
REPRESENTATIONS OF BRAID

GROUPS VIA DETERMINANTAL RINGS

Stephen P. Humphries

Abstract. We construct representations for braid groups Bn via actions of Bn on a deter-

minantal ring, thus mirroring the setting of the classical representation theory for GLn. The
representations that we construct fix a certain unitary form.

§1. Introduction

Let C be a commutative ring with identity. In this paper we attempt to do for the braid
groups Bn what has been done for GLn(C) relative to their representation theory. The point of
view will be the following classical way of understanding the representation theory of GLn(C):
Let X = (aij) be a generic n×m matrix (where m ≥ n ≥ 1) with indeterminate entries and let
Rn = C[aij , 1 ≤ i, j ≤ n] be the corresponding coordinate ring. Let G = GLn(C)×GLm(C).
Then G acts on R as follows:

(A,B)(X) = AXB−1 for (A,B) ∈ G.

The representation theory of G is described using Young diagrams. Recall that a Young
diagram is a finite subset σ of N × N such that (i, j) ∈ σ and 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j implies
that (i′, j′) ∈ σ. The kth row of σ will be denoted by σk. There is a natural partial ordering
of the σ. These diagrams correspond to irreducible representations of GLn(C) as follows.

Given such a σ a tableau of shape σ is a function S : σ → {1, . . . , n}. The kth row of S
will be denoted Sk. One writes σ = |S| and there is a natural partial ordering of tableau
extending the above order of diagrams. A bitableau is a pair (S|T ) of tableau of shape σ. Now
to each bitableau we can associate a product of minors of the matrix X : for each row σk of
σ = |S| = |T | we get the minor µ(Sk|Tk) corresponding to the entries aij where i ∈ Sk, j ∈ Tk.
Then µ(S|T ) is the product µ(S1|T1)µ(S2|T2) . . . µ(Sr|Tr).

For each σ we let Aσ denote the subspace of R spanned by all tableau τ with τ ≥ σ and
let A′

σ denote the subspace of R spanned by all tableau τ with τ > σ. Then Aσ/A
′
σ is an

irreducible G−module and this construction gives all of the irreducible representations of G.
A fundamental role in this is given to the Plücker relations, these giving all relations among
products of the monomials and a partial ordering to the minors. Details of this can be found
in [BV, DEP1, DEP2, Gr]. This approach also allows the calculation of the ring of invariants
and many other important properties, even in arbitrary characteristic [op. cit.].

We now describe an analogous setup for Bn, noting the following papers which contain
results on the general representation theory of the braid groups [A2, At, B, BLM, BW, F, Iv,
J, La, Le, Li]. However we should also note that the representation theory for braid groups
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is more involved than that for linear groups since, for example, the braid groups are not rigid
(see Theorem 1.9 below).

Let Bn denote the (algebraic) braid group, with standard generators σ1, σ2, . . . , σn−1 and
with relations

σjσj+1σj = σj+1σjσj+1, σjσi = σiσj (1.1)

for 1 ≤ i, j < n− 1 and |i− j| > 1. It is well known that Bn has a faithful representation in
Aut(Fn), where Fn =< T1, . . . , Tn > is a free group on n generators [Bi]. This comes from an
action of Bn on the disc Dn with n punctures π1, . . . , πn as isotopy classes of diffeomorphisms
of Dn each fixing the boundary of the disc, so that the action of Bn on the fundamental group
π1(Dn, p) for p on the boundary of Dn gives the monomorphism φn : Bn → Aut(Fn). The
action of a generator σi, i < n is as follows:

φn(σi)(Ti) = TiTi+1T
−1
i ; φn(σi)(Ti+1) = Ti; φn(σi)(Tj) = Tj for j �= i, i + 1.

Artin characterised the image of φn: each ψ ∈ Aut(Fn) such that
(i) ψ(Tj) is a conjugate of some Tk; and
(ii) ψ(T1)ψ(T2) . . . ψ(Tn) = T1T2 . . . Tn [Bi].
We will also need to note that there is an epimorphism Πn : Bn → Sn, given by the permu-
tation action of a braid on the punctures {π1, . . . , πn}, whose kernel is the pure braid group
Pn.

