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Abstract. We show that for n ≥ 3 there is an action of the braid group Bn on the deter-

minantal ideals of a certain n × n symmetric matrix with algebraically independent entries off
the diagonal and 2s on the diagonal. We show how this action gives rise to an action of Bn

on certain compact subspaces of some Euclidean spaces of dimension
�n
2

�
. These subspaces are

real semi-algebraic varieties and include spheres of dimension
�n
2

�−1 on which the kernel of the
action of Bn is the centre of Bn. We investigate the action of Bn on these subspaces. We also

show how a finite number of disjoint copies of the Teichmüller space for the n-punctured disc

is naturally a subset of this R
�n
2

�
and how this cover (in the broad sense) of Teichmüller space

is a union of non-trivial Bn-invariant subspaces. The action of Bn on this cover of Teichmüller

space is via polynomial automorphisms. For the case n = 3 we show how to define modular

forms on the 3-dimensional Teichmüller space relative to the action of B3.

§1. Introduction.

The braid group Bn is the group with (standard) generators σ1, . . . , σn−1 and relations
[Bi, p. 18]

σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n− 2,

σiσj = σjσi, for |i− j| > 1.

One of the main results of this paper is the following:

Theorem 1. For n ≥ 3 let Un be the following symmetric matrix:

Un =




2 a21 . . . ai1 . . . an−1 1 an1

a21 2 . . . ai2 . . . an−1 2 an2

...
...

. . .
...

...
...

ai1 ai2 . . . 2 . . . an−1 i ani

...
...

...
. . .

...
...

an−1,1 an−1,2 . . . an−1 i . . . 2 an n−1

an1 an2 . . . an i . . . an,n−1 2




where the aij, 1 ≤ j < i ≤ n, are algebraically independent indeterminates generating a
polynomial ring R′

n over a commutative ring R with identity. The ring R′
n is acted upon by

Bn with kernel the cyclic centre Z(Bn) of Bn.

Typeset by AMS-TEX
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For r ≥ 0 let Inr be the determinantal ideal (of R′
n) generated by all of the (r+1)×(r+1)-

minors of Un. Then the braid group acts on each Inr.
The braid group also acts on the quotients R′

n/Inr.
(i) Suppose that 2 is invertible in R. Then for n > 3 the kernel of the action of Bn/Z(Bn)
on R′

n/In 1 contains the non-trivial normal subgroup generated by (σ1)4. The action of
Bn/Z(Bn) on R′

n/In1 determines an epimorphism Bn → W (Dn) where W (Dn) is the
Coxeter group of type Dn.
(ii) Suppose that 2 is invertible in R. Then for n > 3 the kernel of the action of Bn/Z(Bn)
on R′

n/In 2 contains the non-trivial normal subgroup generated by (σ1σ2)6.
(iii) For any commutative ring R the action of Bn/Z(Bn) on R′

n/In n−1 has trivial kernel.
(iv) For R = Z or R a field having characteristic 2, the action of Bn/Z(Bn) on R′

n/In r has
trivial kernel for all 1 ≤ r < n.

We will also show how this result enables us to find various compact subsets of R(n
2) which

are acted upon by Bn. We then show that certain subsets of this R(n
2) can be identified

with a finite number of disjoint copies of the Teichmüller space for the punctured disc and
combining this with results of [H2] we will obtain a non-trivial stratification of this cover
(in the broad sense) of Teichmüller space by Bn-invariant subsets. We now explain where
this action of Bn on R(n

2) comes from.
Let Dn be the disc with n punctures π1, . . . , πn. Then Bn acts as (isotopy classes of)

diffeomorphisms of Dn [Bi, Ch.1]. Further, for 2 ≤ m ≤ n, Bn acts transitively on the set
of isotopy classes of positively oriented simple closed curves on Dn which surround m of the
punctures. The generator σi acts as a half-twist [Bi] on Dn interchanging πi and πi+1 and
has a representative diffeomorphism which is supported in a tubular neighbourhood of an
arc ai joining πi to πi+1 (see Figure 1).

• • • • •. . . . . .1a ia

ix

Figure 1

•
an - 11π 2π i + 1πiπ

n - 1π
nπ

In Figure 1 we have shown the arcs ai. This fact allows one to construct [Bi] a faithful
representation of Bn as automorphisms of a free group Fn =< x1, . . . , xn >, which we
identify with the fundamental group π1(Dn). Here the xi are (homotopy classes of) simple
closed curves surrounding one of the punctures and based at a fixed point of the boundary
of Dn, as in Figure 1. A characterisation of the image of Bn in Aut(Fn) was given by Artin
as follows: φ ∈ Aut(Fn) is the image of a braid if and only if
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(i) for all 1 ≤ i ≤ n, φ(xi) is a conjugate of some xj ; and
(ii) φ(x1x2 . . . xn) = x1x2 . . . xn.
The action of Bn on the generators xi is as follows: let 1 ≤ j < n; then

σj(xi) = xi if i 
= j, j + 1, σj(xj) = xjxj+1x
−1
j , σj(xj+1) = xj .

Let R be a commutative ring with identity and let

Rn = R[a12, a13, . . . , a1n, a21, a23, . . . , a2n, . . . , an1, . . . , an n−1]

be a polynomial ring in commuting indeterminates aij , 1 ≤ i 
= j ≤ n. It will be convenient
to put aii = 0 for all i ≤ n. In a previous paper [H1] we have shown that by representing the
free group π1(Dn) using transvections (see below) and looking at certain traces we obtain
an action of Bn on the ring Rn i.e. we have a homomorphism

ψn : Bn → Aut(Rn);

the kernel of ψn is the centre of Bn [H1]. This is understood as follows.
For fixed n ≥ 2 we let Πn = T1T2 . . . Tn where the Ti are certain n×n matrices (transvec-

tions):

Ti =




1 0 . . . 0 . . . 0 0
0 1 . . . 0 . . . 0 0
...

...
. . .

... . . .
...

...
ai1 ai2 . . . 1 . . . ain−1 ain

...
... . . .

...
. . .

...
...

0 0 . . . 0 . . . 1 0
0 0 . . . 0 . . . 0 1




.

Here the non-zero off-diagonal entries of Ti occur in the ith row. One way of defining
a transvection [A] is as a matrix M = In + A where In is the n × n identity matrix,
det(M) = 1, rank(A) = 1 and A2 = 0. In particular, conjugates of transvections are
transvections. That < T1, . . . , Tn > is a free group of rank n is shown in [H2]. This allows
us to identify xi and Ti for i = 1, . . . , n and so to identify Fn and < T1, . . . , Tn > .

Now, since we are identifying xi ∈ Fn with Ti ∈< T1, . . . , Tn >, we see, by Artin’s
characterisation (i) and (ii) above, that the matrix Πn is invariant under the action of Bn

and so that Πn +λIn is also invariant under the action of Bn for any choice of λ ∈ R. Thus
the action fixes the various determinantal ideals In,r,λ determined by Πn +λIn. Here In,r,λ

is the ideal generated by the determinants of all (r + 1)× (r + 1) submatrices of Πn + λIn.
These are the points at which Πn +λIn has rank r (except in the characteristic 2 case). For
general properties of such rings see [BV, DEP1, DEP2]. We will put In,r = In,r,1.

Now, since Πn is invariant under the action of Bn, it follows that the characteristic
polynomial

χn(x) =
n∑

i=0

cnix
i

of the matrix Πn has coefficients cni = cni(a12, . . . , an n−1) ∈ Rn which are invariant under
the action of Bn (this was first noted in [H2, Theorem 2.8]). We there also noted that



4 STEPHEN P. HUMPHRIES

the cni are non-homogeneous polynomials of degree n for 1 ≤ i < n. If n < 6, then they
generate the ring of invariants for the action of Bn on the subring Yn of Rn defined in the
next paragraph [H3]. Note that we have cnn = 1 and cn0 = ±1.

For i, j, k, . . . , r, s ∈ {1, 2, . . . , n} let cijk...rs denote the cycle aijajk . . . arsasi ∈ Rn. Then
the cycles generate a subalgebra of Rn denoted Yn. A cycle cijk...rs will be called simple
if i, j, k, ..., r, s are all distinct. The ring Yn is generated by the (finite number of) simple
cycles and is Bn-invariant.

The representation of Bn in Aut(Rn) can be thought of in the following way. Note that
the action of Bn on Dn fixes the boundary of Dn. This fact gives Artin’s condition (ii)
above. Let Cn denote the set of all oriented simple closed curves on Dn. Now, from the
above, Bn acts by automorphisms on Fn in such a way that for α ∈ Bn the matrix α(Ti)
is a conjugate of some Tj , 1 ≤ j ≤ n i.e. α(Ti) is also a transvection. Further, if c ∈ Cn,
then c represents a conjugacy class in Fn and so its trace is well-defined (the trace of the
corresponding product of transvections in Fn =< T1, . . . , Tn >). In fact one easily sees that
trace(c) ∈ Yn [H1]. Then a map φ = φn : Cn → Rn is defined by

φn(c) = trace(c)− n.

Thus φn can be thought of as being defined on certain conjugacy classes of elements of Fn

(namely those representing simple closed curves). The map φ can be extended to act on
all of Fn, by the requirement that for s ∈ Fn we have φ(s) = trace(s) − n. It is easy to
see that if w = T e1

i1
. . . T er

ir
∈< T1, . . . , Tn > is cyclically reduced as written with ei 
= 0,

ik 
= ik+1, ir 
= i1, and r > 1, then φ(w) is a polynomial in Yn of degree r (see §2).
Now for m ≥ n and s ∈ Fn we may also consider s as an element of Fm under the natural

inclusion of Fn in Fm. In this case we note that φ(s) has the same value whether we consider
s as an element of Fn or Fm.

A fundamental property of the transvections Ti is that for all 1 ≤ i, j ≤ n we have
trace(TiTj) = aijaji + n and in general if A,B ∈ Fn, then

trace(ATiA
−1BTjB

−1) = bijbji + n, (1.1)

where bij ∈ Rn (see [H1]). It is also easy to see that there is a natural choice so that

bij = ±aij + terms of higher degree.

For example trace((T1T2T
−1
1 )T3) = (a23 − a21a13)(a32 + a31a12) + n. This is explained in

detail in §2.
Now for α ∈ Bn the image α(Ti) is a conjugate ATjA

−1 for some A ∈ Fn and 1 ≤ j ≤ n
(by Artin’s condition (i) above). Here the action of α on the aij is defined by

φ(α(Ti)α(Tj)) = α(aij)α(aji),

(see §2 for more details) so that it has the following naturality property (with respect to the
action of Bn on Fn): for all w ∈< T1, . . . , Tn >,α ∈ Bn, we have

φ(α(w)) = α(φ(w)).
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For example the action of the generator σi, 1 ≤ i < n, is given by

σi(ai i+1) = ai+1 i, σi(ai+1 i) = ai i+1,

σi(ah i) = ah i+1 + ahiai i+1, σi(ah i+1) = ah i, (1.2)

σi(ai h) = ai+1 h − ai+1 iaih, σi(ai+1 h) = ai h,

where 1 ≤ h ≤ n and h 
= i, i + 1.
It follows from [H1, Theorem 2.5 and Theorem 6.2] that the kernel of the action of Bn

on Rn is the centre of Bn and that if Bn and Rn are thought of as sub-objects of Bn+1 and
Rn+1 (respectively), then the action of Bn on Rn+1 is faithful.

We note as in [H2] that there is a natural ring involution ∗ on Rn which commutes with
the action of Bn, so that for α ∈ Bn we have

α(w)∗ = α(w∗) (1.3)

for all w ∈ Rn. This involution is determined by its action on the generators aij which is
as follows:

a∗ij = −aji.

(Thus to check (1.3) one need only consider the situation where α = σi and w = ars.) This
involution has the following property:

trace(A−1) = trace(A)∗,

for all A ∈ Fn. Thus for c ∈ Cn we have φ(c−1) = φ(c)∗, where c−1 is the curve c with its
orientation reversed. We also have bji = −b∗ij , for bij , bji as in (1.1).

Now factoring out by the action of the above involution leads us to consider the situation
where aij = −aji for all 1 ≤ i 
= j ≤ n. Let R′

n denote the corresponding quotient of Rn

and T ′
i the corresponding transvections etc. The ring R′

n is isomorphic to the subring of Rn

generated by the aij with i > j and so is a polynomial ring. Then Bn also acts on R′
n. The

fact that < T ′
1, . . . , T

′
n > is still a free group and that the kernel of the action of Bn on R′

n

is still the centre Z(Bn) were noted in [H1, H2]. We will let Π′
n = T ′

1T
′
2 . . . T

′
n and

χ′
n(x) =

n∑
i=0

c′nix
i

the characteristic polynomial of the matrix Π′
n. Again the coefficients c′ni are invariant

under the action of Bn on R′
n.

We will primarily be interested in the situation where R = R (due in part to the con-
nection with Teichmüller space); however the presence of the 2s on the diagonal of Un will
force us to distinguish between rings R where 2 is invertible or where 2 is not invertible. In
the case R = R each ideal In,r,λ determines a real algebraic variety Vn,r,λ ⊂ R(n

2). These
varieties are invariant under the action of Bn. For general properties of real algebraic vari-
eties see [BCR]. Another reason for looking at the case R = R is that in this case there is a
compact piece of Vn,r = Vn,r,1 which is also Bn-invariant. We will determine the nature of
this compact set. Recall that a semi-algebraic set in Rn is (roughly speaking) a set of points
determined by a set of algebraic equalities and inequalities (including all finite unions of
finite intersections of such). For example we prove
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Theorem 2. Suppose that R = R. For all k ≤ n there is a compact real algebraic set
V

(2)
n,k,1 ⊂ Vn,k,1 which is invariant under the above action of Bn.

For n = 3 the semi-algebraic subset V (2)
3,2,1 is homeomorphic to a 2-sphere, and is smooth

except at 4 singular points.
For n ≥ 4 the semi-algebraic subset V (2)

n,2,1 is homeomorphic to the quotient

S1 × S1 × · · · × S1/α,

where α is the inverse map

α(z1, . . . , zn−1) = (z−1
1 , . . . , z−1

n−1),

on (S1)n−1. Here V
(2)
n,2,1 has 2n−1 singular points and is otherwise smooth. For n = 4 we

find a presentation for the image of B4 in Aut(R′
4/I4,2,1) and show that this group has a

faithful 3× 3 linear representation over C .
For all n ≥ 3 the group Bn acts on a one-parameter family of smooth topological spheres

of dimension
(
n
2

)
− 1, each such sphere being Bn-invariant. These spheres come from level

sets of det(Un). Each point of these spheres corresponds naturally to a positive definite
symmetric matrix. For a dense set of the parameter values the kernel of this action of Bn

on the corresponding sphere is the cyclic centre Z(Bn).
When n = 4 there are two convex 5-balls in R6 the boundary of whose intersection is a

B4-invariant 4-sphere.

More details of these varieties and the Bn-actions will be given in the rest of this paper.
In the following we will need to recall [Bi] that there is an epimorphism π : Bn → Sn,

where Sn is the symmetric group on n objects, which is induced by sending σi to the
transposition (i, i + 1) ∈ Sn for each i = 1, . . . , n − 1. The kernel of π is Pn the group of
pure or coloured braids on n strings.

In relation to the action of Bn on the determinantal rings indicated in Theorem 1 we
should also mention the paper [H4] where we show that B4 acts on an ordinal Hodge algebra
or algebra with straightening law. One hope is that using either approach we may be able
to say something about the representation theory of Bn or Pn using (standard) methods as
in [BV, DEP1, DEP2, JPW]. The present paper is more topological in nature, however we
investigate the representation theory of the action given above more fully in [H5].

Suppose that R contains the rational numbers. Now in [H3] we proved that for any
α ∈ Pn there is a derivation D(α) of the power series algebra R̄n of Rn such that

α(x) = exp(D(α))(x)

for all x ∈ R̄n. For example we showed that

D(σ2
1) =

arcsinh
(√

a12a21 + (a12a21)2/4
)

√
a12a21 + (a12a21)2/4

((a32a21 + a31a12a21/2)
∂

∂a31

+ (−a12a23 + a12a21a13/2)
∂

∂a13
+ (a31a12 − a32a21a12/2)

∂

∂a32

+ (−a21a13 − a21a12a23/2)
∂

∂a23
).
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These derivations D(α) have the property that D(α)(cni) = 0 for all i ≤ n (this being
equivalent to the invariance of the cni). We obtain a group

Pn =< exp(tD(α))|α ∈ Pn, t ∈ R > ⊂ Aut(R̄n)

using composition of functions, or equivalently, using the Campbel-Baker-Hausdorff formula
[J]. We can extend Pn to

Bn =< Pn, σ1, . . . , σn−1 > ⊂ Aut(R̄n)

to obtain a continuous group with Bn/Z(Bn) as a subgroup. We will prove:

Theorem 3. Suppose that R contains the rational numbers. Then the group Bn acts on
each of the spaces Vnk and V

(2)
nk (if R = R) and also on the level sets of the functions cni.

