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Abstract

The wave propagation problems of classical physics may be studied
as symmetric hyperbolic systems, −iE(x)∂tu = A(D)u + B(x)u +
f(x, t). The matrix E is not assumed definite here and the spatial
part may be nonselfadjoint. However a limiting absorption principle
is valid and a local spectral representation may be developed. This
type of system may be thought of as a limiting case for certain kinds
of crystals.
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1 INTRODUCTION

We have discussed the system (see [2])

(1.1) −iE(x)∂tu = A(D)u+B(x)u+ f(x, t)
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where E(x) is positive definite and E and B satisfy conditions of the form

(|x| → ∞, ε > 0)

(1.2) |I − E| = O(|x|−1−ε), |B| = O(x−1−ε).

Here we will consider the case where E is only semidefinite in a certain sense.

Several kinds of extensions to (1.1) have been discussed in the literature, for

example the case when E(x) is not a bounded function of x, or when it is

time dependent, etc. The present paper extends (1.1) in a somewhat different

way, allowing E(x) to fail to be invertible. This has to be done with some

restriction since (1.1) then fails to be well-posed in general. Our work here

is a direct extension of previous work on transient waves in singular media

[4]. The extension discussed here may be thought of as a limiting case for

certain crystals.

The systems (1.1) describe the wave propagation problems of classical

physics such as Maxwell’s equations, the equations of acoustics, elasticity

and other phenomena. We assume that A(D) is strongly propagative here

with additional assumptions reviewed below.

Spectral representation for the spatial part of (1.1) is defined by the

following statements, with appropriate modifications as found in section 3.

Suppose A is a selfadjoint operator in a Hilbert space H. Suppose also

that

a) There is a Borel measure µ whose support is the spectrum of A and
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b) There is a unitary operator U taking H to L2(R, µ) such that

A1 = UAU−1

acts as the operator

A1ψ(x) = xψ(x),

with ψ in the domain of A1. The domain of A1 is defined in the usual

way.

For nonselfadjoint operators related to (1.1) it is possible to make a similar

definition since most of these operators have their essential spectrum on

the real axis or perhaps on the real axis together with a set around the

origin. Thus it may be possible to localize the problem to obtain a local

representation.

In section 2 we review certain facts from [2]. In section 3 we construct

a spectral representation. In section 3 a brief treatment using [1] is used to

obtain the desired representation.

2 PRELIMINARY RESULTS

We state briefly some results of [2] modified to the present situation of limit

crystals.

We assume A(D) has the form: (i =
√
−1)

(2.1) iA(D) =
n∑

j=1

Aj
∂

∂xj
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Aj are constant real symmetric m×m matrices. The symbol of A(D) is the

matrix

(2.2) A(p) =
n∑

j=1

Ajpj

with p = (p1, p2, . . . , pn) a real n-dimensional vector. The propagation speeds

are the solutions λ(p) of the equation

(2.3) det(A(p)− λ(p)I) = 0

I is identity matrix. If the number of solutions is even, A(D) is called

elliptic. For most of the equations of classical physics there are (counting

multiplicities) an odd number of solutions and it is known that they are

continuous functions of p. Moreover the associated orthoprojectors Pj(p) for

λj(p) are measurable as functions of p [3]. We have Pj(p)A(p) = A(p)Pj(p) =

λj(p)Pj(p). For λ = 0, the null projector P0(p) determines an operator on

L2 by P0 = Φ∗P0(p)Φ. Φ∗ is the (unitary) adjoint of Φ [3].

Define P as I − P0 on L2. The weighted spaces L2±α are definied as the

sets of measurable functions satisfying the condition∫
(|1 + |x| |±α|f(x)|)2dx <∞

where the norm on such a space is defined in the obvious way. It is elementary

to see that ‖Pf‖L2,α ≤ C‖f‖L2,α for some constant C. Since L2,α and L2,−α

are dual, the restriction of P to L2,α has an adjoint P ∗ on L2,−α which is a

bounded operator on L2. In fact,

(Pf, g)L2 = (f, P ∗g)L2; f in L2,α, g in L2,−α.
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Therefore, P ∗ gives a bounded unique extension of P to L2,−α.