We obtain an action of Bn on a finitely generated polynomial algebra as follows; this will
be defined by representing the generators Tj of Fn as transvections, specifically we let

Ti =




1 0 . . . 0 . . . 0 0
0 1 . . . 0 . . . 0 0
...

...
. . .

... . . .
...

...
ai1 ai2 . . . 1 . . . ain−1 ain
...

... . . .
...

. . .
...

...
0 0 . . . 0 . . . 1 0
0 0 . . . 0 . . . 0 1



,

where the non-zero off-diagonal entries occur in the ith row. Here a matrix M is a transvection
[A1] if M = In +A where In is the identity matrix, det(M) = 1, rank(A) = 1 and A2 = 0. In
particular, conjugates of transvections are transvections. We let R(0)

n = C[aij , 1 ≤ i �= j ≤ n]
be the corresponding ring, so that Ti ∈ SLn(R(0)

n ), and in this context it will be convenient
to put aii = 0 for i = 1, . . . , n.

The fact that the group < T1, T2, . . . , Tn > generated by these transvections is a free group
of rank n was noted in [Hu2, Lemma 2.5]. The action of Bn on R

(0)
n comes from the action of

Bn on the trace algebra associated to the matrix group Fn: note that the element TiTj , i �= j,
represents the conjugacy class of the simple closed curve containing the punctures πi, πj in
its interior. Now

trace(TiTj) = aijaji + n,

and, if A,B ∈ Fn, then, since ATrA
−1, BTsB

−1 are transvections, it similarly follows that

trace(ATrA−1BTsB
−1) = brsbsr + n,
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for some brs, bsr ∈ R
(0)
n . For α ∈ Bn Artin’s characterisation of braids given above shows that

α(Ti) = ATrA
−1, α(Tj) = BTsB

−1 for some A,B ∈ Fn, where Πn(i) = r,Πn(j) = s, and so if
trace(ATrA−1BTsB

−1) = brsbsr + n, then [Hu1, Hu2, Hu4] we may choose brs, bsr such that

brs = ars + terms of higher order, bsr = asr + terms of higher order.

The action of Bn on R
(0)
n is then given by α(aij) = brs.

This action is non-linear; on generators it is given as follows:

σi(ai i+1) = ai+1 i, σi(ai+1 i) = ai i+1, σi(ah i+1) = ah i,

σi(ah i) = ah i+1 + ah iai,i+1, σi(ai+1 j) = ai j ,

σi(ai j) = ai+1 j − ai+1 iai j , (1.2)

where h, j �= i, i + 1.
A quotient of the above representation (1.2) was found by Magnus [Ma] when he was looking

at the action of Aut(Fn) on the character variety of 2 × 2 complex matrices. This character
variety is essentially a polynomial ring with some quadratic relations; however Magnus noted
(”somewhat surprisingly” [Ma p.100]) that, relative to a certain set of generators, the action
of Bn ⊂ Aut(Fn) on this character variety lifted to an action on a polynomial algebra with
n(n − 1)/2 generators. In [Hu1] we gave the above explanation for the existence of a lift of
Magnus’s representation, extending it to act on the n(n− 1) indeterminates aij .

Let cijk...rs represent the cycle aijajk . . . arsasi ∈ R
(0)
n . Then the cycles generate a subal-

gebra of R(0)
n denoted Y

(0)
n . Then Y

(0)
n is the trace ring for the matrix group Fn. A cycle

cijk...rs will be called simple if i, j, k, . . . , r, s are all distinct. It is easy to see that every cycle
in R

(0)
n is a product of simple cycles. It is also clear from the above action (1.2) of Bn on

R
(0)
n that if cI is a cycle in R

(0)
n and α ∈ Bn, then α(cI) is a sum of integral multiples of

monomials, each of which is a cycle. Thus Y (0)
n is a Bn-invariant subring of R(0)

n .
It follows from [Hu1, Theorem 2.5 and Theorem 6.2] that the kernel of the action of Bn on

R
(0)
n is the centre of Bn and that if Bn and R

(0)
n are thought of as sub-objects of Bn+1 and

R
(0)
n+1 (respectively), then the action of Bn on R

(0)
n+1 is faithful.