We assume that R = R for the following discussion, so that topologically we have R′
n
∼=

R(n
2). The action of Bn on R′

n comes, as described above, from considerations of trace
algebras i.e. character varieties. One motivation for looking at actions of groups on character
varieties was to give coordinates for Teichmüller space. This approach originated with Fricke
and Klein [FK] and there have been many subsequent attempts at ways of giving these real
analytic trace coordinates (see for example [K1, K2, O, Sa] and references therein). Thus it
is not surprising to see that there is a connection with our invariant varieties and Teichmüller
space, which we now describe.

Let G < PSL2(R) be a Fuchsian group acting discontinuously on the upper half plane
H and such that H /G is conformally equivalent to a Riemann surface of genus g with n
ordered points and m conformal discs removed; we say that G has type (g, n,m). We choose
a marking on G by specifying a set of generators a1, b1, . . . , ag, bg, c1, . . . , cn, e1, . . . , em for
G. For example one can do so such that the only relator is

em . . . e1cn . . . c1b
−1
g a−1

g bgag . . . b
−1
1 a−1

1 b1a1 = id.

There is a non-degeneracy condition that is required for the following to work, namely that
6g + 3m + 2n− 6 > 0. Any two marked Fuchsian groups are conformally equivalent if they
are conjugate in PSL2(R). The set of such equivalence classes of Fuchsian groups of type
(g, n,m) is called the Teichmüller space of type (g, n,m) and is denoted by Tg,n,m. It is well
known that Tg,n,m is a real analytic manifold of dimension 6g + 3m + 2n− 6 [Ab]. Taking
traces of a finite number of products of the images of these generators results in a (finite)
set of real analytic coordinates for Tg,n,m [FK, K1, K2, O]. In our case we are interested in
the situation where g = 0, m = 1. Usually one associates an element νi, i = 1, . . . , n, of the
set {2, 3, . . . ,∞} to each deleted point, however we will only be interested in the situation
where νi = ∞ for all i = 1, . . . , n. We also note that each ci is a parabolic element (its
squared trace is 4) and that any non-identity element not conjugate to some power of some
ci is hyperbolic (has squared trace greater than 4). Now from the discussion of transvections
above it appears natural to solve

trace(cicj) = 2− a2
ij (1.4)

for all 1 ≤ j < i ≤ n. We will show that the Bn actions on both sides of the equation√
2− trace(cicj) = ±aij are compatible at least for some choices of the sign of ±aij . We
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thus obtain a representation of Teichmüller space as a subspace of our coordinate space
R(n

2). Actually we get a finite disjoint cover of Teichmüller space corresponding to some of
the choices of sign that we get when solving (1.4), so that each connected component of this
cover is isomorphic to Teichmüller space via the covering projection.

For n = 3, 4 it will follow from dimensional considerations that T̄0,n,1 has a non-trivial
stratification by Bn-invariant subsets. For n ≥ 5 we see that T̄0,n,1 has dimension 2n − 3;
however there are at most �n

2 � independent invariants: c′51, . . . , c
′
5�n

2 � (see Lemma 2.5). Since

T̄0,n,1 ⊂ R(n
2) it does not follow from such dimensional considerations that we have a non-

trivial stratification (by level sets of the cni) in this case. However we will show that there
actually is such a non-trivial stratification by showing that c′n n−1 is not constant on each
component of T̄0,n,1. We do this by exhibiting a 1-parameter family of matrices generating a
1-parameter family of Fuchsian groups, each giving a point of Teichmüller space and showing
that c′n n−1 is not constant on any of the lifts of this family to T̄0,n,1.

Theorem 4. There is a real analytic subset T̄0,n,1 of R(n
2) which is a union of 2n−1 disjoint

copies of the Teichmüller space T0,n,1 of the punctured disc Dn. The set T̄0,n,1 is a union of
Bn-invariant pieces (strata) corresponding to the level sets of the invariants c′ni. The strata
corresponding to the invariant c′n1 = ±c′n n−1 are of codimension 1 in T̄0,n,1.

For n = 3 we determine a fundamental domain for the action of B3/Z(B3) on certain of
the 2-dimensional level sets in R3 of the invariant function c′31. For t < 4 and |aij| > 2 there
are 4 connected components of the level set c′31 = t and we may identity them using the
identifications (x, y, z) ≡ (−x,−y, z) ≡ (−x, y,−z) (see §11). With this understood we have
the following result which says that the vanishing of the gradient of the invariant function
c′31 cuts out a region which is a fundamental domain for the action of a finite index subgroup
of B3/Z(B3) ∼= PSL(2,Z) on the level surfaces of c′31, thus indicating a close relationship
between the group and the level surfaces:

Theorem 5. Consider the action of B3/Z(B3) on R3 = R[a21 , a31, a32]. For t < 0 there is
a fundamental domain for the action of a subgroup H3 < B3/Z(B3) of index 3 on the level
sets

c′31 = a2
21 + a2

31 + a2
32 − a21a31a32 = t.

In fact for such values of t the functions

∂c′31
∂a21

= 2a21 − a31a32,
∂c′31
∂a31

= 2a31 − a21a32,
∂c′31
∂a32

= 2a32 − a31a21,

cut out a region of the level set c′31 = t which is a fundamental domain for this action.
The subgroup H3 is freely generated by 3 involutions. Each of the curves determined by

the above equations is fixed by one of these three involutions.

See Figure 8 for a representation of this fundamental domain. In proving the above result
we give a natural generalisation of results relating to the Markoff equation and the Markoff
tree [CF, Mo].

As indicated above there are various kinds of “natural” coordinates that can be defined
on Teichmüller space, including such coordinates coming from traces of various products of
generators. Relative to these coordinates the action of the mapping class groups (in our case
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the braid groups) is at best via rational maps (in equation (11.4) we have written down such
rational maps for the action of the generators of B4 for some such choice of coordinates).
However we now have the following indication that the aij also give a very natural set of
coordinates for T0,n,1:

Theorem 6. There is an embedding of a disjoint union of 2n−1 copies of the Teichmüller
space in a Euclidean space R(n

2) (as in Theorem 4) and the action of Bn on this cover is via
polynomial automorphisms.

In §2 we give more details on the action of Bn on Rn and R′
n. In §3 we consider the rank

1 case. In §4 we investigate the case where n = 3. In §5 we give various results on symmetric
matrices that will be used later. In §6 we investigate the case where n = 4. In §7 we look at
the rank 2 case. §8 is devoted to the rank n− 1 case. In §9 we study faithfulness questions
for the action of Bn on various quotients of R′

n. In §10 we prove Theorem 3. The part of
this paper concerning Teichmüller space is to be found in §11 and is largely independent of
§§5− 10.

§2 Action of Bn on Rn continued

In this section we describe in greater detail the action of Bn on Rn and on R′
n so as to be

able to give explicit formulae for the action of certain braids. In general [A] a transvection
in SL(Qn) (for a commutative ring Q with identity) can be defined as a pair T = (φ, d)
where d ∈ Qn and φ is an element of the dual space of Qn satisfying φ(d) = 0. The action
is given by

T (x) = x + φ(x)d for all x ∈ Qn.

Then we have [H1, Lemma 2.1]

Lemma 2.1. Let T = (φ, d) and U = (ψ, e) be two transvections. Then for all λ ∈ Z we
have

UλTU−λ = (φ− λφ(e)ψ, Uλ(d)). �

Let T = {T1 = (φ1, d1), . . . , Tn = (φn, dn)} be a fixed set of transvections in SL((Rn)n)
where φi(dj) = aij for all 1 ≤ i 
= j ≤ n as in the above. For any set of transvections

T ′ = {T ′
1 = (φ′

1, e
′
1), . . . , T ′

n = (φ′
n, e

′
n)}

we let M(T ′) denote the n× n matrix (φ′
i(e

′
j)) and we call M(T ′) the M-matrix of the set

of transvections T ′.
Any monomial in Rn that can be written in the form aj1j2aj2j3 . . . ajr−2jr−1ajr−1jr

(with
ji 
= ji+1 for 1 ≤ i < r) will be called a j1jr-word. Note that by (1.2) if α ∈ Bn and
1 ≤ i 
= j ≤ n, then α(aij) is a sum of rs-words, where α(Ti) is a conjugate of Tr and
α(Tj) is a conjugate of Ts. Let α ∈ Bn where α(Ti) = wiTjw

−1
i in freely reduced form for

i = 1, ..., n and where wi = wi(T1, . . . , Tn). Then for i = 1, . . . , n we have wiTjw
−1
i = (ψi, fi)

for some ψi, fi determined by Lemma 2.1, which result in fact shows that

ψi = q1φ1 + · · ·+ qnφn and fi = p1d1 + · · ·+ pndn, (2.1)
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where p1, . . . , pn, q1, . . . , qn ∈ Rn. Since the aij are algebraically independent the φi and dj

are linearly independent and so the above representation is unique. We define the action of
Bn on Rn by

α(aij) = ψi(fj).

One can check that this agrees with the previous definition. Thus the M -matrix is acted
upon naturally by Bn:

α(M(T )) = M({α(T1), . . . , α(Tn)}).
From Lemma 2.3 of [H1] we have:

Lemma 2.2. Let α ∈ Bn where α(Ti) = C1TkC
−1
1 , α(Tj) = C2TpC

−1
2 , with C1, C2 ∈

< T1, . . . , Tn > and let C = C−1
1 C2 = T q1

j1
. . . T qr

jr
be freely reduced with jr 
= p, j1 
= k, qs 
= 0

for s = 1, . . . , r and js 
= js+1, for s = 1, . . . , r − 1. Then

α(aij) =
n∑

h=1

Ahahp

where Ah is equal to the sum of all the products of the form

qr1qr2 . . . qrm
akjr1

ajr1 jr2
. . . ajrm−1 jrm

where 1 ≤ r1 < r2 < · · · < rm ≤ r and jrm
= h. If p 
= jr, then the summand of α(aij) of

highest degree is unique and is equal to

±q1q2 . . . qrakj1aj1j2 . . . ajr−1jr
ajrp. �

For example, if α(T1) = T3T
−1
2 T1T2T

−1
3 and α(T2) = T−1

2 T3T2, then we would have
C = T2T

−1
3 T−1

2 and
α(a12) = a13 + a13a32a23 + a12a23a32a23.

We showed in [H1, Lemma 2.10] that for α ∈ Bn the freely reduced form of α(Ti) ∈<
T1, . . . , Tn > has no subword of the form T±2

j . In fact if c ∈ Cn is a simple closed curve,
then any cyclically reduced word in < T1, . . . , Tn > which represents c has no subword of
the form T±2

j . This allows one to sharpen the conclusion of Lemma 2.2:

Lemma 2.3. If α ∈ Bn and 1 ≤ i 
= j ≤ n, then the coefficient of the unique monomial of
highest degree in α(aij) is ±1. �

One can be more specific about the coefficients in (1.2), namely

Lemma 2.4. Let C ∈< T1, . . . , Tn >. Then CTiC
−1 = (ψ, f), where ψ =

∑
i λiφi, f =∑

i µidi, where λi, µi ∈ Rn satisfy λ∗
i = µi for all i.

Proof. This uses Lemma 2.1 and is by induction on the length of C in the standard generators
T1, . . . , Tn. �

Thus if i 
= j and A = C1TiC
−1
1 = (ψ1, f1), B = C2TjC

−1
2 = (ψ2, f2) ∈< T1, . . . , Tn >,

then f1, f2 are linearly independent and relative to this basis we have

A =
(

1 ψ1(f2)
0 1

)
, B =

(
1 0

ψ2(f1) 1

)
,
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where by Lemma 2.4 we have

ψ1 =
∑

i

λiφi, f1 =
∑

i

λ∗
i di, ψ2 =

∑
i

µiφi, f2 =
∑

i

µ∗
i di.

Thus trace(AB) = 2 + ψ1(f2)ψ2(f1) = 2 + φ(AB) and we have

ψ1(f2) =
n∑

i,j=1

λiµ
∗
jφi(dj), ψ2(f1) =

n∑
i,j=1

µjλ
∗
i φj(di).

Now let us refer back to (1.1). Since φi(dj) = aij we see that if we let bij = ψ1(f2), bji =
ψ2(f1), that we have trace(AB) = 2 + bijbji and

b∗ij = ψ1(f2)∗ = −ψ2(d1) = −bji,

thus proving (1.1) and the relation b∗ij = −bji.

Lemma 2.5. For all i ≤ n we have c′ni = ±c′n n−i.

Proof. By [Hu2, Corollary 2.7] we see that the characteristic polynomial χ′
n(x) satisfies

χ′
n(x) = (−x)nχ′

n(1/x)∗,

so that, up to a sign, the list c′n1, c
′
n2, . . . , c

′
n n−2, c

′
n n−1 is the same forwards and backwards

when we are in the ring R′
n where aij = −aji. �

§3 The rank 1 case

We first note that the matrix Un can never have rank 0.

Lemma 3.1. The i, j entry of Πn is the sum of all monomials of the form

ai1i2ai2i3ai3i4 . . . air−1ir
,

where i1 = i, ir = j and i = i1 < i2 < i3 < · · · < ir−1 ≤ n.

Proof. This is by induction on n ≥ 2. �

For an n× n matrix A and 1 ≤ i1, . . . , ir, j1, . . . , jr ≤ n we let A([i1, . . . , ir], [j1, . . . , jr])
denote the determinant of the r×r submatrix of A where we use only the rows i1, . . . , ir and
columns j1, . . . , jr from the matrix A. If [i1, . . . , ir] = [j1, . . . , jr] then we use the notation
A[i1, . . . , ir]. We also let A[i1,...,ir],[j1,...,jr] denote the determinant of the (n − r) × (n − r)
submatrix of A where we use only the rows numbered {1, . . . , n} \ {i1, . . . , ir} and columns
numbered {1, . . . , n} \ {j1, . . . , jr}. If [i1, . . . , ir] = [j1, . . . , jr], then we use the notation
A[i1,...,ir].

A key observation that simplifies many calculations is:
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Proposition 3.2. For all n ≥ 2 we have det(Π′
n + In) = det(Un) where Un is as defined in

Theorem 1. In fact all of the determinantal ideals determined by Π′
n + In and Un are the

same.

Proof. As we noted in the proof of [H2, Theorem 2.8], for any λ ∈ R the matrix Πn − λIn

can be row-reduced to the following matrix (using only elementary matrices of determinant
1), which thus has the same determinantal ideals as Πn − λIn:

Vn =




1− λ λa12 . . . λa1i . . . λa1,n−1 λa1n

a21 1− λ . . . λa2i . . . λa2,n−1 λa2n

...
...

. . .
...

...
...

ai1 ai2 . . . 1− λ . . . λai,n−1 λain

...
...

...
. . .

...
...

an−1,1 an−1,2 . . . an−1,i . . . 1− λ λan−1,n

an1 an2 . . . ani . . . an,n−1 1− λ




(3.1.)

Putting λ = −1 and aij = −aji for i < j we obtain the matrix Un. �

Proposition 3.3. Suppose that 2 is invertible in R. The matrix Πn + In has rank 1 if and
only if we have

ainani = −4, and 2aij = ainanj , 2aji = −ajnani

for all 1 ≤ i < j < n. Further, the point where aij = 2 for i > j and aij = −2 for i < j
satisfies the above conditions.

Proof. The last statement follows easily from the first. The basic fact here is that a matrix
has rank 1 if and only if all of its 2 × 2 minors are zero. By Proposition 3.2 it suffices to
consider the matrix Vn defined by (3.1) with λ = −1 . In this case one easily sees that for
i < j < n we have

Vn([i, j]) = 4 + aijaji, and Vn([i, n], [j, n]) = 2aij − ainanj .

Now for example if i < j < k < m ≤ n, then we have Vn([i, j], [k,m]) = aikajm − aimajk,
and modulo the ideal generated by the above relations this is equal to

1
4

(ainankajnanm − ainanmajnank) = 0.

All other cases are similar. The result follows. �

In the antisymmetric case aij = −aji we see that there are only 2n−1 real solutions to
these equations. Each such solution gives a coordinate vector (a21, a32, . . . , an n−1) where
each entry is ±2. Let Sn denote the 2n−1 points determined in Proposition 3.3 at which
Π′

n + In has rank 1. Note that the point where aij = 2, aji = −2 for 1 ≤ i > j ≤ n is in Sn.

Lemma 3.4. Suppose that 2 is invertible in R. Then there are exactly 2n−1 points where
Π′

n + In has rank 1 and the braid group Bn acts transitively on them.

Proof. We have already noted that there are 2n−1 such points and that each point in Sn is
completely determined by the n−1 coordinates corresponding to the variables ani, 1 ≤ i < n.