We require, as suggested in the introduction, the real symmetric matrix

E = E(x) satisfy the condition

(2.4) (Ev, v) ≥ 0 for all complex m-vectors v.

And that there is a constant matrix E1 and positive scalars c and d with

(2.5) c(E1v, v) ≤ (Ev, v) ≤ d(E1, v, v).

We require that the range and null space of E are preserved by A and the

same is therefore true of E1. The range and null space of E(E1) are orthog-

onal in L2.

Notation:

1. H = L2(Rn,Cm) (A(D) is selfadjoint on H.)

2. HE is the seminorm space generated by

‖f‖E =

(∫
(E(x)f(x), f(x))Cmdx

) 1
2

.

This is a norm on range E. Furthermore, A(D) must be selfadjoint on

range E.

(2.5) implies that E has constant rank r. It may be shown that there

is an r ×m matrix of rull rank such that E = C∗C. Furthermore, F (x) =

C∗(CC∗)−1 is a right inverse for C. Moreover it is easily seen that F maps

5



L2(Rn,Cr) to range E as a unitary map when range E has the HE norm.

Define the domain of the operator FF ∗A(D) by

(2.6) D(FF ∗A(D)) = {v in HE | v is in the domain of A(D)}.

It is now easy to see that FF ∗A(D) is selfadjoint on HE. Note that EFF ∗(=

FF ∗E) is constant and equal to E1F1F
∗
1 . We assume that for some ε > 0,

|E − E1| = O(|x|−1−ε)(2.7)

and

|B| = O(|x|−1−ε).

We also assume E and B are essentially bounded.

Upon replacing E by F ∗
1EF1 and A(D) by F ∗

1A(D)F1, we may and shall

suppose that E1 = EFF ∗ = I|HE
, the identity restricted to HE. Note also

that (|x| → ∞)

(2.8) |FFF ∗ − F1F
∗
1 | = |F1F

∗
1 (E1 − E)F1F

∗
1 | = O(|x|−1−ε).

Hence our results are applicable when F ∗
1A(D)F1 replaces A(D).

The following result of [2] and [5] is needed:

THEOREM 2.1 If α β > 1/2, then λ→ P (A(D)− λI)−1 is a continuous

operator-valued function in C+ − {0} or C− − {0} (the upper or lower half-

planes including the real axis punctured at zero).

The operators P (A(D)− λI)−1 are compact with domain L2,α and range

in L2,−β.
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COROLLARY 2.1 λ → P (A(D) − λI)−1 is holomorphic in C+ − R or

C− − R.

Our equation in HE is

(2.9) −I|HE
i∂tu = FF ∗A(D)u+ FF ∗Bu− f ′(x, t)

where f ′ = FF ∗f .

If f(x, t) is a separable sinusoidal disturbance, f(x, t) = e−λitf(x), then

(2.9) becomes

(2.10) FF ∗A(D)u+ FF ∗Bu− λu(x, λ) = f (writing f for f ′).

Here λu means λI|HE
u but our assumptions allow us to use the simpler

notation. The limiting absorption principle for (2.9) is essentially a solution

for (2.10).

Writing IE for I|HE
, we have the equivalent expression,

(2.11) IEA(D)u+ IEBu− λEu(x, λ) = Ef.

Thus

(2.12) (A(D)− λI)−1[IEA(D)u+ IEBu− λEu] = (A(D)− λI)−1Ef.

Hence we have

IEu+ λIE(A(D)− λIE)−1u+ IE(A(D)− λIE)−1Bu− λ(A(D)− λIE)−1Eu

= (A(D)− λI)−1Ef
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and so

(2.13) [IE + λ(A(D)− λIE)−1(IE − E + IEBλ
−1)]u = (A(D)− λI)−1Ef.

It follows that

[IE − IEP0(IE − E + IEBλ
−1) + IEPλ(A(D)− λIE)−1(IE − E + IEBλ

−1)u

= (A(D)− λI)−1Ef.

Note that IEP0IE = P0IE. At least formally then,

u(x, λ) = [IE − IEP0(IE − E + IEBλ
−1) + IEPλ(A(D)− λIE)−1(2.14)

(IE − E + IEBλ
−1)]−1(A(D)− λI)−1Ef.