We note as in [Hu2] that there is a natural ring involution ∗ on R
(0)
n which commutes

with the action of Bn: α(w∗) = α(w)∗ for all α ∈ Bn and all w ∈ R
(0)
n . This involution is

determined by its action on the generators aij of R(0)
n which is as follows: a∗ij = −aji. This

involution has the following property:

trace(A−1) = trace(A)∗,

for all A ∈ Fn. The action that Magnus discovered in [Ma], and that we referred to above,
was the action on the n(n− 1)/2 symbols aij + a∗ij .

It is clear from the above presentation of Bn that, for r < n, the subgroup

Br,n =< σr, σr+1, . . . , σn−1 >

of Bn is isomorphic to Bn−r+1 with B1,n = Bn. Now given n1, n2, . . . , ns ≥ 1 we let

G = Gn1,n2,...,ns
= B1,n1 ×Bn1+1,n1+n2 ×Bn1+n2+1,n1+n2+n3 × . . .

×Bn1+···+ns−1+1,n1+···+ns

∼= Bn1 ×Bn2 × · · · ×Bns
.
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Then by the above there is an action of G on R
(0)
n1+···+ns+r and on Y

(0)
n1+···+ns+r for any r ≥ 0.

Let n = n1+n2+· · ·+ns+r and M
(0)
n = (aij) where we have aii = 0 for all i = 1, . . . , n. Then

this action respects the minors of M (0)
n as follows: for any subsequences S, T of {1, 2, . . . , n}

of the same length (thought of as bitableau with a single row) we let (S|T )(0) denote the
minor of M (0)

n having rows taken from S and columns taken from T . (If either of S or T is
the empty sequence, then the corresponding determinant will be taken to be 0). The action
of Bn (or the subgroup G) on R

(0)
n induces an action of Bn on the (S|T )(0) which, for S, T

with one row, is given on generators as follows:

σr(S|T )(0) = tr[(S|T )(0) + (S|Sr+1
r T )(0)ar+1r − arr+1(Sr+1

r S|T )(0)

− arr+1(Sr+1
r S|Sr+1

r T )(0)ar+1r]. (1.3)

Here tr is the transposition (r, r + 1) ∈ Sn acting on the indices of the aij and Sr+1
r acts on

the sequences S, T as follows: Sr+1
r T is the empty sequence unless r is in T , while if r is in

T , then Sr+1
r T is T with r replaced by r + 1. We shall sometimes write (1.3) as

σr(S|T )(0) = tr

[
(S − arr+1S

r+1
r (S)|T + Sr+1

r (T )ar+1r)(0)
]
, (1.4)

where linearity in the two entries is understood (we will later give a better account of the
context in which this action occurs).

The above shows that there is an action of Bn on the determinantal ideals generated by
the minors of M (0)

n , the complication being that if α ∈ Bn, then α(S|T )(0) is a sum of terms
of the form w(S′|T ′)(0), where w ∈ R

(0)
n , and so this does not result in a finite-dimensional

representation over C. We will indicate below how this situation can be modified so as to
produce a finite-dimensional representation.

The action of Bn on the (S|T )(0) can be extended to an action on products

(S1|T1)(0) × · · · × (Sr|Tr)(0)

in the obvious way. These products can then be represented using bitableau, as in the GLn
case. The set of all minors corresponding to such bitableau of a given shape, generate an ideal
of R(0)

n which, by (1.3), is Bn-invariant. Thus we now have a way of assigning to each Young
diagram σ a Bn-invariant ideal A(0)

σ of R(0)
n . Again the problem is that, since the action of

Bn on the aij is non-linear, this ideal is not finitely generated as a C-module.
The first modification will be to show (in Proposition 3.1) that the action of Bn on the

(S|T )(0) lifts to an action on the R(0)
n -module freely generated by products of abstract symbols

(S|T )′ where S, T are tableau of shape σ taking values in {1, 2, . . . , n}, having the same length,
the action on such symbols being given by the analogue of (1.3). We will also impose the
conditions:
(i) (S|T )′ = 0 if either S or T contains repeated entries;
(ii) if S′ is S with two entries interchanged, then (S′|T )′ = −(S|T )′ (with a similar condition
for T );
(iii) if S = (S1, . . . , Sk) and T = (T1, . . . , Tk), then (S|T )′ = (S1|T1)′(S2|T2)′ . . . (Sk|T ′

k).
The second modification is that we think of the (S|T )′ as generating an R

(0)
n -algebra and

then reduce the elements of R(0)
n modulo a certain ideal that we now describe. Let u be
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another indeterminate and replace C by the field of rational functions C(u) (so that we will
now have to assume that C is an integral domain). For S ⊆ {1, 2, . . . , n} we let I(S) be the
ideal of R(0)

n generated by the elements

aijaji − 1
u(u + 1)