ACTION OF BRAID GROUPS ON COMPACT SPACES 13

Thus we will denote each point of Sn by a list of n− 1 integers an1, an2, . . . , an n−1 each of
which is in {±2}. Thus the Bn-action on these n − 1 coordinates can easily be calculated
(for the generators σi, i < n) using (1.2) as follows: for 1 ≤ i < n− 1 we have

σi(ani) = −an i+1; σi(an i+1) = ani; σi(anj) = anj j 
= i, i + 1. (3.2)

The action of σn−1 is:

σn−1(ani) =
an n−1ani

2
for i ≤ n− 2 and σn−1(an n−1) = an−1 n = −an n−1. (3.3)

We now show that each point of Sn is in the orbit of π2 = (2, 2, . . . , 2). Suppose that
p = (p1, . . . , pn−1) ∈ Sn. If p 
= π2, then there is 1 ≤ i ≤ n such that p1 = · · · = pi−1 =
2, pi = −2. Define µ(p) = i. If µ(p) > 1, then using the above action and the relations
satisfied by the aij given in Proposition 3.2 one checks that µ(σi−1(p)) > µ(p). Continuing
we see that p is in the orbit of π2.

If µ(p) = 1, then either p = −π2 or there is a unique j > 1 such that p1 = p2 = · · · =
pj−1 = −2, pj = 2. Let ν(p) = j. If p 
= −π2, then again one checks that ν(σj−1(p)) > ν(p)
and so in each case we see that p is in the orbit of −π2. But we now have σ1(−π2) =
(2,−2,−2, . . . ,−2), which puts us back into the situation where µ(σ1(−π2)) = 2 > 1. �

Let W (Dn) < W (Bn) denote the Weyl or Coxeter groups of types Bn, Dn [GB, §5.3].
Thus W (Bn) is the group of all “signed permutations” of {±1, . . . ,±n} and W (Dn) is the
subgroup where the product of the signs equals the sign of the permutation. As we pointed
out in §1, the symmetric group Sn, which is the Coxeter group of type An, is a quotient of
Bn. The above result is connected to the following result which shows that W (Dn) is also
a quotient of Bn:

Proposition 3.5. For all n ≥ 2 there is an epimorphism Bn →W (Dn). Let κi denote the
image of σi. Then the following is a presentation of W (Dn) with these generators:

< κ1, . . . , κn−1|κiκi+1κi = κi+1κiκi+1, κ2
i = κi+1κ

2
iκi+1, for i < n,

κ4
i = 1, κiκj = κjκi for |i− j| > 1 > .

The group with the above presentation is isomorphic to the image of the action of Bn on
the points of Sn if 2 is invertible in R.

Proof. For 1 ≤ i ≤ n we let τi = (i i + 1) ∈ Sn ⊂ W (Bn) denote the transposition and let
εi ∈W (Bn) denote multiplication of i by −1. Then one has the standard relations between
these generators of W (Dn) and one checks that the elements κi = εiτi ∈ W (Dn) satisfy the
braid relations and so a homomorphism Bn →W (Dn) is determined by σi �→ κi.

To see that we have an epimorphism we note that κ2
i = εiεi+1 and that the subgroup

< κ2
1, . . . , κ

2
n−1 > of W (Dn) is equal to W (Dn)∩ < ε1, . . . , εn > and has order 2n−1. Further

there is an epimorphism < κ1, . . . , κn−1 >→ Sn which kills < κ2
1, . . . , κ

2
n−1 >. Thus the

order of < κ1, . . . , κn−1 > is at least n!2n−1 = |W (Dn)|. However as < κ1, . . . , κn−1 > is a
subgroup of W (Dn) it must be equal to it. Thus the homomorphism Bn →W (Dn) is onto.

Now we consider the given presentation. The relations show that < κ2
1, . . . , κ

2
n−1 > is a

normal abelian subgroup of the group with the given presentation and that it has order 2n−1.
One further sees that the quotient by this normal subgroup is isomorphic to Sn. Since the
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relations given are easily shown to be satisfied by the images of σi under the homomorphism
Bn → W (Dn) we see that the given presentation is a presentation for W (Dn).

Now using the action of the generators σi on the elements of Sn (see (3.2) and (3.3))
one can show that these generators satisfy the same relations as do the κi. One can check
for example that the action of σ2

i on Sn is to multiply the ith and i + 1th coordinates of
elements of Sn by −1, showing that the images of σ2

1 , . . . , σ
2
n−1 generate a normal abelian

subgroup of order 2n−1. The rest follows easily. �

Remark 3.6. The set of singular points S3 was considered by Goldman [Go, §6.1 case (d)]
and corresponded to characters of representations into the centre of SL(2,R).

§4 The case n = 3

Before embarking upon a general analysis of the rank 2 case we look at the situation
where n = 3 and R = R . Here we have a single generator for the ring of invariants, namely

c′31 = a2
21 + a2

31 + a2
32 − a21a32a31 + 3.

Now det(U3) = −2(c31 + 1) and solving c′31 + 1 = 0 for (say) a21 we get two solutions:

a±21 =
a31a32 ±

√
(a2

31 − 4)(a2
32 − 4)

2
.

We will thus think of each a±21 as being a function of a31, a32. Now as we are looking for
real solutions we see that we need (a2

31− 4)(a2
32− 4) ≥ 0. This defines a domain E ⊂ R2 for

each a±21. The interior of E consists of 5 components, one of which has closure the region
S determined by −2 ≤ a31, a32 ≤ 2. Thus the solution set of c′31 + 1 = 0 over S consists
of two smooth topological discs D−, D+ in R3 which meet along the image of the subset
of E where a+

21 = a−21 i.e. at all points where (a2
31 − 4)(a2

32 − 4) = 0. But this set is just
the boundary of S. We will use coordinates for R3 in the order (a21, a31, a32). Then the
boundary of S is a union of 4 straight line segments where a31, a32 = ±2. One checks that
if a31 = 2, then a21 = a32 and so we get a straight line segment from (2, 2, 2) to (−2, 2,−2)
in this case. The other cases are similar and we get line segments connecting the points
(2, 2, 2), (−2, 2,−2), (2,−2,−2), (−2,−2, 2) of S3. These line segments give the 1-skeleton
of a regular tetrahedron in R3 . It follows from the above formula for a±21 that the discs
D−, D+ meet along a piecewise-linear curve. Let D = D− ∪D+.

Now one can check that the line segment between (2, 2, 2) and (2,−2,−2) is in D, and
that similarly the line segment between (−2, 2,−2) and (−2,−2, 2) is in D. Further the
smooth nature of the equations defining D± shows that all the points on these two lines are
smooth (except possibly at the end points). Clearly every point of the interior of D−
and the interior of D+ is a smooth point. Thus the only possibility of a non-smooth
point is a point of the piecewise linear curve D− ∩ D+. However we can also do the
above analysis by solving for a31 or a32 (instead of a21). Doing so, and repeating the
above argument, shows that in fact the only possible singular points are at the four points
(2, 2, 2), (−2, 2,−2), (2,−2,−2), (−2,−2, 2).

One can also check that D meets the 3-ball [−2, 2]3 only at the six line segments joining
the points (2, 2, 2), (−2, 2,−2), (2,−2,−2), (−2,−2, 2).
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Now B3 acts on the set V ′
31 of real solutions of c′31 +1 = 0. The projection of V ′

31 onto the
a31, a32-axis gives a region consisting of S together with four regions Q1, . . . , Q4 determined
by |a31|, |a32| ≥ 2. Each of these four regions is a plane meeting S at a single point. The
part of V ′

31 above each Qi is thus an open disc which meets D at one of the four points
(2, 2, 2), (−2, 2,−2), (2,−2,−2), (−2,−2, 2). Again one easily sees that it is smooth except
at these points. One gets a very nice picture of V ′

31 upon drawing it using something like
maple. One clearly sees that D has similarities with the standard tetrahedron embedded in
[−2, 2]3 ⊂ R3 . See Figure 2 for a graphical representation of D. A similar drawing may be
found in [Go, Fig. 2].

–2
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0
1

2 x

–2
–1

0
1

2

y

–1

0

1

2

Figure 2.
Now D bounds a 3-ball B ⊂ R3 and the action of B3 clearly fixes B since B3 fixes the

origin and D. Further for all 0 < t < 4 we consider the set of solutions to

a21a31a32 − a2
21 − a2

31 − a2
32 + 4− t = 0 (4.1)

in R3 . This equation occurs frequently in the literature; see for example [Go, K1]. As in
the above we can solve for a21 to get:

a±21(t) =
a31a32 ±

√
(a2

31 − 4)(a2
32 − 4)− 4t

2
.

Thus for 0 < t < 4 we see that a part of the solution set is a smooth 2-sphere D(t) ⊂ B.
We have D = D(0). The fact that this 2-sphere is smooth for t ∈ (0, 4) is seen by looking at
the Jacobian of the equation (4.1) and noting that the only singular points are at the four
points (2, 2, 2), (−2, 2,−2), (2,−2,−2), (−2,−2, 2), together with (0, 0, 0).

From [H1] we know that the representation B3 → Aut(Q ′
3) has kernel equal to its centre

Z(B3) =< (σ1σ2)3 >∼= Z. Since B is a 3-ball there are points (b21, b31, b32) ∈ B for which
the real numbers b21, b31, b32 are algebraically independent. Thus the action of B3/Z(B3)
at these points is faithful. Now the set of points (b21, b31, b32) ∈ B with algebraically
independent coordinates is dense in the ball B. Thus there are a dense set of values of
t ∈ (0, 4) such that the action of B3/Z(B3) is faithful on the spheres D(t).
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We now consider the question of convexity. This we will prove by showing that the
Hessians H±

4 of the function

a±21 = a31a32/2±
√

(a2
31 − 4)(a2

32 − 4)/2

are positive and negative definite (except on a set of measure 0). We will do H−
4 , showing

that it is positive definite, the other case being similar. This Hessian is

H−
4 =




2 a32
2−4

(a312−4)
√

(a322−4)(a312−4)
−1/2 a31a32−

√
(a322−4)(a312−4)√

(a322−4)(a312−4)

−1/2 a31a32−
√

(a322−4)(a312−4)√
(a322−4)(a312−4)

2 a31
2−4

(a322−4)
√

(a322−4)(a312−4)


 .

Now since −2 ≤ a31, a32 ≤ 2 we see that the diagonal entries are positive on the interior of
the domain. Thus we need only show that det(H−

4 ) is positive. Now we have

det(H−
4 ) = −1/2

a31
2a32

2 − a31a32

√
(a32

2 − 4) (a31
2 − 4)− 2 a31

2 − 2 a32
2

(a32
2 − 4) (a31

2 − 4)
.

Solving det(H−
4 ) = 0 gives the solutions a31 = ±a32. Call this set Z and notice that

[−2, 2]2 \ Z has components on the interior of each of which det(H4) is positive.
We summarise these results as follows:

Theorem 4.1. The quotient B3/Z(B3) ∼= PSL2(Z) acts faithfully on a convex topological
ball B ⊂ [−2, 2]3 ⊂ R3 with boundary D containing the four points

(2, 2, 2), (−2, 2,−2), (2,−2,−2), (−2,−2, 2).

The 2-sphere D is smooth except at these points. The six line segments connecting these
points are also in D and form the 1-skeleton of a regular tetrahedron in R3 . Further, D
meets the 3-ball [−2, 2]3 only at these six line segments.

Moreover, for all 0 < t < 4 there is a component D(t) of the solution set of

a21a31a32 − a2
21 − a2

31 − a2
32 + 4− t = 0

that is a B3/Z(B3)-invariant smooth 2-sphere inside B. There is a dense set of values of
such t for which this action of B3/Z(B3) on D(t) is faithful. �

§5 Results on symmetric matrices

Proposition 5.1. Let U = (uij) be any symmetric n×n matrix. Then for all 1 ≤ j < i ≤ n
the determinant det(U) is quadratic in uij and its discriminant relative to uij is equal to
4U[i]U[j].

In particular, if U = Π′
n + In, then for all 1 ≤ j < i ≤ n the determinant det(Π′

n + In)
is quadratic in aij and its discriminant relative to aij is equal to 4U[i]U[j].

Proof. The second statement will follow from the first, which we now prove. Since there is
an action of Sn on the entries of U which does not change the determinants we need only
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prove the result for i = 2, j = 1. Since u21 only occurs in the (1, 2) and (2, 1) positions in
U , det(U) is clearly quadratic in u21. Now from [M; p. 370] we see that

U[1]U[2] − (U[1],[2])2 = det(U)U[1,2]. (5.1)

Now

U[1],[2] = u21U[1,2],[1,2] − u31U[1,2],[1,3] + u41U[1,2],[1,4] − · · · = u21U[1,2],[1,2] + X.

Since U[1], U[2] and U[1,2],[1,2] are constant relative to u21 it follows that the discriminant of

−U[1]U[2] + (U[1],[2])2 = −U[1]U[2] + (u21U[1,2] + X)2

= u2
21(U[1,2])2 + 2XU[1,2]u21 − U[1]U[2] + X2

relative to the variable u21 is

4X2(U[1,2])2 − 4(U[1,2])2(X2 − U[1]U[2]) = 4(U[1,2])2U[1]U[2].

Now the appearance of the extra factor U[1,2] on the right hand side of (5.1) shows that the
discriminant of det(U) relative to u21 is 4U[1]U[2]. �

Proposition 5.2. Let 1 < r ≤ n, r ∈ 2Z and let R be a ring of characteristic 2. Then there
is a symmetric matrix of rank r over R′

n with 0s on the diagonal, all of whose off-diagonal
entries are non-zero.

Proof. Let m = n − r and let Qr = (aij) be a symmetric r × r matrix with 0s on the
diagonal. Let B = (bij) be a generic m × r matrix where bij = ai+r j . Note that Qr has
rank r since r is even. Also define n× n matrices

Mn =
(
Qr 0
0 0

)
, En =

(
Ir 0
B Im

)
.

Clearly Mn has rank r. We claim that EnMnE
t
n satisfies the requirements of Proposition

5.2. Now we note that EnMnE
t
n is symmetric; further we have

EnMnE
t
n =

(
Ir 0
B Im

)(
Qr 0
0 0

)(
Ir Bt

0 Im

)

=
(

Qr 0
BQr 0

)(
Ir Bt

0 Im

)
=
(

Qr QrB
t

BQr BQrB
t

)
.

The ps entry of BQr is
∑r

i=1 bpiais 
= 0 and the pt entry of BQrB
t is

∑r
s=1

∑r
i=1 bpiaisbts.

It follows that all the off-diagonal entries of EnMnE
t
n are non-zero and that all the diagonal

entries are zero. �

§6 The n = 4 case

The case n = 4 has some features that do not seem to arise in the n > 4 cases, so we
look at these in this section. The reason for the exceptional behaviour is the existence of
the well-known epimorphism B4 → B3, (σ1 �→ σ1, σ2 �→ σ2, σ3 �→ σ1). The most notable
difference is the existence of a pair of subspaces that are permuted by B4:
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Theorem 6.1. For n = 4 the braid group B4 acts on a disjoint union S2+ ∪ S2− of two
2-spheres. The union of these spheres contain the singular points S4. For each ε = ± there
is a smooth embedding ιε : R3 → R6 such that the images Pε of these maps are permuted by
B4 and contain the two 2-spheres i.e. S2± ⊂ P±. We have P− ∩ P+ = {0}.
Proof. We define the embedded planes relative to the coordinates (a21, a31, a32, a41, a42, a43)
as follows:

P+ = {(a, b, c, c, d, a) ∈ R6 |b + d = ac};
P− = {(a, b, c,−c,−d,−a) ∈ R6 |b + d = ac}.

It is easy to check that σi(Pε) = P−ε for all 1 ≤ i < 4 and ε = ±; for example if
(a, b, c, c, d, a) ∈ P+, then

σ1(a, b, c, c, d, a) = (−a, c− ab, b, d− ac, c, a) = (a′, b′, c′,−c′,−d′,−a′),

where b′ + d′ = (c− ab) + (−c) = −ab = a′c′ and so σ1(a, b, c, c, d, a) ∈ P−.
One now also checks that each point in S4 is contained in one of the P±. Next note that

if we require that the a, b, c, d in the above also satisfy

abc− a2 − b2 − c2 + 4 = 0,

then we obtain the 2-spheres S2+ ⊂ P+, S
2− ⊂ P−. That these are 2-spheres follows from

the arguments of §3. These are contained in the same level set of the invariants c′41, c
′
42 as

the points of S4. One easily checks that P− ∩ P+ = {0} and so that S2+, S2− are disjoint.
Next one checks that the union of these spheres is also fixed by the action of B4. To do this
one only needs to check the action of the generators σi, i = 1, 2, 3 and this is easy. �

§7 The rank 2 case

In this section we assume that R = R and we investigate the nature of the subset
Vn2 ⊂ R(n

2) where the rank of the matrix Π′
n + In is 2. This set is invariant under the action

of Bn by Proposition 3.2.
Let λ = (λ21, λ31, λ32, . . . , λnn−1) ∈ R(n

2). Then λ is called a tetrahedral point if for all
1 ≤ i < j < k ≤ n we have

λkjλkiλji − λ2
kj − λ2

ki − λ2
ji + 4 = 0.