It is shown in [2] that

J(λ) = [IE−IEP0(IE−E+IEBλ
−1)+IEPλ(A(D)−λIE)−1(IE−E+IEBλ

−1)]

has an inverse in the following sense.

THEOREM 2.2 λ → J(λ)−1 is continuous as an operator from HE,β to

itself provided β > 1/2 is sufficiently close to 1/2, where λ is restricted to the

upper or lower complex plane with certain sets Σ± (depending on B) deleted

from them. These sets may include a neighborhood of zero but elsewhere are

discrete off the real axis and on the real axis they have measure zero and are

nowhere dense. Generally, the values of J(λ)−1 on the real axis of C+ − Σ+

are different from its values on the real axis of C+ − Σ−.
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The proof is essentially contained in [2].

The mentioned neighborhood of zero in Theorem 2.2 is contained in

|λ| ≤ ‖P0IEB‖
‖IE − P0(IE − E)‖

.

In general it is not possible to eliminate this neighborhood.

Theorem 2.2, combined with (2.14) gives the required limiting absorption

principle.

3 SPECTRAL REPRESENTATION

We add the additional assumption here that EB = BE.

Let R(λ) = A(D) − λI)−1 and this operator will be defined on various

convenient spaces as necessary. Similarly, we write

REB(λ) = (FF ∗A(D) + FF ∗B − λI)−1.

These operators are members of B(HE,α′HE,−β) α 6= β, α, β > 1/2 but close

enough to 1/2 so Theorem 2.2 may be applied. In other words so that R(λ)

and REB(λ) have boundary values in B(HE,α′HE,−β) away from Σ±.

Let ω stand for any unit vector in Rn and Ω the set of all such unit

vectors with Lebsegue surface measure. Mδ will consist of all measurable

square integrable L2(Ω)-valued functions defined on δ such that the closure

of δ is in R− Σ±. As an operator on HE,α, define F (λ) : HE,α′ → L0
2(Ω) by

(3.1) (F (λ)g)(ω) = 2−
1
2 (2π)

π−1
2

∑
i6=0

∫
Rn

exp(−
√
−1λλi(ω)x·ω)Pi(ω)f(x)dx
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where L0
2(Ω) is P (ω)L2(Ω).

It follows from [5] that for λ 6= 0, λ real, that

(3.2) (F (λ)f, F (λ)g) = (2πi)−1R+(λ)−R−(λ))

R±(λ) refer to the boundary values of R(λ) as noted above.

By Stone’s representation theorem, writing π(∆) for the spectral resolu-

tion associated with R, we have

(π(∆)f, g) =

∫
∆

(F (λ)f, F (λ)gdλ.

We formulate a similar representation associated with the resolvent REB(λ).

We assume that λ is outside of Σ± as appropriate.

By (2.14),

(3.3) REB(λ) = R(λ)− λR(λ)(IE − E +Bλ−1)REB(λ).

Following (3.2) we define

(3.4) FEB(λ) = F (λ)E − F (λ)(IE − E +Bλ−1)R+
EB(λ).

We also define R∗
EB(λ) by replacing B with B∗ so that

(3.5) R∗
EB(λ) = R(λ)− λR(λ)(IE − E +B∗λ−1)R∗

EB(λ)

R∗
EB(λ) has boundary values on the real axis outside of sets Σ∗

±. And for λ

outside of the union of Σ± and Σ∗
±, and f, g in HE,α′ we have

(3.6) (R+
EB(λ)f, g)E = (f,R∗

EB(λ)g)E.
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(Here we have used the fact that E and B commute.)

Define

(3.7) F ∗
EB(λ) = F (λ)E − F (λ)(IE − E +B∗λ−1)R∗+

EB(λ).