, for i, j ∈ S, i �= j;

aijajk − 1
u
aik, if i, j, k ∈ S and (j − i)(k − i)(k − j) > 0;

aijajk − 1
u + 1

aik if i, j, k ∈ S and (j − i)(k − i)(k − j) < 0. (1.5)

For disjoint subsets S1, S2, . . . , Sr ⊆ {1, 2, . . . , n} we let

I(S1, S2, . . . , Sr) =< I(S1), I(S2), . . . , I(Sr) > .

Then for example we see that the invariance of I({1, 2, . . . , m}) under the action of Bm

implies the invariance of I({1, 2, . . . , n1}, {n1 + 1, n1 + 2, . . . , n1 + n2}, . . . ) under the action
of Gn1,n2,...,ns

.
Now fix n1, . . . , ns ≥ 1 and let n =

∑s
i=1 ni. Choose a Young diagram σ for {1, . . . , n}.

Let

In1,...,ns
= I({1, . . . , n1}, {n1 + 1, . . . , n1 + n2}, {n1 + n2 + 1, . . . , n1 + n2 + n3}, . . . ).

Let Rn(σ) be the R
(0)
n /In1,...,ns

-module generated by all (S|T )′ where |S| = |T | = σ and
S1, T1 ⊂ {1, . . . , n1}, S2, T2 ⊂ {n1 + 1, . . . , n1 + n2}, . . . . If we set the degree of (S|T )′ to be
1 (and degree(aij) = 0), then Rn(σ) is a graded R

(0)
n /In1,...,ns

-algebra, which we write as

Rn(σ) = ⊕∞
k=0Rk

n(σ).

Theorem 1.1. Each Rk
n(σ) is a finitely-generated free C(u)-module which is G-invariant.

We will study the summands of these representations. We will show that the following
contribute to the existence of such summands:
(i) Multiple Laplace expansions of the determinant of (aij).
(ii) Ideals generated by the Plücker relations.
(iii) The existence of invariant involutions.
(iv) The existence of fixed forms for the action.

Examples 1.2. The bitableau (1, 2, . . . , n|1, 2, . . . , n) gives the trivial representation of G.
The bitableau (1, 2, . . . , n|n+ 1, n + 2, . . . , 2n) gives the sign representation of G.

If M is a matrix, then M t will denote its transpose.

Theorem 1.3. The action of Gn1,...,ns
on each Rk

n(σ) fixes a non-degenerate form which
is unitary relative to the involution ∗: for fixed ni, k there is a basis {bi} for Rk

n(σ) and a
non-degenerate matrix E over C(u) such that if M is the matrix representing α ∈ Gn1,...,ns

relative to the basis {bi} , then we have ME(M t)∗ = E. The matrix E satisfies E∗ = ±Et.
Each Rk

n(σ) splits as a sum of Gn1,...,ns
-irreducible subrepresentations.
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Theorem 1.4. In the representation Rk
n(σ) the matrix representing any of the generators

σi, 1 ≤ i < n, is diagonalisable.

Here is a complete description of one case:

Theorem 1.5. The representation given by (1, 2, . . . , n|1, 2, . . . , î, . . . , n, n+1) splits as V1⊕V2

where V1 has dimension n and is irreducible and monomial, and where V2 is irreducible and
has dimension n(n− 1).

We will give a branching law for the the restrictions ResBn

Bn−1
Vi, i = 1, 2 of the above

representations in Theorem 7.6.
We see how the representation theory of Sn appears in the following case where we consider

the action of Bn on Rn/I({1, 2, . . . , n}).

Theorem 1.6. Suppose that µ =
∏
k aikjk

∈ R
(0)
n is a monomial where {ik}k ∩ {jk}k =

∅. Then there is a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λr) of n such that the C(u)-module
generated by the orbit Bn(µ) splits into Bn-invariant summands in exactly the same way as
the representation of Sn induced from the trivial representation of the subgroup

Sλ1 × Sλ2 × · · · × Sλr

does. (The summands so obtained are not necessarily Bn-irreducible.)