Lemma 7.1. Let λ = (λ21, λ31, . . . , λnn−1) ∈ R(n
2) be a point at which rank(Π′

n + In) is at
most 2. Then λ is a tetrahedral point.

Proof. Here we need only consider the minors Un([i, j, k]); these give exactly the tetrahedral
condition. �

Lemma 7.2. The only singular points on V42 are the points in the set S4.

Proof. For any square matrix M the singular points of the determinantal ideal of all 3× 3
minors is given by the determinantal ideal of all 2×2 minors [ACGH, p. 69]. This is exactly
the set Sn (see Lemma 3.4). �.
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Remark 7.3. We have seen above that the set Sn is fixed by the action of Bn, however
these are not the only finite orbits: For n = 3 the orbit of (

√
2, 0,−1) has 36 elements and the

action of B3 gives a group of order 2654208 = 21534. The orbit of (−
√

2 +
√

2,−
√

2 +
√

2, 2)
has 96 elements and the action of B3 gives a group of order 1536 = 293. The B4-orbit of
the tetrahedral point (

√
3,−

√
3,−1, 0, 1, 1) ∈ V42 consists of 288 points; the action of B4 on

these points gives a group of order 165888 = 21134.

Now for 1 ≤ i < j < k ≤ n there is a projection πijk : R(n
2) → R3 which forgets those

coordinates ars with r, s /∈ {i, j, k}. The fact that points v ∈ Vn2 satisfy the tetrahedral
condition shows that the image of each such πijk consists of points (x, y, z) ∈ R3 such that
xyz−x2−y2−z2 +4 = 0. The nature of this solution set was investigated in §3 from which
it is natural to define:

V
(2)
n2 = Vn2 ∩ [−2, 2](

n
2).

Note that V
(2)
n2 is a compact set and is invariant under the action of Bn.

Now we solve the tetrahedral equations. For any 1 ≤ j < i < n the coordinates
aij , ani, anj satisfy the tetrahedral relation and so we can solve for aij as a function of
ani, anj:

aij = a
εij

ij (an1, an2, . . . , an n−1) = anjani/2 + εij

√
(a2

nj − 4)(a2
ni − 4)/2, (7.1)

where εij = εji = ±1. For convenience we also put a±1
ni (an1, an2, . . . , an n−1) = ani.

Lemma 7.4. For any z = (an1, an2, . . . , an n−1) ∈ [−2, 2]n−1 and ε = (ε21, ε31, . . . , εn n−1) ∈
{±1}(

n
2) the point fε(z) = (aε21

21 (z), aε31
31 (z), . . . , aεn n−1

n n−1 (z)) ∈ R(n
2) with the a

εij

ij , 1 ≤ j < i <

n, given by (7.1) is in Vn2 if and only if the following conditions are satisfied:

εijεjkεik = −1 for all distinct 1 ≤ i, j, k < n. (7.2)

Proof. To prove the Lemma we need to show that any (aε21
21 , a

ε31
31 , . . . , a

εn n−1
n n−1 ) gives a point

in R(n
2) (with the a

εij

ij , 1 ≤ j < i < n given by (7.1)) satisfying all of the equations
Un([i1, i2, i3], [j1, j2, j3]) = 0. Now the symmetric group acts naturally on Un by per-
mutation of subscripts and the subgroup Sn−1 fixes any point where the εij are given
by (7.2). Thus this Sn−1 acts on the Un([i1, i2, i3], [j1, j2, j3]) and we need only check
Un([i1, i2, i3], [j1, j2, j3]) = 0 for Un([1, 2, 3], [j1, j2, j3]) and Un([1, 2, n], [j1, j2, j3]). In fact
even here there are only a small number of cases to check depending on the cardinality of
the set {1, 2, 3} ∩ {j1, j2, j3} or {1, 2, n} ∩ {j1, j2, j3} (respectively). For example we have
(using ε2ij = 1)

Un([1, 2, 3]) = (a2
n1 − 4)(a2

n2 − 4)(a2
n3 − 4)(ε12ε13ε23 + 1)/8

+ an2an3

√
(a2

n2 − 4)(a2
n3 − 4)(a2

n1 − 4)(ε23 + ε12ε13)/8

+ an1an3

√
(a2

n1 − 4)(a2
n3 − 4)(a2

n2 − 4)(ε13 + ε23ε12)/8

+ an1an2

√
(a2

n1 − 4)(a2
n2 − 4)(a2

n3 − 4)(ε12 + ε13ε23)/8.
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This is zero if and only if ε12ε13ε23 = −1 and so we get εijεikεjk = −1 for all distinct
1 ≤ i, j, k < n. Now one similarly checks that with these conditions satisfied we also have
Un([1, 2, 3], [1, 2, 4] = 0, Un([1, 2, 3], [3, 4, 5] = 0, Un([1, 2, 3], [4, 5, 6] = 0, Un([1, 2, n], [1, 2, 3] =
0 etc. For example Un([1, 2, 3], [1, 2, 4] can be written as:

1
8

√
(a2

n1 − 4)(a2
n3 − 4)an1an4(a2

n2 − 4)(ε13 + ε12ε23)

+
1
8

√
(a2

n2 − 4)(a2
n3 − 4)an2an4(a2

n1 − 4)(ε23 + ε12ε13)

+
1
8

√
(a2

n1 − 4)(a2
n4 − 4)an1an3(a2

n2 − 4)(ε14 + ε12ε24)

+
1
8

√
(a2

n2 − 4)(a2
n4 − 4)an2an3(a2

n1 − 4)(ε24 + ε12ε14)

− 1
8

√
(a2

n1 − 4)(a2
n2 − 4)(a2

n3 − 4)(a2
n4 − 4)an1an2(2ε12ε34 − ε14ε23 − ε13ε24)

+
1
8

√
(a2

n3 − 4)(a2
n4 − 4)[16ε24(ε23 + ε12ε13) + 16ε23(ε24 + ε12ε14)

+ a2
51a

2
52(ε12ε13ε24 + ε12ε23ε14 − 2ε34)− 4a2

n1(ε13ε14 + ε12ε14ε23 + ε12ε13ε24 − ε34)

− 4a2
n2(ε23ε24 + ε12ε23ε14 + ε12ε13ε24 − ε34)].

The other cases are similar. This proves the result. �

Conjecture 7.5. Now if 1 < r ≤ n, then for 1 ≤ j < i ≤ n − r + 1 we can solve the
quadratic equation Un[i, j, n+ 2− r, n+ 3− r, . . . , n] = 0 for aij to get a solution depending
on a parameter εij = ±1. We conjecture that doing so for all such i, j will give a matrix of
rank r if and only if we have εijεjkεik = (−1)r+1. What we have proved above is that this
is true for r = 2. As indicated in the above proof each case requires only a finite amount of
checking and we have also checked that the conjecture holds for r = 3, 4.

Returning to the case r = 2 one can check that the conditions (7.2) are satisfied if we
have

εij = −ε1iε1j

for all 1 < i < j < n. Thus there are 2n−2 choices corresponding to the values of
ε21, ε31, . . . , εn−1,1 and we will now let ε = (ε21, ε31, . . . , εn−1,1). Thus by (7.1) for each
ε satisfying (7.2) we have a function

fε = fε(an1, . . . , ann−1) : [− 2, 2]n−1 → R(n
2).

The image of [−2, 2]n−1 is an (n− 1)− ball in R(n
2). We will call it an ε− cube.

These ε-cubes meet along only their faces and we now describe these identifications and
a certain fundamental groupoid. Let pε = fε(0, 0, . . . , 0). This is the centre of the ε-cube.
By a face of the ε-cube we will mean the subset determined by ani = ±2 for some 1 ≤ i < n.

For 1 ≤ i < n and µ ∈ {±1} we let Fi,ε,µ be the face of the ε-cube determined by
ani = µ2. The following two conditions are checked using (7.1):
(7.i) If ε′ differs from ε only in the ε1i place (i > 1), then Fi,ε,µ is canonically identified with
Fi,ε′,µ: fε(z) = fε′(z) for all z with ani = µ2.
(7.ii) If ε′ = −ε, then F1,ε,µ is similarly identified with F1,ε′,µ.
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These are the only ways that the faces are identified. Thus the faces are identified in
pairs. For example, when n = 4 the ε = (+,+) cube is as shown in Figure 3:

D++

A ++ B++

C++

++D´

A
+́+

a42
a43

B
+́+

C
+́+

a41

Figure 3

Here we have indicated the direction in which each of a41, a42, a43 increases and −2 ≤
a41, a42, a43 ≤ 2. Thus, for example, F1,(+,+),+1 is the face B++B

′
++C

′
++C++. There are

three other such cubes whose vertices we label similarly and they have faces which are
identified as follows:

ABB′A′
++ ≡ ABB′A′

+−; DCC′D′
++ ≡ DCC′D′

+−
ADD′A′

++ ≡ ADD′A′
−−; BB′C′C++ ≡ BB′C′C−−

ABCD++ ≡ ABCD−+; A′B′C′D′
++ ≡ A′B′C′D′

−+;

AA′D′D+− ≡ AA′D′D−+; BB′C′C+− ≡ BB′C′C−+;

ABCD+− ≡ ABCD−−; A′B′C′D′
+− ≡ A′B′C′D′

−−;

ABB′A′
−+ ≡ ABB′A′

−−; DCC′D′
−+ ≡ DCC′D′

−−.

Now making the ABB′A′
++ ≡ ABB′A′

+−, DCC′D′
++ ≡ DCC′D′

+− identifications in the
above list gives a solid torus, as does making the ABB′A′

−+ ≡ ABB′A′
−−, DCC′D′

−+ ≡
DCC′D′

−− identifications. Now the rest of the identifications give the way of identifying
the boundaries of these two solid tori. See Figure 4:
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A´B B´ A B

C C

A´B B´ A B

A´B B´ A B

A´B B´ A B

C C

1+ – 2+ – 3+ – 4+ –

5+ + 6+ + 7+ + 8+ +

8– +1– + 6– + 3– +

5– – 2– – 7– – 4– –

C´ D´ D

C´ D´ D

Figure 4.
One checks that all of A++, A+−, A−+, A−− are identified and similarly for B,C,D and

A′, B′, C′, D′. The edges AB++, AB+−, AB−+, AB−− are similarly all identified. One also
checks that at each edge all four cubes come together as if they were stacked in R3 . The
resulting space is a manifold except at the 8 vertices (the points of S4), where one can check
that the link is an RP2 .

Now let Tn−1 be the (n− 1)-torus S1 × · · · × S1 (n− 1 times). Here we represent S1 as
R mod 2π. Thus S1 = I1 ∪ I2 where I1 = [0, π], I2 = [π, 2π]. Let α : Tn−1 → Tn−1 be the
antipodal map α(x) = −x for all x ∈ Tn−1. We will think of α as acting on all the Tn−1.
It is clear that α respects adjacencies. Further, the fixed point set of α for this action is
{0, π}n−1 and this set is contained in each cube.

Theorem 7.6. For all n > 3 the orbifold quotient Tn−1/ < α > is homeomorphic to V
(2)
n2 .

The 2n−1 singular points of V (2)
n2 are non-manifold points whose links are all homeomorphic

to RPn−2 . The open manifold V
(2)
n2 \ Sn is acted upon by Bn.

Proof. We will exhibit Tn−1 as a cubical complex which is invariant under the map α and
then show that the cubes in the quotient complex have the same face identifications as we
obtained for V

(2)
n2 above.

Now we naturally have

Tn−1 =
⋃

i1,i2,...,in−1∈{1,2}
Ii1 × Ii2 × · · · × Iin−1 .

Note that there are 2n−1 such cubes in this decomposition and we may denote each cube
by C(i1, i2, . . . , in−1). Now α(I1) = I2, α(I2) = I1. Thus in the quotient Tn−1/ < α >
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each such cube can be represented by a cube of the form I1 × . . . . Now two distinct cubes
C(i1, i2, . . . , in−1) and C(i′1, i

′
2, . . . , i

′
n−1) have a face in common if and only if the sequences

(i1, i2, . . . , in−1) and (i′1, i
′
2, . . . , i

′
n−1) differ in exactly one position.

To each cube C(i1, i2, . . . , in−1) we associate a sequence ε(i1, i2, . . . , in−1) = (ε2, . . . , εn−1)
as follows:

εj =
{+1 if ij = 1, i1 = 1;
−1 if ij = 2, i1 = 1.

εj =
{−1 if ij = 1, i1 = 2;

+1 if ij = 2, i1 = 2.

Then C(i1, i2, . . . , in−1) �→ Im(fε(i1,i2,...,in−1)) gives a one-to-one correspondence between
the classes of cubes in Tn−1/ < α > and the cubes Im(fε). We now show that if
C(i1, i2, . . . , in−1) and C(i′1, i

′
2, . . . , i

′
n−1) share a face, then so do Im(fε(i1,i2,...,in−1)) and

Im(fε(i′1,i′2,...,i′n−1)
).

Now C(i1, i2, . . . , in−1) and C(i′1, i′2, . . . , i′n−1) share a face if and only if the sequences
(i1, i2, . . . , in−1) and (i′1, i

′
2, . . . , i

′
n−1) differ in exactly one entry. First, if (i1, i2, . . . , in−1)

and (i′1, i
′
2, . . . , i

′
n−1) differ only in the jth entry where j > 1, then Im(fε(i1,i2,...,in−1))

and Im(fε(i′1,i′2,...,i′n−1)
) share a face by (7.i) above. Otherwise if (i1, i2, . . . , in−1) and

(i′1, i
′
2, . . . , i

′
n−1) differ only in the first entry, then Im(fε(i1,i2,...,in−1)) and Im(fε(i′1,i′2,...,i′n−1)

)
share a face by (7.ii) above.

Lastly, the link of a vertex of one of the C(i1, i2, . . . , in−1) in Tn−1 is an Sn−2 and so the
link of a vertex of Im(fε(i1,i2,...,in−1)) in Tn−1/ < α > is an RPn−2 . �.

Returning to the n = 4 case we wish to explicitly find the fundamental group π1(V (2)
42 ).

We will find π1(V (2)
42 ) by first finding the fundamental groupoid π1(V (2)

42 , P ), where P =
∪(±,±)p±±. For information on fundamental groupoids see [Br].

For 1 ≤ i < n, µ ∈ {±1} we let gi,ε,µ be an arc from pε to the centre of Fi,ε,µ. Thus
for i > 1 and ε, ε′ differing only in the ith entry we have an arc gi,ε,µg

−1
i,ε′,µ from pε to pε′ .

Similarly g1,ε,µg
−1
1,−ε,µ goes from pε to p−ε.

Proposition 7.7. The fundamental groupoid π1(V (2)
42 , P ) has the following generators and

relations:

< a1, b1, c1, d1, e1, f1, a2, b2, c2,d2, e2, f2|
e1b1f1a

−1
1 , e1b2f1a

−1
2 , e2b1f2a

−1
1 , e2b2f2a

−1
2 ,

c1b
−1
1 d1a

−1
1 , c1b

−1
2 d1a

−1
2 , c2b

−1
1 d2a

−1
1 , c2b

−1
2 d2a

−1
2 ,

c1f1d
−1
1 e−1

1 , c1f2d
−1
1 e−1

2 , c2f1d
−1
2 e−1

1 , c2f2d
−1
2 e−1

2 > .

The fundamental group π1(V (2)
42 ) has the following generators and relations:

< b1, f2, b2, d2|b21, f2
2 , b

2
2, d

2
2, (f2b1b2)2, (d2b1b2)2, (d2b1f2)2 > .

The group π1(V (2)
42 ) has a normal subgroup of index 2 which is isomorphic to Z3.

Proof. First define some generators as follows:

a1 = g1+++g
−1
1−−+; b1 = g1+−+g

−1
1−++; c1 = g2+++g

−1
21−++;

d1 = g2+−+g
−1
2−−+; e1 = g3+++g

−1
3+−+; f1 = g3−++g

−1
3−−+;

a2 = g1++−g−1
1−−−; b2 = g1+−−g−1

1−+−; c2 = g2++−g−1
2−+−;

d2 = g2+−−g−1
2−−−; e2 = g3++−g−1

3+−−; f2 = g3−+−g−1
3−−−.
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These are arcs which connect the points of P . They correspond to the identifications
of the faces given above; for example a1 corresponds to the identification BB′C′C++ ≡
BB′C′C−−. They generate π1(V (2)

42 , P ). Now each edge of each cube determines a relation.
The set of such generators and relations suffices for a presentation of π1(V (2)

42 , P ). Since
each edge is adjacent to each of the four cubes we obtain relators of length 4 in the above
generators. One calculates that they are as indicated in Proposition 7.7. For example the
edge CC′ corresponds to the first relator given in the presentation.

