ! 51(z1) + D) — (s1(z5) + 1)
. PR
X (I+5,(25)) AR(25)
— R(z,) — R(z5)
T -z, (3.33)

Here s,(z) = A" + s(z). Second, following the standard reasoning (see Kato
[5]1), if R(z)g=0 then multiplying (3.30) on the left by 4 and using the
definition of s,(z) we arrive at the fact that AR (z)g=0. By (3.31) this
implies that Ry(z)g =0 and thus g=0. Since a similar result holds for the
adjoint of R(z), R(z) has dense range. From Lemma 3.9 (Corollary 3.10)
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we see that o¢*R(z) makes sense for zeC\(ScuUR). Thus, if
(L—zI)~!' = R(z) then T=0*Ls on D(A(D)).

COROLLARY 3.12. The spectrum of T is either the entire complex plane
or consists of isolated eigenvalues in the plane together with the real axis.

Remark. The spectrum of 7 is of course not bounded in general, but
further as is indicated by Lemma 3.3 and the remarks following assumption
(4) in Section 1, the eigenvalues may form an unbounded set. From (2.17)
we see that a portion of the difficulty in solving the steady state problem is
to establish conditions under which R(z) is defined. Therefore, Corollary
3.12 partially answers this question. In order to extract further information
it will be necessary to consider the operator appearing formally in (2.17)
namely

(I+(T—zI)~' 4)~} (3.34)

Lemma 3.13.  The operator

(I+(T—z)"t 4)~!

exists for all z outside of a discrete set Sc = C together with the real axis.

Proof. An argument similar to that of the proof of Lemma 3.8 using
Corollary 3.12 establishes the result. The set Sc is called the set of
resonance pomts for equation (2.14). It is clear that S¢c = S¢ generally.

THEOREM 3.14. Egquation (2.14) has a solution in H whenever
EeC\(ScURY).

The natural generalization of the limiting absorption principle to (2.14)
is the existence of limits of the form

lim u(a+ib) ' (3.35)

b—0

in some appropriate topology on the solution set of (2.14) where a¢ S,
E=a+ib. :

It will be necessary to be precise information concerning the operator 4
of (2.14) and its effect on the resolvent (7'—z/)~

A in (2.14) is given by

A=Y Y i, v . “ (3.36)
i#jl=1 ’
i#0
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If u is given by (2.17) using Lemma 3.13, then we may write
(T—¢NHu= —Au+ Pf (3.37)
or

u(, f)=—(T—¢n~" Au+ (TN Pf

—Z Z,u(u'l”f T— 51)1

i#Ej =1
i#0
+(I=¢en='pf (3.38)

by Lemma 3.13, uj(u, ¥7) = a,(&, f),is an analytic function of £ and is con-
tinuous in f. We write K, for (T — EN~'. Then

u(, fl=— Z ay(é, f)i K9] + K Pf

i#jl=1
i#0

=—Z Y ai& ) K: 97+ K. Pf. (3.39)

I=1i#j
i#0

Now, taking inner products on both sides of (3.39) with X, ., ¥¥ we
obtain N

S oaEu=-Y ¥ a ,,:f( Yy qf)

i#] I=1i#j n#Em
i#0 i#0 n#0
+<K5Pf= > Y’Z)- (3.40)
i j
i#0

Each of the coefﬁcient's a;(&, f), may be solved for in the form

C(, f)
DE.fY (3.41)
where
D(f,f)=<K¢ Y S”}j’”>+1 (3.42)
50 '

and C(E, f) contains terms of the form (K 47,3, «,nz0 P5") and
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(K Pf, S im0 PY). Writing A = diag(ay)s, B=B,(¢) =diag(K.¢], 2¥"™")
then

[trace(7 + B) ~'| < |trace A| |trace A(]+ B)|. (3.43)
Thus, since trace(A(I+ B)) is the right-hand side of (3.40) w}th the I=h
term missing, we see that values of ¢ for which (/+ Bh(f))’ls a singular
matrix correspond to points of Sc. The inequality of (3.43) illustrates the

fact that the singularities of the a,;; may accumulate. _
We turn to the existence of a spectral measure for L in the sense of [11].

THEOREM 3.15. There exists a locally defined spectral measure u for L.
We refer the reader to [11] for the relevant concepts.

To give the proof of Theorém 3.15 we shall need a series of lemmas
beginning with

LemMma 3.16. The limit
2nip(d) f= lirgl J R(E+ie) f— R(&E—ie) fdE (3.44)
e—->0t J5

exists for all bounded & whose closure is contained in R\Sg,
fe LX(R3 C*)® L*(R?, C?).
Proof-
R(E +ie)— R(&E—1e)
= Ry(& +ie) — Ry(E —ie) — Ry(& +ie) K, ® K, R(E + i)
+ Ry(¢—ie) K, ® K, R(& —ie). (3.45)

This follows from an argument like that in Lemma 3.6. Let us define

E(x) = IK1®K7|1/7[4x4®[7x7_|Klll/2I®IKIlﬁ

K, X,

Flx)= K @ Kol ™ K\ @ Ko =7 1w® K7

then
EF=FE=K,®K,.

Note that ERyF =" and by the proof of Lemma 3:1 of [4] we have that
the limit (3.44) defines a bounded bilinear form u(6, f, g)= (,u(5.)f, g), u(o)
being defined by the Riesz theorem. (There should be no confusion between
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the two uses of u.) It is to be noted here that the results establishing
Lemma 3.9 hold when K, ® K, is replaced by EF. This follows from

IERo, FIl S COIK, ® Ko 1

and

3/4

» 1/4
1K, ® K, | % Z(Jw |K;|6dx> ('[R3 IK;‘llleilzdx> < 00. (3.46)

Here C(¢) is continuous. To see that y is a locally defined spectral measure,
it remains to establish that u is countably additive and that it is mul-
tiplicative.