Then f , g and λ as in (3.6),

(FEB(λ)f, F ∗
EB(λ)g) = (F (λ)[E − λ(IE − E +Bλ−1)R+

EB(λ)]f,

F (λ)[E − λ(IE − E +B∗λ−1)R∗+
EB(λ)]g)

= (2πi)−1(R+(λ)[E − λ(IE − E +Bλ−1)R+
EB(λ)]f

−R−(λ)[E − λ(IE − E +Bλ−1)R+
EB(λ)]f,

[E − λ(IE − E +B∗λ−1)R∗+
EB(λ)]g)

= (2πi)−1(R+(λ)[E − λ(IE − E +Bλ−1)R+
EB(λ)]f,

[E − λ(IE − E +Bλ−1)R+
EB(λ)g)

− (2πi)−1(R−(λ)[E − λ(IE − E +Bλ−1)R+
EB(λ)]f,

[E − λ(IE − E +B∗λ−1)R∗+
EB(λ)]g)

= −(2πi)−1(R+
EB(λ)f, [E − λ(IE − E +B∗λ−1)R∗+

EB(λ)]g)

− (2πi)−1(E − λ(IE − E +Bλ−1)R+
EB(λ)]f, R∗+

EB(λ)g)

= (2πi)−1(R+
EB(λ)f, Eg) + (2πi)−1(R+

EB(λ)f,

− λ(IE − E +B∗λ−1)R∗+
EB(λ)g)
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− (2πi)−1(Ef,R∗+
EB(λ)g)− (2πi)−1(−λ(IE − E +Bλ−1)R+

EB(λ)f,

R∗+
EB(λ)g)

= (2πi)−1(R+
EB(λ)f, g)E − (2πi)−1(f,R∗+

EB(λ)g)E

= (2πi)−1(R+
EB(λ)f −R−

EB(λf , g)E.

We have established

(3.8) (FEB(λ)f, F ∗
EB(λ)g) = (2πi)−1(R+

EB(λ)f −R−
EB(λ)f, g)E.

Following the proof of Theorem 2.5 of [1] can prove the existence of a spectral

resolution F (δ) for REB defined on HE and FEB(λ) may be extended to HE

to obtain the following

THEOREM 3.1 For f, g in HE there is a projection-valued measure F (·)

such that

(3.9) (F (δ)f, g)E =

∫
δ

(FEB(λ)f, F ∗
EB(λ)g)dλ.

If B = B∗, then δ can be any Borel set.

To construct the local analogue of wave operators we use the notation

FE(λ) for FEB(λ) when B = 0 and define for f , g in HE,α′

(X±(δ)f, g)E =

∫
δ

(FE(λ)f, FE(λ)B∗R∗±
EB(λ)g)dλ(3.10)

(Y±(δ)f, g)E =

∫
δ

(FE(λ)BR±
EB(λ)f, FE(λ)g)dλ.(3.11)
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The operatorsX and Y extend toHE since FE does. Let FE be the selfadjoint

spectral resolution associated with FE(λ) and define W±(δ) = FE(δ)−X±(δ),

Z±(δ) = FE(δ) − Y±(δ). It is easily checked that FE(δ) = W±(δ)Z±(δ) and

that FE(δ) = Z±(δ)W±(δ) so that W and Z intertwine RE(λ) and REB(λ)

and in fact, W−1
± = Z±. To outline the proof we note the crucial steps: W

and Z and one-to-one and onto maps. We do the computation for W only.

Suppose there is f such that W±f = 0. Then

(3.12)

∫
δ

(FE(λ)[BR±
EB(λ)− I]f, FE(λ)g)dλ = 0

for all g. But then (a.e.)

(3.13) FE(λ)[BR±
EB(λ)− I]f = 0.

and so

(3.14) [BR±
EB(λ)− I]f = 0.

But this implies

(3.15) R±
EB(λ) = R±

E(λ)−R±
E(λ)BR±

EB(λ).

Thus W is one-to-one. An entirely similar argument shows that W is

onto. W± are the local wave operators for L = FF ∗A(D) +B. From this we

obtain the following result.

THEOREM 3.2 Let α(λ) = λ for λ in δ and 0 otherwise. Then α(L) is

defined and for f in HE,

(3.16) FEB(α(L)f)(λ) = α(λ)(FEB(Lf)(λ).
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Remark. We assumed that B and E commute for some of these results. This

is a strong assumption and it would be useful to have a weaker hypothesis.

However important problems such as acoustic waves in a rotating fluid satisfy

this condition.
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