To obtain a presentation for the fundamental group from the given presentation for the
fundamental groupoid we just need to “collapse a maximal tree” in the generator graph;
this collapsed tree will give the base point for the fundamental group. We choose the
tree determined by a1, c1, e1. A calculation now gives the presentation indicated in the
proposition. The last statement follows from the given presentation for π1(V (2)

42 ), since one
can easily show that the subgroup generated by f2b1, b2b1, d2b1 is isomorphic to Z3 and has
index 2. �

Now B4 acts on V
(2)
42 and at any point of V (2)

42 the determinant of U4 is zero. This however
leaves the possibility that not all of the invariants c′4i, i = 1, . . . , 4 are constant on V

(2)
42 . In

fact one checks that

c′43 = −a21a31a32+a21a32a41a43 − a21a41a42 − a32a42a43 − a31a41a43

+ a2
21 + a2

31 + a2
32 + a2

41 + a2
42 + a2

43 − 8

is not constant on V
(2)
42 . Thus V (2)

42 is a union of the level sets of c′43, each such level set also
being invariant under the action of B4. We now describe these level sets, first noting that
one can show that on V

(2)
42 the function c′43 only takes on values in the range: [−4, 0].

Proposition 7.8. For 0 < t < 4 the set V (2)
42 ∩ V (c′43 + t) is a union of four singular tori.

For t = 0, 4 the set V (2)
42 ∩ V (c′43 + t) is a union of two singular tori.

Proof. Assume first that 0 < t < 4. Then solving for aij(ε), 1 ≤ j < i < 4 (for each of the
4 possible ε) and substituting into c′43 we obtain a degree 4 equation in a43. Solving this
equation gives 16 solutions and so we get 16 discs. One calculates the identifications on the
boundaries of these discs and sees that four of these form a torus and that this happens 4
times. The cases t = 0, 4 are similar. �

§8 The rank n − 1 case

In this section we assume that R = R. We have already investigated this case for n = 3
in §4.

Theorem 8.1. For all n ≥ 3 there is a one-parameter family of semialgebraic subsets of
R(n

2) each of which is homeomorphic to a smooth sphere of dimension
(
n
2

)
− 1. Each point

x of one of these spheres corresponds to a matrix Un(x) which is positive definite. These
spheres are invariant under the action of Bn. Moreover the kernel of the action of Bn on
these spheres is the cyclic centre of Bn for a dense set of values of the parameter.

Proof. We will be considering the level sets of the function det(Un). First note that the
matrix Un((0, 0, . . . , 0)) corresponding to the origin of R(n

2) is twice the identity matrix,
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which is positive definite. Since positive-definiteness is an open condition all matrices corre-
sponding to points in a sufficiently small neighbourhood of the origin of R(n

2) will be positive
definite.

We will use Morse theory applied to the function det(Un) and will need:

Lemma 8.2. The origin is a singular point of det(Un). The Hessian of the function det(Un)
at the origin is non-degenerate and has index

(
n
2

)
.

Proof. One easily sees that det(Un) has constant term 2n and that all other monomials have
degree at least 2. Thus the origin is a singular point of det(Un). In fact the only monomials
of det(Un) having degree 2 are those of the form −2n−2a2

ij. Thus the Hessian of det(Un) at
the origin is a diagonal matrix with −2n−1s on the diagonal. It is thus non-degenerate and
has index

(
n
2

)
. �

Thus Morse theory [GG, II, §6] says that the origin is an isolated singular point and that
near the origin det(Un) looks like (after a change of variables):

2n −
∑

1≤j<i≤n

a2
ij ,

and so the level sets of det(Un) near the origin are all smooth topological spheres of dimension(
n
2

)
− 1.

Now a dense set of these spheres contain points whose coordinates are algebraically
independent. At any such point the kernel of the action of Bn is just the cyclic centre of
Bn [H1]. This proves Theorem 8.1 and a part of Theorem 2 in §1. �

Remark. We note that the level sets of the invariants c′ni intersect these spheres and give in
general smaller sets on which the braid groups act.

The case n = 4 can be considered in more detail: What we proved in §4 about the
n = 3 case can be summarised as follows: solving det(U3) = −2(c′31 + 1) = 0 for a21

gives two diffeomorphisms a±21(a31, a32) with domain [−2, 2]2 such that the two closed discs
a+
21([−2, 2]2), a−21([−2, 2]2) meet along a piece-wise linear circle which is a+

21(∂[−2, 2]2) =
a−21(∂[−2, 2]2), where ∂ denotes the boundary. The union a+

21([−2, 2]2) ∪ a−21([−2, 2]2) is a
2-sphere.

Now consider the case n = 4. Here we use Proposition 5.1 to solve the quadratic equation
det(Un) = 0 for a21. We obtain two solutions a±21(a31, a32, a41, a42, a43). The same result
shows that the discriminant of this equation is 4U4[1]U4[2]. Now by the n = 3 case the equa-
tions U4[1](a32, a42, a43) = 0, U4[2](a31, a41, a43) = 0 define two 2-spheres in their respective
3-dimensional spaces. Further we have that

a+
21(a31, a32, a41, a42, a43) = a−21(a31, a32, a41, a42, a43)

at all points where U4[1](a32, a42, a43)U4[2](a31, a41, a43) = 0. We wish to restrict the domain
of a±21(a31, a32, a41, a42, a43) to the closure E4 of the component of [−2, 2]5 \ (U4[1]U4[2])−1(0)
containing 0. We will show that this is a 5-ball and that U4[1](a32, a42, a43)U4[2](a31, a41, a43)
is equal to zero only on the boundary of this 5-ball, which is a 4-sphere. Thus

a+
21(a31, a32, a41, a42, a43)(E4) ∪ a−21m(a31, a32, a41, a42, a43)(E4)



26 STEPHEN P. HUMPHRIES

will be a union of two 5-balls along a 4-sphere i.e. a 5-sphere.
Now we can also consider U4[1](a32, a42, a43) as a function U4[1](a31, a32, a41, a42, a43) and

as such U4[1](a31, a32, a41, a42, a43) = 0 has solution set S2 ×D2, where the D2 corresponds
to −2 ≤ a31, a41 ≤ 2 and the S2 is in the cube −2 ≤ a32, a42, a43 ≤ 2. A similar thing
happens for U4[2](a31, a32, a41, a42, a43) = 0. By Theorem 4.1 the S2s in these S2 × D2s
bound convex 3-balls which contain the origin. These two D3 ×D2s are now both convex
and so intersect in a convex 5-ball with four-sphere boundary as required. This proves a
part of Theorem 2.

Theorem 8.3. For all 1 ≤ k ≤ n there is a compact subset of Vn,k which is Bn-invariant.

Proof. For the moment let us consider solving det(Un) = 0 for the variable a21 as given in
Proposition 5.1. Then a21 is a quadratic function of the remaining coordinates aij 
= a21.
The discriminant of this quadratic function is 4Un[1]Un[2] (see Proposition 5.1 again) and so
a21 is not defined at points where 4Un[1]Un[2] < 0.

Consider a ray ρ = ρ(t), t ≥ 0, starting at the origin in the Euclidean space R(n
2)−1 with

coordinates (a31, a32, . . . , an n−1). Let η1, η2 : R(n
2)−1 → R(n−1

2 )−1 denote the projections
with codomains having coordinates (aij), i, j 
= 1 and (aij), i, j 
= 2 respectively. At the
origin the discriminant 4Un[1]Un[2] is positive, in fact each of Un[1], Un[2] is positive. Let

ε > 0, i = 1, 2. As this ray passes through the cube [−2 − ε, 2 + ε](
n
2)−1 ⊂ R(n

2)−1 the sign
of Un[i](ηi(ρ(t))) will change or at least become 0. This is true for n = 2, 3 and is proved in
general by induction on n. Let tρ,i > 0 denote the first value of t when this happens. Let

Dn = {ρ(t)|t ≤ min(tρ,1, tρ,2), tρ,1 
= tρ,2} ⊂ R(n
2)−1.

Now the set of rays ρ where tρ,1 = tρ,2 is in the closure of the set of rays with tρ,1 
= tρ,2.
Thus the closure Dn is a compact set of dimension

(
n
2

)
− 1. However Dn is a subset of the

domain of each of the diffeomorphisms a±21(a31, a32, . . . , an n−1). The (
(
n
2

)
− 1)-discs which

are the images of these two functions meet exactly over points where Un[1]Un[2] = 0, namely
over points which are in the image of ∂Dn. Thus a+

21(Dn) ∪ a−21(Dn) is the union of two
compact sets of dimensions

(
n
2

)
− 1 meeting along a common subset of one dimension less.

Now the action of Bn on R(n
2) fixes the origin. Further each ray ρ ⊂ R(n

2) starting at
the origin must cross a+

21(Dn) ∪ a−21(Dn), which is the union of the graphs of the functions
a+
21, a

−
21 with domain Dn, since the projection of this ray to the R(n

2)−1 with coordinates
(a31, a32, . . . , an n−1) gives either a point or a ray which eventually passes out of Dn. The
point at which ρ hits a+

21(Dn)∪a−21(Dn) is the first point along ρ at which det(Un + In) = 0.
Thus this compact set of dimension

(
n
2

)
− 1 is clearly invariant under the action of Bn. �

§9 Faithfulness of the action of Bn on quotients of R′
n

Recall that we showed in [H1] that the kernel of Bn → Aut(Rn) or of Bn → Aut(R′
n) is

the centre Z(Bn). The main result of this section is the following:

Theorem 9.1. Let n > 2 and let c ∈ R′
n, c /∈ R, be invariant under the action of Bn.

Assume further that either
(i) c has a21a32a43 . . . an n−1an1 as a factor of a monomial summand of highest degree; or
(ii) c has more than one monomial summand of highest degree.
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Then Bn acts on the quotient R′
n/ < c >, where < c > is the ideal of R′

n generated by c.
The kernel of this action is Z(Bn).

Suppose that I is a Bn-invariant ideal in R′
n such that for all x ∈ I, x 
= 0, the number of

monomial summands of x of highest degree is greater than 1, then Bn acts on the quotient
R′

n/I and the kernel of this action is Z(Bn)

Proof. Clearly < c > is invariant under Bn and so Bn acts on R′
n/ < c > as required. Now

suppose that α ∈ Bn, α 
= id, is in the kernel of this action. Then there are 1 ≤ j < i ≤ n
and kij ∈ R′

n, kij 
= 0, such that

α(aij) = aij + kijc.

However Lemma 2.3 shows that α(aij) has a unique monomial of highest degree and leading
coefficient ±1 . This would contradict hypothesis (ii) in Theorem 9.1 which would imply
that α(aij) = aij + kijc has more than one monomial of highest degree.

Now assume (i). We will need:

Lemma 9.2. For all 1 ≤ i, j ≤ n the monomial a21a32a43 . . . an n−1an1 is never a factor of
the unique monomial of highest degree in α(aij).

Proof. Let c1, c2, . . . , cn be a cut system for the generators x1, x2, . . . , xn. Thus ci is a
vertical arc joining πi to the boundary of Dn (above πi) and ci only intersects xi (see Figure
1). Now suppose that a21a32a43 . . . an n−1an1 is a factor of a monomial of highest degree in
α(aij). Then by Lemma 2.2 we see that each of

(x±1
1 x±1

2 )±1, (x±1
2 x±1

3 )±1, . . . , (x±1
n−1x

±1
n )±1, (x±1

n x±1
1 )±1

is a subword of the cyclically reduced form of α(xixj) for some choice of ±1s. We will in
fact show that in this case each of

(x1x2)±1, (x2x3)±1, . . . , (xn−1xn)±1, (xnx1)±1

is a subword of the cyclically reduced form of α(xixj). For suppose that xkx
−1
k+1 is a

subword of α(xixj). Let γij denote the simple closed curve containing πi and πj in its
interior and representing the conjugacy class xixj ; we assume that α(γij) meets the cut-arcs
cm minimally. Then we see that α(γij) has an oriented subarc δ going from ck on the right
to ck+1 on the right and such that ck ∪ δ ∪ ck+1 cuts off a punctured disc. Now since α(γij)
is simple and meets the cm minimally we see that the next cm crossed by α(γij) is ck. Thus
x−1

k+1x
−1
k is a subword of α(xixj).

The case where x−1
k xk+1 is a subword of α(xixj) is similar, as are the cases x−1

n x1 and
xnx

−1
1 .

We thus see that the simple closed curve α(γij) has subarcs joining each ck (on the right)
to ck+1 (on the left) for k = 1, . . . , n−1 together with subarcs joining cn (on the right) to c1
(on the left). Let ζk be such an arc for each k = 1, . . . , n and assume further that among all
such subarcs the ζk that we choose is the one closest to the boundary of Dn. Then it easily
follows that the endpoint of ζk on ck+1 is the end of ζk+1 on ck+1. Thus the ζks join up to
form a simple closed curve parallel to the boundary. Since n > 2 we see that this cannot be
α(γij), a contradiction.

The proof of the statement in the last paragraph of Theorem 9.1 is similar to the proof
of (ii) in the above. �
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Corollary 9.3. The group Bn/Z(Bn) acts faithfully on the quotient R′
n/ < c > in each of

the following cases:
(i) c = cni, for 0 < i < n;
(ii) c = det(Un), for n ≥ 3.

Proof. (i) By [H2, Theorem 2.8] we see that the c′ni are invariant under the action of Bn. In
equation (3.1) a specific matrix is given whose determinant is the characteristic polynomial
of T1T2 . . . Tn with variable λ. It is clear from the nature of this matrix that for i 
= 1, n− 1
the coefficient of λi has more than one monomial of highest degree. The result follows in
this case from Theorem 9.1 (ii). If i = 1, n− 1, then we first note that cn1 = ±cn n−1 and
that in this case cn1 has a single monomial of highest degree, namely a21a32a43 . . . an n−1an1.
Theorem 9.1 (i) now concludes this case as well.

(ii) If n > 3, then again c = det(Un) has more than one monomial of highest degree.
However if n = 3, then det(U3) = −2(c31 + 1) and we are similarly done by Theorem 9.1
(i). �.

This proves Theorem 1 (iii).
We will say that a ring has a Gröbner basis algorithm if the fundamental theorem of

Gröbner bases is satisfied for any polynomial ring over that ring. See [AL; Theorem 1.9.1
and Ch. 4] where it is shown that for example Z or any field has a Gröbner basis algorithm.

Corollary 9.4. Suppose that R is a ring containing an ideal K such that R/K has charac-
teristic 2 and has a Gröbner basis algorithm. Then for all 1 < r < n the group Bn/Z(Bn)
acts faithfully on the quotient R′

n/In r.

Proof. We first note that we need only consider the case where the coefficients are in R/K
since we have natural maps:

Bn/Z(Bn) → Aut(R′
n/Inr) → Aut((R/K)′n/Inr)

and if the composition is injective, then so is the first map.
Let α ∈ Bn \ Z(Bn). If r is even, then Inr = {0} over R/K, but by Lemma 2.3 there

are i, j such that α(aij) has a unique monomial of highest degree greater than one, with
coefficient ±1 and so α(aij) 
= aij over R/K.

Now assume that r is odd so that Inr is not trivial. First note that since R/K has
characteristic 2 the (r+1)-minors of Un are homogeneous polynomials of degree r+1. Thus
the ideals Inr are all homogeneous and have a Gröbner basis algorithm. Thus if ω ∈ Inr,
then the homogeneous components of ω are in Inr also. Thus if we have a non-central
element in the kernel of the action on (R/K)′n/Inr, then by Lemma 2.3 the ideal Inr must
contain a monomial. Thus there cannot be a symmetric matrix over (R/K)′n with 0s on the
diagonal and all of whose off-diagonal entries are non-zero, contradicting Proposition 5.2.
�

This proves Theorem 1 (iv).

Theorem 9.5. (i) For n ≥ 3 the group Bn/Z(Bn) does not act faithfully on the quotient
R′

n/In1.
(ii) Suppose that R is a ring in which 2 is invertible. Then for n > 3 the group Bn/Z(Bn)

does not act faithfully on the quotient R′
n/In2. In fact if we denote the image of Bn in

Aut(R′
n/In2) by Bn2, then B42 fits into a split short exact sequence

0 → Z2 → B42 → B3/ < (σ1σ2)6 >→ 1,
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and so B42 has presentation

B42 =< σ1, σ2, σ3|σ1σ2σ1 = σ2σ1σ2, σ1σ3 = σ3σ1, (σ1σ2)6, (σ1σ
−1
3 , σ2σ1σ

−1
3 σ−1

2 ) > .

Proof. (i) One checks that σ4
1 acts trivially on R′

n/In1. Generators for the ideal In1 were
given in Proposition 3.3. One needs to check the two cases where the characteristic of R is
or is not 2. This is straightforward. This, together with the results of §3, proves Theorem
1 (i).

(ii) It is easy to check that if α is the Dehn twist about the curve surrounding the first
three punctures, so that α = (σ1σ2)3, then α2 is in the kernel of this representation. For
example for 3 < r ≤ n we have

α2(ar1) = ar1 + ar1Un([1, 2, 3])2/4− 5ar1Un([1, 2, 3], [2, 3, r])/2

+ (ar1a
2
32 − ar1a31a32 + ar2a21 + ar3a31)Un([1, 2, 3])/2.