Lemma 3.17. p is locally countably additive in the strong operator
topology.

Proof. Note that u(, f, g) is absolutely continuous “inside” a § whose
closure.does not intersect Sg. Thus u is weakly countably additive and by
the Pettis theorem y is countably additive on the Borel sets in § and this
gives the result.

Lemma 3.18. Let 6, and 5, be bounded Borel sets in R whose closures do
not intersect Sg. Then u(d; M d,) = u(6,) u(d,).

Proof.  Suppose 6 is an interval (Sg is closed and nowhere dense). It is
sufficient to note that

foom | AORE D

277.'1 o(e)

is an algebra map where c(¢) is a piecewise-smooth closed curve of distance
¢ from the set § except near the end points of § and f is analytic in a
neighborhood of ¢ vanishing at the endpoints of 6. By Lemma 3.9, the
bilinear term (u, R(z) v) has first order rate of growth near the real axis,
Le., as im(z) - 0% or 0. It therefore follows that the mapping

f_’%mjéf(i){fa(ﬂ-lﬂ,L)—R(f—iO,L)}df (3.47)

is an algebra map on the set of analytic functions defined above, the limit
in (3.47) being taken in the weak sense. The Stone theorem then allows us
to extend the multiplicative properties of (3.47) to all continuous functions
vanishing at the endpoints of § and thence by a standard argument to all
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characteristic functions of closed G sets in d. This completes the proof by

the countable additivity of u. (See Proposition 1.4 of [10;[, for example.)
To complete the proof of Theorem 3.15 it is only required to consFruct

the domain of the measure y and prove that u represents L. The domain of

u we take to be the set

D(p)=\]J {range u(4)}, (348)

8

where § ranges over all subsets of the type in Lemma 3.16. D(u) is f)f
course the analogue of the absolutely continuous subspace of L in

L*(R3 C*H® L*(R? C?).

Since R(z) commutes with y and R(z) ™'

we have

ProPOSITION 3.19.  Every u(d) ﬁ_xes
{H*(R% CH)x L} (R’ C*)}® {HX(R? C)x L*(R*, C)}.

TerEoREM 3.20. For xe D(u)n D(L),

Lx= jw 2 du(x). (3.49)
Proof. In view of the proof of Lemma 3.18,
"R() (6) im [ (6—2) R(E) d
e—0 J(C(e)
= p(6) im R(&) — R(z) d¢ = p(9d), (3.50)

&0 JC(e)

where we have assumed without loss of generality that 6 is an interval
Therefore if x € D(p) N D(L) then x = p(8) x for some & and for ze p(L),

(L—2D)x=] (¢—2) du(@)(x) (3.51)

and this gives (3.49).
Tt is now clear that for v=c*uo,

T:f Adv (3.52)

on a*(D(u)nD(L))= D(T). . o .
By Theorem (2.2) of [117] the support of v is contained in o(T). (The
following theorem is a corollary to a lemma [13], see also [17.)
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ProrosiTION 3.19.

g Hé,d@LZ,cx _)L2,1®L2,a (“>'flf)

and

a*: (Hg,—a@Kl,—a)®(H%,—ot@Ll—cx)_>H%'.,—o:®L2,—d'
THEOREM 3.20 ([13,1]).

Rz): Lyu®Lyy— (H5 @ Ly )@ (H;_,®L, _,),

a>3%, is bounded for ze C\(Scu {0}). It is continuous in z on the closed
upper half-plane (and closed lower half-plane) except for ze Scw {0}.

CoROLLARY 3.21. If feL,, and ®¢}'e H} , (2.14) gives a solution to the
steady-state problem.

4. CONCLUSION

This paper studies a medium which obeys the equations of elasticity in
its unperturbed stated and has certain plasma-like properties in a perturbed
state.

The reason for this study is simply to examine some of the interesting
and rather unusual spectral properties of the resulting equations. The
results are comparable to but are not the same as those for Schrédinger
operators with complex potential and other near-spectral operators. We
know of no empirical study which may indicate an example of such media,
but perhaps the rather’interesting problem is justification enough. The idea
of studying the perturbation of the primary invariant subspaces of an
operator of the type considered here may be a valuable concept in spectral
theory. This, is related to perturbation of spectra though we cannot claim
originality here, just ignorance of related work.
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The aim of this paper is to show how a general convergence principle of Bruck
and Reich can be applied to the study of the asymptotic behavior of solutions to
nonlinear Volterra integral equations.  © 1987 Academic Press, Inc.

1. INTRODUCTION

Our aim in this paper is to show how the general convergence principle
presented in [2] can be applied to the study of the asymptotic behavior of
solutions to nonlinear Volterra integral equations.

The formulation of this principle involves certain pairs of mappings said
to be admissible. We begin the paper by recalling these pairs and providing
some examples. We then review several facts concerning the existence and
the properties of the solutions to the nonlinear integral equation (3.1).

In the fourth section we establish our main convergence theorem
(Theorem 4.2). It is based on an analysis of the behavior of certain
functionals defined on the trajectory of the solution to (3.1), rather than
the trajectory itself. We then present an application of this result
(Theorem 5.6). Another example is given in Section 6 (Theorem 6.1). We
conclude the paper by pointing out that Theorem 6.1 can be applied to two
problems of nonlinear heat flow in materials with memory. In connection
with Theorems 5.6 and 6.1 we also mention two open problems.

2. ADMISSIBLE PAIRS
In the formulation of the convergence principle presented in [2] certain
pairs of mappings were used. In this section we recall these admissible pairs
and provide some examples.
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