Since n > 3 we see that α2 /∈ Z(Bn). This proves Theorem 1 (ii).
For the n = 4 case we need to prove (a) that the image of the rank 2 free subgroup

< β1 = σ1σ
−1
3 , β2 = σ2σ1σ

−1
3 σ−1

2 >⊂ B4 [Bi] in B42 is isomorphic to Z2; and (b) that there
are no other relations in the image of the subgroup < σ1, σ2 > in B42 other than the ones
we have already listed.

Now [GL] there is a split short exact sequence 1 → F2 → B4 → B3 → 1, where F2 is
the free group of rank 2 freely generated by β1, β2. Now one also checks that β1β2β

−1
1 β−1

2

has trivial action on R′
4/I42 (but not on R′

n/In2 for n > 4). To proceed we need to show
that the action of βr

1β
s
2 on R′

4/I42 is non-trivial for all r, s ∈ Z with (r, s) 
= (0, 0). It will
suffice to find a homomorphism φ : R′

4 → R such that φ(U4) has rank 2 and such that
φ(βr

1(U4)) 
= φ(βs
2(U4)) for all such r, s. In fact we will show that the 12 entries of φ(βr

1(U4))
and φ(βs

2(U4)) are different. Let φ be determined by:

φ(U4) =




2 3/2 3/2
√

14/2

3/2 2 1/4
√

14/4

3/2 1/4 2
√

14/2
√

14/2
√

14/4
√

14/2 2


 .

Note also that we may without loss assume that r, s are both even. Now we note that using
(1.2) one can show that β2

1 acts on U4 as follows: β2
1(U4) = EU4E

t where E is the matrix

E =




1− a2
21 a21 0 0

−a21 1 0 0
0 0 1 −a43

0 0 a43 1− a2
43


 .

It follows that the 12 entry of β2
1(U4) = EU4E

t is a21 and that similarly the 43 entry is
a43. Since β1 fixes a21 and a43 we see that the action of any even power of β1 is given by:
β2r

1 (U4) = ErU4(Er)t for all r ∈ Z. Now

βs
2(a21) = σ2β

s
1σ

−1
2 (a21) = σ2β

s
1(a31)
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and so if βs
2(a21) = a21, then we would have βs

1(a31) = a31 and so φ(βs
1(a31)) = φ(a31). Now

write E =
(
E1 0
0 E2

)
, where E1, E2 are 2× 2 matrices. Then putting U4 =

(
A B
C D

)
we

have (where r = 2w):

βr
1(U4) = EwU4(Ew)t =

(
Ew

1 A(Ew
1 )t Ew

1 B(Ew
2 )t

Ew
2 C(Ew

1 )t Ew
2 D(Ew

2 )t

)
. (9.1)

Thus we need to show that the 11 entry of Ew
1 B(Ew

2 )t is never 3/2 for w 
= 0. We assume
that there is a w 
= 0 such that the 11 entry of Ew

1 B(Ew
2 )t is 3/2. Now let us order the

entries of the matrix B =
(
a31 a41

a32 a42

)
as (a31, a41, a32, a42). Then relative to this ordering

the action of E on B given by the 12 block of (9.1) can be described by the following matrix:

H =




−5/4 5/8
√

14 3/2 −3
√

14/4

−5/8
√

14 25
8 3

√
14/4 −15

4

−3/2 3
√

14/4 1 −
√

14/2

−3
√

14/4 15
4

√
14/2 −5/2




so that the entries of Ew
1 B(Ew

2 )t are given by Hw(a31, a41, a32, a42)t. Now H has 4 distinct
eigenvalues and expressing the vector (3/2,

√
14/2, 1/4,

√
14/4) as a linear combination of

these eigenvectors we see that the 11 entry of Ew
1 B(Ew

2 )t is

(3− i)
4

(− 9
16

+
5
16

i
√

7)w +
(3 + i

√
7)

4
(− 9

16
− 5

16
i
√

7)w

= 3/2 cos(w
(

arctan(5/9
√

7)− π
)

)−
√

7/2 sin(w
(

arctan(5/9
√

7)− π
)

),
(9.2)

where i2 = −1. Now let x = cos(w
(
arctan(5/9

√
7)− π

)
) and solve for the expression (9.2)

equal to 3/2. This gives x = 1, 1
8
. Now if we have cos(w

(
arctan(5/9

√
7)− π

)
) = 1, then

arctan(5/9
√

7)− π = 2nπ/w for some n ∈ Z. Thus tan(2nπ/w) = 5
√

7/9, from which we
get that cos(2nπ/w) = ±9/16. Now from [CJ, Theorem 7] we see that there is no rational
multiple of π whose cosine is ±9/16, a contradiction.

Now assume that cos(w
(
arctan(5/9

√
7)− π

)
) = 1/8. Then a similar computation shows

that cos(arccos( 1
8 )/w) = ±9/16. Now we may assume that w ≥ 1 and if we think of w as a

real variable, then g(w) = cos(arccos( 1
8
)/w) is a real-valued function and as such is strictly

increasing on the domain [1,∞). One checks that on this domain g(w) is positive and that
1 < g−1(9/16) < 2; thus there is no integral w with g(w) = ±9/16. This shows that the
subgroup < β1, β2 > of B4 is represented in Aut(R′

4/I42) as Z2 as required.
The remainder of the proof of Theorem 9.5 follows from the case n = 4 of the following

result, requiring the calculation and use of a Gröbner basis, for which we use the computer
algebra system MAGMA.

Proposition 9.6. Let n = 4, 5, 6, 7, 8. Then the image of the group B3/ < (σ1σ2)6 > in
Bn/ < (σ1σ2)6 > contains no elements in the kernel of the action on R′

n/In2.

Proof. Let α ∈ B3 < Bn be in the kernel. Now one can check that the generator β = (σ1σ2)3

of the cyclic centre of B3 has non-trivial action on R′
n/In2, n = 4, 5, 6, 7, 8, using MAGMA
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[MA] (one calculates the ideal In2, n = 4, 5, 6, 7, 8 and shows that β(a41) − a41 /∈ In2

by computing a Gröbner basis for In2 for each given value of n, and then showing that
the normal form of β(a41) − a41 is non-zero relative to this Gröbner basis). However, if
α ∈ B3 \ Z(B3), then α acts non-trivially on R′

3 i.e. there are 1 ≤ i 
= j ≤ 3 such that
d = α(aij)− aij 
= 0. Since α is in the kernel of the action on R′

n/In2, then we must have
d ∈ In2∩R′

3. But In2∩R′
3 is an elimination ideal [AL] and a calculation using the elimination

ideal routine algorithm in MAGMA shows that In2∩R′
3 =< c′31 > for n = 4, 5, 6, 7, 8. Thus

we would have d = kc′31 for some k ∈ R′
3, k 
= 0, contradicting Corollary 9.3. The result

follows. �

Remark 9.7. Of course we conjecture that In2 ∩R′
3 =< c′32 > for all n ≥ 4, which would

in turn show that Proposition 9.6 was true for all n ≥ 4.

Remark 9.8. We note that B3/ < (σ1σ2)6 >∼= SL(2,Z) and so it should not be surprising
to find that one can prove that B42

∼=< m1, m2, m3 > is a subgroup of SL(3, C ) where

m1 =




1 1 c

0 1 0

0 0 1


 , m2 =




1 0 0

−1 1 f

0 0 1


 , m3 =




1 1 a

0 1 0

0 0 1


 .

Here a, c, f ∈ C must satisfy a 
= c for this linear representation to be faithful.

§10 Action of Bn

In this section we will want to think of the exp(tD(α)) as acting as automorphisms of
power series rings (the power series rings associated to Rn and R′

n) and also as acting on
the Euclidean space R(n

2). We now explain the first of these.
Let R = C [x1 , . . . , xn] be a polynomial algebra and let R∗ = C [[x1 , . . . , xn]] be the

corresponding ring of formal power series. Let Wn be the general Lie algebra of Cartan
type, i.e. Wn is linearly generated by all C -derivations of the form

f
∂

∂xi
, i = 1, . . . , n

where f ∈ R∗ [Ca, SS, Ka]. Now Wn (and so any of its subalgebras) can be given a filtration

Wn = Wn,−1 ⊃Wn,0 ⊃ Wn,1 ⊃ · · · ⊃Wn,i ⊃ . . .

Here an element of Wn,i is a linear sum of f ∂
∂xj

’s where f has degree at least i+ 1. There is
a corresponding graded algebra with graded pieces Wn,i/Wn,i+1. Using this grading we can
define a valuation on Wn as follows (c.f. [J, p.171]): |0| = 0, and if a 
= 0, then |a| = 2−i

where a ∈ Wn,i and a /∈Wn,i+1. Then we have:
|a| ≥ 0, |a| = 0 if and only if a = 0,
|[a, b]| ≤ |a||b|, and |a + b| ≤ max{|a|, |b|}.

This makes Wn into a topological algebra where a1 + a2 + . . . converges if and only if
|ai| → 0 as i→∞.

For any derivation D ∈Wn and any x ∈ R∗ we define

exp(D)(x) = x + D(x) +
1
2!
D2(x) +

1
3!
D3(x) + . . . .
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In [H3] we proved that each D(α) converges in the above topology for any α ∈ Pn. Thus
the groups Pn and Bn are also well-defined.

Next we note that the action of α ∈ Pn on the ring R′
n is also given as exp(D(α)), where

we can just ignore all the ∂
∂aij

for i < j and replace aij by −aji for i < j in D(α).
We remarked in §1 that each such D(α) has the property that D(α)(cni) = 0 for all

α ∈ Pn and all i ≤ n. This easily implies that each exp(tD(α)), α ∈ Pn fixes each of the cni.
In order to study the effect of exp(tD(α)), α ∈ Pn, on the real varieties Vnk we need to

see that the derivation D(α) with the aij replaced by real numbers converges. Since for
|x| < 1 we have

arcsinh(x) =x− 1
2 · 3x

3 +
1 · 3

2 · 4 · 5x
5 − 1 · 3 · 5

2 · 4 · 6 · 7x
7+

· · ·+ (−1)n 1 · 3 · 5 · . . . · (2n− 1)
2 · 4 · 6 · . . . · (2n) · (2n + 1)

x2n+1 + . . .

(with a similar expression in the case |x| > 1) we see that arcsinh(x)/x converges everywhere
in R. Thus the exponential exp(tD(σ2

1)) given in §1 converges for all values of t ∈ R. It
follows similarly that each exp(tD(α)) is well-defined for any α ∈ Pn and at any point in
R(n

2). Thus the groups Pn and Bn are also well-defined as sets of invertible functions acting
on R(n

2).
Now each exp(tD(α)), α ∈ Pn, t ∈ R, acts as an automorphism of the power series ring

R̄′
n and so acts on the matrix Un in such a way as to preserve rank. Thus the real algebraic

subvarieties Vnk, V
(2)
nk are fixed by the action of Pn and so by Bn. This proves Theorem 3.

Proposition 10.1. The action of exp(tD(σ1)) is given as follows:

a21 �→ a21;

ar1 �→ ar1cosh(tα21)− (2ar2 − ar1a21)sinh(tα21)/
√
a2
21 − 4;

ar2 �→ ar2cosh(tα21) + (2ar1 − ar2a21)sinh(tα21)/
√
a2
21 − 4.

Here r > 2 and α21 = arcsinh(
√
a4
21/4− a2

21).

Proof. From the expression for D(σ2
1) given in §1 we can prove by induction that

D(σ2
1)i(ar1) = ar1t

iai
21α

i
21(a2

21 − 4)i/2/2i for i ∈ 2N ;

D(σ2
1)i(ar1) = (2ar2 − ar1a21)tiai

21α
i
21(a2

21 − 4)(i−1)/2/2i for i /∈ 2N.

From this we deduce the image of ar1. There is a similar expression for D(σ2
1)(ar2) giving

the image of ar2. �

For 1 ≤ i < n the action of σ2
i can easily be deduced from this.

We recall Thurston’s earthquake theorem, namely that earthquakes act transitively on the
Teichmüller Tg,0,0; for definitions and results about earthquakes see [Ke1, Ke2, Th]. In our
situation we see that an earthquake does not act transitively on T0,n,1 since an earthquake
can’t change the length of a boundary geodesic.

Conjecture 10.2. The action of exp(D(σ2
1) given in 10.1 is the action on Teichmüller

space of the earthquake along the curve x1x2. The action of Bn is transitive on level sets.

.



ACTION OF BRAID GROUPS ON COMPACT SPACES 33

§11 Teichmüller space

In this section we have R = R. Basic facts about Teichmüller spaces and Fuchsian groups
can be found in [IT]. The punctured disc Dn can be represented as the quotient H 2/G where
G is the Fuchsian group generated by elements s1, s2, . . . , sn where s2, . . . , sn are hyperbolic
and p1 = s−1

1 , p2 = s−1
2 s1, p3 = s−1

3 s2, . . . , pn = s−1
n sn−1 are all parabolic. See Figure 5 to

see how the identifications occur.

s1

s2

s3

s4

Figure 5.

 f1
f2

f3

f4

g2

g3

g4

f5g5

In this diagram (for the case n = 4) the parabolic matrices pi, i ≤ n, have fixed points
fi as shown. The hyperbolic element si, i > 1, takes the geodesic joining fi to fi+1 to a
geodesic joining gi to gi+1 as indicated (here g1 = f1). Now up to conjugation in PSL2(R)
we may assume that

p1 = s−1
1 =

(
−1 0
u −1

)
, p2 = s−1

2 s1 =
(
−1− v v
−v v − 1

)
,

p3 = s−1
3 s2 =

(
−1 w
0 −1

)
, (11.1)

so that p1(0) = s1(0) = 0 = f1, p2(1) = 1 = f2 and p3(∞) = ∞ = f3. These three conditions
are the only control that we have on the parabolics listed above (since an element of PSL2(R)
is completely determined by its action on any ordered triple of elements of R ∪{∞}) and so
determine a ‘normalised’ set of generators. The rest of the parabolics must then have the
form:

pi = s−1
i si−1 =

(
xi1 xi2

−(1 + xi1)2/xi2 −2− xi1

)
, (11.2)

for 3 < i ≤ n; here xi2 
= 0 since pi does not fix 0. This gives 2n− 3 unknowns u, v, w, xij.
Note that the real numbers fi, gi must satisfy:

f4 < f5 < · · · < fn < fn+1 < gn+1 < gn < · · · < g3 < g2 < g1 = f1 = 0.

In fact given any n parabolics as in (11.1) and (11.2) with the first three fixing 0, 1,∞, then
we obtain a Fuchsian group G such that H 2/G ∼= Dn if the above inequalities are satisfied.
This thus gives a set of coordinates u, v, w, x41, x42, . . . , xn1, xn2 for the Teichmüller space
T0,n,1.
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Example 11.1. In the case n = 3 we need f4 < g4 < g3 < g2 < g1 = f1 = 0. But one can
verify that

g3 =
v − 1

uv + v − u
, g4 =

−2 v − 2 uwv − wv + uv + uw + uwv2 + wv2 − uv2

(−u + uv + v) (uwv + wv − uv − uw − 2)
,

g2 =
1

u + 1
; f4 = −1/2

−2 v + uwv + wv − uv − uw

−u + uv + v
.

Thus we get the inequalities

u < −1, uv + v − u < 0, uvw + vw − uv − uw < 0. (11.3)

Of course the matrices pi, si are only defined up to a sign, however Keen [K1 pp. 210-
211, K2] notes that when choosing representative matrices from SL2(R) for the elements of
PSL2(R), there is a canonical choice for the signs of the traces of the generators, namely
we may take them all to be negative, so that in our case we choose trace(pi) = −2. We will
also need to note that s−1

i = pipi−1 . . . p2p1 for i > 1 and that these elements are hyperbolic
i.e. they have squared trace greater than 4.

Now it follows from [O, Theorem 4.1] that 2n − 3 of the traces trace(pipj) completely
determine the point of Teichmüller space corresponding to this representation. The 2n− 3
traces given in [O] are those of p1pi, i = 2, . . . , n and p2pi, i = 3, . . . , n.

As indicated in equation (1.4), we would like to solve trace(pipj) = 2 − a2
ij . Now we

see that there are 2n− 3 of the u, v, w, xij, but
(
n
2

)
of the aij and so in general there is no

hope of solving for the u, v, w, xij as functions of the aij , except when n = 3. Also, since
s2, . . . , sn and the pipj , i 
= j are all hyperbolic we are interested in having

|trace(p1p2)|, |trace(p1p3)|, |trace(p2p3)|, . . . , |trace(p1p2p3)|, · · · > 2.

Consider the case n = 3 again. Solving trace(pipj) = 2 − a2
ij for u, v, w we get two

solutions:{
w =

a31 a32

a21
, v =

a32 a21

a31
, u = −a31 a21

a32

}
,

{
w = −a31 a32

a21
, v = −a32 a21

a31
, u =

a31 a21

a32

}
.

Substituting into the above equalities we get:

∓ a31 a21 ∓ a32

a32
< 0; ±

a21

(
a31

2 ∓ a21 a31 a32 + a32
2
)

a31 a32
< 0;

∓ a21 a31 a32 + a32
2 + a21

2 + a31
2 < 0.

Here we consistently take the top or bottom choice of signs in these equations, corresponding
to the two solutions given in the previous paragraph. We note that this shows that points
of T̄0,3,1 lie in Vt with t < 0.

From the above we see that (when n = 3) there are points of Teichmüller space with
|trace(p1p2)| > 2; thus with |a21|, |a31|, |a32| > 2 (in fact they can be arbitrarily large).
Thus in each component of T̄0,3,1 ⊂ R3 that covers T0,3,1 we must have points (a21, a31, a32)
satisfying:

|a21|, |a31|, |a32| > 2 and trace(p3p2p1) = a2
21 + a2

31 + a2
32 − a21a31a32 − 2 
= 2.
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Now let P be the component of the complement of the surface defined by a2
21 + a2

31 + a2
32 −

a21a31a32−4 = 0 which contains the point (3, 3, 3). Note that P is an open 3-ball. Then one
can also check that P contains a part of T̄0,3,1. Not every point of P will represent a point of
Teichmüller space; in fact only those satisfying the conditions corresponding to (11.3) will
do so. We will use these facts later.

In order to prove Theorem 6 and the first part of Theorem 4 we need to show that the
actions of Bn on both sides of the equation 2 − trace(pipj) = a2

ij , i > j, are compatible at
least for some set of lifts of the aij which are permuted by the Bn action. More precisely, for
α ∈ Bn suppose that α(aij) = fα,i,j(a21, a31, . . . , ann−1). Then what we need to do amounts
to finding all εij ∈ {±1}, i > j, such that for all β ∈ Bn there are δij ∈ {±1}, n ≥ i > j ≥ 1,
so that if aij = εij

√
2− trace(pipj) then

fβ,i,j(ε21a21, ε31a31, . . . , εnn−1ann−1) = δij

√
2− trace(β(pi)β(pj)). (11.5)

To proceed we will need to note the following trace identity for three non-pair-wise
commuting parabolics p1, p2, p3 with trace −2:

√
2− trace(p1p2p

−1
1 p3) =

√
(2− trace(p1p2))(2− trace(p1p3))−

√
2− trace(p2p3). (11.6)

This is easily checked since we can conjugate p1, p2, p3 so that they are as in (11.1) and then
easily check this identity (recall that parabolics commute if and only if they have the same
fixed point).

We reduce immediately to the case where β ∈ Bn is a generator: β = σi; and the action
of β is given by (1.2) only where we have aij = −aji. Now β(ai+1i) = −ai+1i and so (11.5)
gives

−εi+1i

√
2− trace(pi+1pi) = δi+1i

√
2− trace(pi+1pi),

so that we have −εi+1i = δi+1i for all 1 ≤ i < n.
Next for j < i we have β(ai+1j) = aij and so (11.5) gives εij

√
2− trace(pipj) =

δi+1j

√
2− trace(pipj), which gives εij = δi+1j .

Keeping j < i we also have β(aij) = ai+1j − ai+1iaij , so that (11.5) and (11.6) give

εi+1j

√
2− trace(pi+1pj)− εi+1iεij

√
(2− trace(pi+1pi))(2− trace(pipj))

= δij

√
2− trace(pipi+1p

−1
i pj)

= δij

(√
(2− trace(pi+1pi))(2− trace(pipj))−

√
2− trace(pi+1pj)

)
,

showing that εi+1j = −δij and εi+1iεij = −δij .
Continuing this analysis for β(aji) = aji+1 − ajiai+1i and β(aji+1) − aji we obtain the
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following equations relating the εij and δij :

(i) εi+1i = −δi+1i for all 1 ≤ i < n;

(ii) εij = δi+1j for all 1 ≤ j < i ≤ n;

(iii) εi+1j = −δij for all 1 ≤ j < i ≤ n;

(iv) εi+1iεij = −δij for all 1 ≤ j < i ≤ n;

(v) εji = δji+1 for all 1 < i + 1 < j ≤ n;

(vi) εji+1 = −δji for all 1 < i + 1 < j ≤ n;

(vii) εjiεi+1i = −δji for all 1 < i + 1 < j ≤ n.

From (iii) and (iv) and from (vi) and (vii) we get

εji+1εjiεi+1i = 1, εi+1jεijεi+1i = 1.

In fact from the above relations it is apparent that these are the only relations (for fixed
i) satisfied by the εrs. Further, from εi+1jεijεi+1i = 1 and (i), (ii) and (iii) we see that we
must have δi+1jδijδi+1i = 1, and that similarly we must have δji+1δjiδi+1i = 1 following
from (i), (v) and (vi).

Since we are interested in having these relations for all i < n one checks that for any
εrs satisfying εijεjkεik = 1 for all i > j > k there are δrs satisfying δijδjkδik = 1 for all
i > j > k which solve (i)-(vii). But any such εrs are clearly determined by n − 1 of them,
namely εn1, εn2, . . . , εnn−1 and that we must have

εrs = εnrεns for all n > r > s ≥ 1.

Similar conditions hold for the δrs. Thus we see that we get T̄0,n,1, a cover of T0,n,1 (in
the broad sense) consisting of points (aij) over T0,n,1 where sign(aijajkaik) = 1 for all
i > j > k. This gives 2n−1 disjoint copies of T0,n,1 embedded smoothly in R(n

2) with
coordinate functions a21, a31, . . . , ann−1 such that the action of Bn on these 2n−1 copies of
T0,n,1 is by polynomial automorphisms, as in (1.2). This completes the proof of Theorem 6
and part of Theorem 4. �

We note that using the natural coordinates u, v, w, x41, x42 for T0,4,1 we have the following
action of B4 as rational automorphisms (the action of B3 on the natural coordinates for T0,3,1

is obtained by restricting σ1 and σ2 to u, v, w):

σ1(u, v, w, x41, x42) = (v(1− u),
u

1− u
, w(u− 1),

x41x42(u− 1)− (1 + x41)2

x42(u− 1)
,

(1 + x41 + x42 − ux42)2

x42(u− 1)
),

σ2(u, v, w, x41, x42) = (−u(1 + v),−w(1 + v),
−v

1 + v
, x41 + x42,−x42/(1 + v)),

σ3(u, v, w, x41, x42) = (
u(w + wx41 + x42)

1 + w + wx41 + x41 + x42
,
v(1 + w + wx41 + x41 + x42)

w + wx41 + x42
,

(w + wx41 + x41 + x42 + 1)(w + wx41 + x42)
x42

,
−(2wx41 + 2w + x42)

w + wx41 + x42
,

w(1 + w + wx41 + x42 + x41)
w + wx41 + x42

) (11.4)
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This is a non-polynomial action, whereas the action of Bn on the aij-coordinates for T̄0,n,1

gives a polynomial action, as we have just indicated.
In what follows we will identify points on all of the 2n−1 components of T̄0,n,1 by making

all the signs positive and so identify T0,n,1 with the positive component T̄0,n,1 ∩ R
(n

2)
>2 of

T̄0,n,1.
For the case n = 4 we have 6 of the aij whereas T0,4,1 and T̄0,4,1 have dimension 5. Thus

the aij must satisfy some relation on the components of T̄0,4,1. This relation will depend
on the choice of signs of the generators pi. We indicate one such relation for the canonical
choice of signs in:

Proposition 11.2. Let n = 4 and suppose that p1, p2, p3, p4 are all as given in (11.1) and
(11.2) with variables u, v, w, x41, x42. Then in the ideal generated by the trace(pipj)−(2−a2

ij)
there is a single relation satisfied by the aij:

(a21a43 − a31a42 − a32a41)(a21a43 − a31a42 + a32a41)

×(a21a43 + a31a42 − a32a41)(a21a43 + a31a42 + a32a41).

The factor a21a43−a31a42 +a32a41 ∈ R′
4 is invariant under the action of kerB4 → Z2, σi �→

1.

Proof. One first calculates the elements trace(pipj) − (2 − a2
ij) and considers the ideal of

Q [a21 , a31, a41, a32, a42, a43, u, v, w, x41, x42] generated by them. One then uses the elimina-
tion algorithm [AL, Theorem 2.3.4], as implemented in MAGMA [MA], to eliminate the
variables u, v, w, x41, x42 and so get the above relation as the only relation satisfied by the
aij (actually, one gets the above relation multiplied by a2

41, but this extra factor can be
ignored in our case, since we are considering real coefficients). It is easy to check that the
generators σ±1

i σ±1
j of kerB4 → Z2 fix the factor a21a43 − a31a42 + a32a41. �

The fact that the relation in the above result factors nicely is another indication that
Keen’s choice of signs for the generating parabolics really is natural (one can check that
other choices of sign do not give relations which so factor).

Of course one can do the above calculation for any n > 3 and obtain an elimination ideal
that gives relations that the aij have to satisfy on the components of T̄0,n,1. For n = 5 one
obtains an ideal with 15 generators, five of which look like the one given in Proposition 11.2.

Note that the equation x2 +y2 +z2−xyz = t is related to the Markoff equation x2 +y2 +
z2 = 3xyz, since if one substitutes 3x, 3y, 3z for x, y, z, then it gives x2+y2+z2−3xyz = t/9.
The general theory of the Markoff equation [CF] tells us that all positive integral solutions
are related to each other via the Markoff tree and an action of a group on the set of solutions.

Theorem 11.3. Let t > 4 and let Vt denote the surface a2
21 + a2

31 + a2
32− a21a31a32− t = 0

in R3 . Then B3\Vt is compact. Further on the level sets Vt, t > 4, there are points with
infinite stabilisers.

Proof. First note that we have already described Vt for t = 4 (in §4) and have indicated that
for t < 4, Vt has 4 unbounded components, each a topological disc, while for t > 4, Vt is
homeomorphic to a sphere with 4 holes. Let x = a21, y = a31, z = a32. The first statement
in this result will follow from the next result which is based on ideas of [Mo, pp. 106-110];
in fact the next result is, for our equation, a stronger version of [Mo; Theorem 8 p. 107].



38 STEPHEN P. HUMPHRIES

Lemma 11.4. For t > 4 and (x, y, z) ∈ Vt ⊂ R3 there is α ∈ B3 such that α(x, y, z) =
(u, v, w) where u2 + v2 + w2 ≤ t.

Proof. One first checks that the elements µ1, µ2 where µ1(x, y, z) = (−x,−y, z), µ2(x, y, z) =
(x,−y,−z) generate a subgroup M3 of Diff(R3), the group of diffeomorphisms of R3 , having
order 4. We note that M3 fixes each Vt. Regarding B3 as giving a subgroup of Diff(R3)
one sees easily that B3 normalises M3. Thus we may without loss assume in what follows
that any (x, y, z) ∈ Vt has x, y ≥ 0.

Note that if we have a solution (x, y, z) with xyz = 0, then x2 + y2 + z2 = t in this case
and so we are done. Thus in what follows we may assume xyz 
= 0, so that with the above
we may assume x, y > 0.

Now we have

σ1(x, y, z) = (−x, z − xy, y), σ2(x, y, z) = (y − xz, x,−z)

σ−1
1 (x, y, z) = (−x, z, y − xz), σ−1

2 (x, y, z) = (y, x− yz,−z).

We let ||(x, y, z)|| = x2 + y2 + z2. Now given p = (x, y, z) ∈ R3 we replace p by σε
k(p)

(for any choice of k = 1, 2, ε = ±1) if ||σε
k(p)|| < ||p|| and continue doing this until we

have ||σε
k(p)|| ≥ ||p|| for all k = 1, 2, ε = ±1. Clearly this is a finite process. We claim

that for such a p we must have ||p|| ≤ t. Suppose not for some t and p = (x, y, z). Then
x2 + y2 + z2 − xyz = t and ||p|| = x2 + y2 + z2 > t yields xyz > 0, which, together with
x, y > 0 gives z > 0.

Now ||σε
k(p)|| ≥ ||p||, for all k = 1, 2, ε = ±1, yields the conditions

x2y2 − 2xyz ≥ 0, x2z2 − 2xyz ≥ 0, y2z2 − 2xyz ≥ 0.

Since x, y, z > 0 this gives

xy − 2z ≥ 0, xz − 2y ≥ 0, yz − 2x ≥ 0.

Now multiplying xy ≥ 2z and yz ≥ 2x gives y2 ≥ 4 and we similarly see that x2, z2 ≥ 4.
Next we note that the equations xy − 2z ≥ 0, xz − 2y ≥ 0, yz − 2x ≥ 0 determine an open
convex region R ⊂ R3

≥2 . This is indicated in Figure 6, where we have drawn the part of the
surfaces xy − 2z = 0, xz − 2y = 0, yz − 2x = 0 where x, y, z ≥ 2. The z coordinate is
in the vertical direction and so the top component is the one determined by z = xy/2. The
region R is that ‘inside’ this cone.
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Figure 7.
In Figure 7 we have added to Figure 6 a part of the surface x2 + y2 + z2 − xyz = t (for

t = 5) to indicate how this relates to the region R. We will show that for t > 4 the surface
Vt does not meets R, a contradiction.

Now the surfaces xz − 2y = 0, yz − 2x = 0 meet along the line where x = ±y, z2 = 4,
while the surfaces xy − 2z = 0, xz − 2y = 0 meet where x2 = 4 and the surfaces xy − 2z =
0, yz − 2x = 0 meet where y2 = 4. The surface Vt is determined by

z± = (xy ±
√

(x2 − 4)(y2 − 4) + 4(t− 4))/2.

Now we need to check for example that if x, y ≥ 2, then z+(x, y) ≥ xy/2, but this is clear.
Another case is that when x > y, then we would like to show that z−(x, y) ≤ 2x/y. To see
this note that solving the equation 2x/y − z−(x, y) = 0 for y gives

y±,±(x, t) =
(
±
√
x2 + t±

√
(x2 + t)2 − 16 x2

)
/
√

2,
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where all 4 values of the square roots are allowed. Now y++ is above and asymptotic to the
line y = x. Thus since x > y in this case we see that 2x/y − z−(x, y) ≥ 0 as required. The
y−± cases aren’t allowed, since then y < 0

For the case y+− we see that solving y+−(x, t) = 2 gives t = 4, a contradiction. Thus
y+−(x, t) 
= 2. It follows that y+−(x, t) < 2 for all x ≥ 2, t > 4 and so this case does not
occur either. This shows that z−(x, y) ≤ 2x/y when x > y. Since everything is symmetric
in the variables x, y, the last case (z−(x, y) ≤ 2y/x when y > x) follows by interchanging
x, y in the above. This proves Lemma 11.4 and so the first part of Theorem 11.3.

We now show that there are points of the level sets Vt, t > 4, with infinite stabilisers. For
example the element σ2

1 ∈ B3 fixes all (a21, a31, a32) = (0,
√
tcos(θ),

√
tsin(θ)) ∈ Vt. �

Let G3 denote the group of homeomorphisms of R3 generated by µ1, µ2, σ1, σ2. Theorem
11.3 and Lemma 11.4 imply the following related facts:

Corollary 11.5. Suppose that x2 + y2 + z2 − xyz = t > 4 has an integral solution. Then
any integral solution of x2 + y2 + z2 − xyz = t is in the G3-orbit of some (x, y, z), where
x, y, z ∈ Z and |x|, |y|, |z| ≤

√
t.

There are no integral solutions of x2 + y2 + z2 − xyz = t for any t ∈ Z, with t ≡ 3 mod 4
or t ≡ 3, 6 mod 9.

For t = 5 every integral solution of x2 + y2 + z2 − xyz = t is in the G3-orbit of (0, 1, 2).
For t = 8 every integral solution of x2 + y2 + z2 − xyz = t is in the G3-orbit of (1, 1,−2)

or (0, 2, 2). These orbits are distinct.
For t = 9 every integral solution of x2 + y2 + z2 − xyz = t is in the G3-orbit of (3, 0, 0).

The orbit in this case is finite.

Proof. The first statement follows directly from Lemma 11.4. Thus for a given integral t > 4
it is easy to check whether there are any integral solutions. Now if x, y, z ∈ Z, then one
easily checks that x2 + y2 + z2 − xyz mod 4 ∈ {0, 1, 2} and that x2 + y2 + z2 − xyz mod
9 ∈ {0, 1, 2, 4, 5, 7, 8}

When t = 5 a computer calculation shows that all integral solutions are in the orbit of
(0, 1, 2). The proof for t = 8, 9 is similar. We also need to note that the action of G3 does
not change the gcd of the entries; thus when t = 8 the orbits of (1, 1,−2) and (0, 2, 2) are
distinct. �

Remark 11.6. The integral values of t > 4 for which x2 +y2 +z2−xyz = t has no integral
solutions given in the above result do not exhaust such values of t. For example this set also
includes

{46, 56, 86, 124, 126, 142, 161, 198, 206, 216, 217}.

This is easily proved using Lemma 11.4.

Lemma 11.7. Any point of Vt is in the G3-orbit of some (x, y, z) ∈ R3 where

|x− yz| ≥ |x|, |y − xz| ≥ |y|, and |z − xy| ≥ |z|.

Proof. This follows from the argument in the proof of Theorem 11.3. �

Lemma 11.7 will help us determine a fundamental domain for the action of G3 on Vt, t < 0.
As usual we may assume that x, y > 0. Now if z ≤ 0, then 0 > t = x2 + y2 + z2 − xyz > 0.
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Thus we may restrict attention to the octant x, y, z > 2. Now if we have yz ≤ x, then we
would have

t = x2 + y2 + z2 − xyz ≥ x2 + y2 + z2 − x2 = y2 + z2 > 4,

a contradiction. Thus we must have yz > x and similarly xy > z and xz > y. Putting these
together with Lemma 11.7 we see that any point of Vt, t < 0, is in the G3-orbit of some
(x, y, z) where

xy > 2z, yz > 2x and xz > 2y.

Now the equations xy = 2z, yz = 2x, xz = 2y determine real algebraic varieties which
cut out a region of Vt. An example of this is shown in Figure 8, which, for t = −7, is
the projection onto the xy-plane of these three curves in Vt. Here we have used each of
the above three equations to determine the variable z and substituted this value of z into
x2 +y2 +z2−xyz−t = 0. This gives an equation which we have solved for y as a function of
x and t. One gets the following values for y (since we are only interested in having x, y > 2):

2

√
x2 − t

x2 − 4
, x

√
x2 − t

x2 − 4
,

4x√
2 x2 + 2 t + 2

√
x4 + 2 x2t + t2 − 16 x2

,

4x√
2 x2 + 2 t− 2

√
x4 + 2 x2t + t2 − 16 x2

.

This gives curves which in this projection are asymptotic to the x = 2, y = 2 and x = y
lines. The last two equations correspond to solutions of the case yz = 2x, while the first
corresponds to xy = 2z and the second to xz = 2y. More generally, the three ‘spokes’
shown in Figure 8 are each asymptotic (in projection) to one of the lines (i) z = 2, x = y;
(ii) y = 2, x = z; (iii) x = 2, y = z.

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14
x

Figure 8
In Figure 8 the component which is above the y = x line corresponds to the equation

xz = 2y (we will denote it by γy), while the component which is below the y = x line
corresponds to the equation 2x = yz (we will denote it by γx). The component which is
asymptotic to the x = 2, y = 2 lines corresponds to the equation 2z = xy (we will denote it
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by γz). Note that the latter curve is symmetric relative to the line y = x, while the other
two are interchanged by reflection in this line.

Let Ft denote the closed region of Vt determined in this way. Let α = σ1σ2σ1, β = σ1σ2.

Theorem 11.8. The region Ft is a fundamental domain for the action of the subgroup
J3 =< α, βαβ−1, β−1αβ, µ1, µ2 > of index 3 in G3 on Vt, t < 0. The subgroup < µ1, µ2 >
is normal in J3 and in G3 with G3/ < µ1, µ2 >∼= B3/Z(B3). The region Ft contains three
copies of a fundamental region for the action of G3.

Proof. First we note that α and β generate B3, that J3 has index 3 in G3 and that
α2 = 1, β3 = 1. The normality of < µ1, µ2 > has already been noted. Further, using
the Reidemeister-Schreier method [MKS] as implemented in MAGMA [MA] one can show
that J3/ < µ1, µ2 >∼= Z2 ∗ Z2 ∗ Z2. The second statement is clear and the last follows from
the above and the first statement, which we now prove.

Next we see that

β(x, y, z) = (z,−x,−y), α(x, y, z) = (−z,−y + xz,−x).

For (x, y, z), (u, v, w) ∈ R3 we define (x, y, z) ∼ (u, v, w) if (x, y, z) and (u, v, w) are in the
same orbit under the action of J3. Now, if (x, y, z) ∈ γy, so that xz = 2y, then

(x, y, z) ∼ (−z, xz − y,−x) = (−z, y,−x) ∼ (y, x, z),

showing that points of the curves in Figure 8 which are asymptotic to the line y = x
are identified under the J3 action in the same way as a reflection across this line would
identify them. Since everything is symmetric in x, y, z we similarly obtain two other such
identifications.

Standard arguments for the action of Schottky groups (see for example [Ly; p. 197]) now
show that Ft is a fundamental domain for the action of J3 on Vt. �

One can check that the three curves γx, γy, γz are permuted by the action of β: β(γy) =
γz, β(γz) = γx, β(γx) = γy. Further α(γy) = γy ( since σ1σ2σ1(2a31 − a21a32) = −(2a31 −
a21a32)) and α(Ft) ∩ Ft = γy.

We can also check that β has exactly one fixed point in Ft, namely the point (x0, x0, x0)
where x0 is the real solution of 3x2 − x3 − t = 0, namely

x0 =
(8− 4t + 4

√
t(t− 4))2/3 + 4 + 2(8− 4t + 4

√
t(t− 4))1/3

2(8− 4t + 4
√
t(t− 4))1/3

.

Since β(x, y, z) ∼ (z, x, y) we see that a fundamental domain for < σ1, σ2, µ1, µ2 > is
obtained by dividing Ft into three pieces, all meeting at the point (x0, x0, x0). Further
these three pieces are permuted by β and can be chosen so that they contain part of the
curves where Vt meets the planes x = y, y = z, z = x. This proves Theorem 5.

We now note two consequences. We have already seen that the curves γx, γy, γz are
asymptotic to two of the lines {x = 2, y = z}, {y = 2, x = z}, {z = 2, y = x}. Further, one
easily sees from the equations for these curves that all of these curves are contained in the
positive octant cut out by the planes x = 2, y = 2, z = 2. Thus if we have an integer point
of Vt, then it can’t be very far up one of the ‘spokes’ of Ft Thus we have:
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Corollary 11.9. For t < 0 there are only finitely many B3-orbits of integer solutions to
the equation x2 + y2 + z2 − xyz = t. In particular, on each level set Vt ∩ (T̄0,3,1 ∩ R3

>2) of
Teichmüller space there are only finitely many B3-orbits of integer points. �

Now B3/Z(B3) ∼= PSL2(Z) =< a, b|a2, b3 > and the action of B3/Z(B3) on the quotient
< µ1, µ2 > \Vt looks exactly like the action of the index 3 subgroup J ′

3 =< a, bab−1, b−1ab >
of PSL2(Z) on the fundamental domain F ′

t. Here we refer to Figure 9 where A ∪ B is a
standard fundamental domain for the action of PSL2(Z) on the upper half plane H 2 . Then
G ∪A is also a fundamental domain. We let F ′

t = A ∪ C ∪D ∪E ∪ F ∪G. One easily sees
that F ′

t is a fundamental domain for J ′
3. Note that Ft and F ′

t are homeomorphic and so
there is a homeomorphism ft : Vt ∩ R3

>2 → H 2 such that ft(Ft) = F ′
t.

A B

C
DE

F

G

Figure 9

0-1-2-3 1 2

Using ft we can pull back the hyperbolic metric from H 2 to Vt ∩ R3
>2 so as to get:

Corollary 11.10. There is a hyperbolic metric on Vt ∩ R3
>2 , t < 0, such that the action of

J3 on Vt ∩ R3
>2 is by hyperbolic isometries. Further, the curves defining Ft are geodesics in

this metric. �

Remark 11.11. The strata referred to in Theorem 4 are more easily understood for n =
3, 4: Consider T̄0,3,1 ⊆ R3 . This has dimension 3 and is a union of 2-dimensional strata
coming from the B3-invariant level sets of c′31 = a2

21 + a2
31 + a2

32 − a21a31a32 + 3.
For n = 4 we note that T̄0,4,1 ⊆ R6 has dimension 5, however we have two independent

B4-invariant functions

c′41 = a21a32a41a43 − a21a31a32 − a21a41a42 − a31a41a43 − a32a42a43

+ a2
21 + a2

31 + a2
32 + a2

41 + a2
42 + a2

43 − 4,

c′42 = a2
21a

2
43 − 2a21a31a42a43 + a2

31a
2
42 − 2a31a32a41a42 + a2

32a
2
41 + 2a21a31a32

+ 2a21a41a42 + 2a31a41a43 + 2a32a42a43 − 2(a2
21 + a2

31 + a2
32 + a2

41 + a2
42 + a2

43) + 6,

which thus shows that T̄0,4,1 is a union of at most 4-dimensional B4-invariant strata.
We now consider the cases n > 4; we use the notation of Figure 5 at the beginning of

this section. We will show that there is a 1-parameter family of surfaces which give points
of T0,n,1 where c′n n−1 is not constant. This will prove the last part of Theorem 4.
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For n > 4 let us define the following matrices:

p1 =

(
−1 0

−2 −1

)
, p2 =

(
−4 3

−3 2

)
,

p3 =

(
−1 2n + 3

0 −1

)
, p4 =

(
6n− 1 12n2

−3 −6n− 1

)

Now for 4 < m < n we let

pm =
(

8n− 4m + 15 4(2n−m + 4)2

−4 4m− 8n− 17

)
.

Finally we let

pn =

(
(3n+11)x1+4n+15

x1+1
(3x1+4)(n+4)2

x1+1
−3x1−4

x1+1
−(3n+13)x1−4n−17

x1+1

)
.

One checks that p1, . . . , pn are all parabolics which (respectively) fix the points

f1 = 0, f2 = 1, f3 = ∞, f4 = −2n, f5 = −2n + 1,

f6 = −2n + 2, . . . , fn−1 = −(n + 5), fn = −(n + 4) + x1.

We will also let fn+1 = −(n + 3). The matrices si are as follows:

s1 =
(
−1 0
2 −1

)
, s2 =

(
−2 3
1 −2

)
, s3 =

(
2 4n + 3
−1 −2n− 1

)
,

s4 =
(

7 14n− 3
−2 1− 4n

)
,

sm =
(

2m− 1 (4m− 2)n− (2m2 − 8m + 3)
−2 (2m− 7)− 4n

)
, for 4 < m < n,

sn =

(
nx1+2n−1

x1+1
(n2+3n+1)x1+2n2+6n−3

x1+1
−(x1+2)

x1+1
(n+3)x1−2n−7

x1+1

)
.

Now si(fi) = gi for i = 1, . . . , n where we put gi = −(i − 1) for i = 1, . . . , n + 1. We
also have sn(fn+1) = gn+1. Thus following the argument at the beginning of this section we
see that for sufficiently small values of x1 these matrices do give a point of T0,n,1. Now to
consider the corresponding points in T̄0,n,1 one solves the equations trace(pipj)− (2− a2

ij).
We now list the values of 2− trace(pipj); here we assume that 4 < m,m′ < n:
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2− trace(p1p2) = 6, 2− trace(p1p3) = 2(2n + 3), 2− trace(p1p4) = 24n2,

2− trace(p1pm) = 8(m− 22)2, 2− trace(p1pn) =
6(n + 4)2(x1 + 4/3)

x1 + 1
,

2− trace(p2p3) = 3(2n + 3), 2− trace(p2p4) = (6n + 3)2,

2− trace(p2pm) = 12(m− 23)2, 2− trace(p2pn) =
9(n + 5)2(x1 + 4/3)

x1 + 1
,

2− trace(p3p4) = 3(2n + 3), 2− trace(p3pm) = 4(2n + 3),

2− trace(p3pn) =
3(2n + 3)(x1 + 4/3)

x1 + 1
, 2− trace(p4pm) = 12(2n + m− 22)2,

2− trace(p4pn) =
9(n− 4)2(x1 + 4/3)

x1 + 1
, 2− trace(pmpm′) = 16(m−m′)2,

2− trace(pmpn) =
12(m + n− 16)2(x1 + 4/3)

x1 + 1
. (11.7)

Lemma 11.12. For n > 1 we have

−c′n n−1 =Trace(T1T2 . . . Tn) = n−
∑

i1<i2

a2
i2i1 +

∑
i1<i2<i3

ai2i1ai3i1ai3i2

−
∑

i1<i2<i3<i4

ai2i1ai3i2ai4i1ai4i3 +
∑

i1<i2<i3<i4<i5

ai2i1ai3i2ai4i3ai5i1ai5i4 − . . .

Proof. This is proved by induction on n, or one can use Lemma 3.1. �

Lemma 11.13. If we solve the equations 2 − trace(pipj) = a2
ij for the aij and substitute

into the cycle c = ai2i1ai3i2ai4i3 . . . airir−1airi1 with i1 < i2 < · · · < ir < n, then we
get an integer. If we substitute into the cycle c = ai2i1ai3i2ai4i3 . . . airir−1anir

ani1 with
i1 < i2 < · · · < ir < n, then we get an integral multiple of x1+4/3

x1+1 .

Proof. Since for 4 < m 
= m′ < n we have that 2− trace(pmpm′) is a perfect square we may
assume that in any such cycle we have at most one index m with 4 < m < n. This reduces
the proof to checking a finite number of the remaining cases, which one does. �

We will use the above two results to show that when one substitutes any solution to the
equations 2− trace(pipj) = a2

ij into c′n n−1, then the result is a non-constant function of x1.
In fact:

Lemma 11.14. If we solve the equations 2 − trace(pipj) = a2
ij for the aij and substitute

into c′n n−1, then we get a function of the form

q1
x1 + 4/3
x1 + 1

+ q2,

where q1, q2 are integers with q1 being odd.

Proof. Of course there are many solutions to the equations 2− trace(pipj) = a2
ij , however,

they all differ by various signs and since we are only interested in the parity of the integer
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q1, the specific choice of signs will not concern us. Now given Lemmas 11.12 and 11.13 the
only thing we need to do is to show that q1 is odd. There are two cases: n even or odd. We
will do the n odd case, the other being similar. Assume that n is odd. Then c′n n−1 is given
as a sum of sums by Lemma 11.12. We look at each of these sums.

First for
∑

i1<i2
a2

i2i1
. Note that here we are only interested in summing over those i1 < i2

with i2 = n. Now by (11.7) we see that a2
n1 is always even; that a2

n2 is even since n is odd;
that a2

n3 is always odd; that a2
n4 is odd since n is odd; that a2

nm is even for all 4 < m < n.
Thus

∑
i1<i2

a2
i2i1

is even.
Next for

∑
i1<i2<i3

ai2i1ai3i1ai3i2 we again need only consider the cases where i3 = n.
Next note that if i1 = 1, then ai2i1ani1ani2 is always even. Thus we may assume that
i1 > 1. Similarly, if i1 = 2, then ai2i1ani1ani2 is even. Further, if 4 < m < n and i2 = m,
then ai2i1ani1ani2 is even. Thus we have reduced to the case i1 = 3, i2 = 4, and we find that
this is odd. Thus

∑
i1<i2<n ai2i1ani1ani2 is odd.

For the case
∑

i1<i2<i3<i4
ai2i1ai3i2ai4i1ai4i3 we again have i4 = n and as above we must

have i1 > 2. But this forces i3 > 4 which gives an even number also.
The rest of the cases are similar to the last one. This proves the Lemma and the last

part of Theorem 4. �

Let π : B3/Z(B3) → PSL2(Z) be the isomorphism so that

π(σ1) =
(

1 1
0 1

)
and π(σ2) =

(
1 0
−1 1

)
,

with these matrices acting as linear fractional transformations of the upper half plane H 2 .
We now return to the situation of Theorem 11.8 and Corollary 11.10. These show that for
all t < 0 there is a diffeomorphism ft : Vt ∩ R3

>2 → H 2 such that for all α ∈ B3/Z(B3) we
have ft(Ft) = F ′

t and

ft(α(x, y, z)) = π(α)ft(x, y, z), for all (x, y, z) ∈ Vt ∩ R3
>2 .

Now let g : H 2 → C be a modular form of weight k, so that g(β(z)) = (cz + d)kg(z)

for all z ∈ H 2 and β =
(
a b
c d

)
∈ PSL2(Z) [Ko]. Then we can define a modular form on⋃

t<0 Vt ∩ R3
>2 by

ḡ(x, y, z) = g(ft(x, y, z)), for (x, y, z) ∈ Vt ∩ R3
>2 .

Then we have

Theorem 11.15. For α ∈ B3/Z(B3), (x, y, z) ∈ Vt ∩ R3
>2 and a modular form g of weight

k we have

ḡ(α(x, y, z)) = (cz + d)kḡ(x, y, z), where π(α) =
(
a b
c d

)
.

Proof. For (x, y, z) ∈ Vt ∩ R3
>2 we have:

ḡ(α(x, y, z)) = g(ftα(x, y, z))

= g(π(α)ft(x, y, z))

= (cz + d)kg(ft(x, y, z))

= (cz + d)kḡ(x, y, z),
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where π(α) =
(
a b
c d

)
. �

Since T0,3,1 can be thought of as a subset of
⋃

t<0 Vt ∩ R3
>2 we see that the above result

gives a way of defining modular forms on T0,3,1. It would be nice to have an explicit formula
for the functions ft.
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