Before describing how these representations split we will need to describe in greater detail
the action of Bn on R

(0)
n (in §2), the action of Bn on the ideals I(S1, . . . , Sr) (in §3) etc.

In §10 we will show that Rn(σ) is sometimes an algebra with straightening law (ASL). In
[Hu5] we have shown that B4 acts on an ASL.

Theorem 1.7. Let 1 ≤ k ≤ n. Then for S = {1, . . . , k} the representation R1
n(S|{n +

1, . . . , n + k}) has dimension
(
n
k

)2 and splits as E1 ⊕ E2 where E1 has dimension
(
n
k

)(
n−1
k

)
and is irreducible and E2 has dimension

(
n
k

)(
n−1
k−1

)
.

The Plücker relations (defined in §11) determine certain representation spaces also:

Theorem 1.8. Let U be a set of Plücker relations coming from Young diagrams with a single
row of length k. Then there is an associated Bn-invariant finitely generated free C(u)-module
< Bn(U) > associated to U . If n > 3 is odd, then < Bn(U) > has an irreducible summand of
dimension n. The action of Bn on this latter representation is monomial.

A finitely generated group is rigid if it has only finitely many classes of irreducible complex
representations in each dimension.

Theorem 1.9. For n ≥ 3 the braid group Bn and the braid commutator groups B′
n are not

rigid.

The braid commutator groups B′
n have been studied by Gorin and Lin [GL] and play an

important role in Lin’s study [L] of representations of Bn.
A result of Dyer, Formanek and Grossman [DFG] gives a connection between B4 and

Aut(F2). We use this to prove

Theorem 1.10. The automorphism group Aut(F2) is not rigid.

The question of whether Aut(Fn) is rigid is posed in the ‘Open problems in combinatorial
group theory’ list [P, problem F5].
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§2 Action of Bn on Rn

In this section we describe in greater detail the action of Bn on R
(0)
n . A coordinate free

definition [A1] of a transvection in SL(Qn) (for a commutative ring Q with identity) is as a
pair T = (φ, d) where d ∈ Qn and φ is an element of the dual space of Qn satisfying φ(d) = 0.
The action of T on Qn is given by

T (x) = x + φ(x)d for all x ∈ Qn.

Then we have [Hu1, Lemma 2.1]

Lemma 2.1. Let T = (φ, d) and U = (ψ, e) be two transvections. Then for all λ ∈ Z we
have

UλTU−λ = (φ− λφ(e)ψ, Uλ(d)). �

Let T = {T1 = (φ1, d1), . . . , Tn = (φn, dn)} be a fixed set of transvections in SL((R(0)
n )n)

where φi(dj) = aij for all 1 ≤ i �= j ≤ n as in the above. For any set of transvections

T ′ = {T ′
1 = (φ′

1, e
′
1), . . . , T ′

n = (φ′
n, e

′
n)}

we let M(T ′) denote the n× n matrix (φ′
i(e

′
j)) and we call M(T ′) the M-matrix of the set of

transvections T ′.
Any monomial in R

(0)
n that can be written in the form aj1j2aj2j3 . . . ajr−1jr

will be called
a j1jr-word. Note that by (1.2) if α ∈ Bn and 1 ≤ i �= j ≤ n, then α(aij) is a sum of
rs-words, where α(Ti) is a conjugate of Tr and α(Tj) is a conjugate of Ts. Let α ∈ Bn where
α(Ti) = wiTjw

−1
i in freely reduced form for i = 1, ..., n and where wi = wi(T1, . . . , Tn). Then

for i = 1, . . . , n we have wiTiw
−1
i = (ψi, fi) for some ψi, fi determined by Lemma 2.1, which

result in fact shows that

ψi = q1φ1 + · · · + qnφn and fi = p1d1 + · · · + pndn,

where p1, . . . , pn, q1, . . . , qn ∈ R
(0)
n . Since the aij are algebraically independent the φi and dj

are linearly independent and so the above representation is unique. We define the action of
Bn on R

(0)
n by

α(aij) = ψi(fj).

One can check that this agrees with the previous definition. Thus the M -matrix is acted upon
naturally by Bn:

α(M(T )) = M(α(T1), . . . , α(Tn)).

From Lemma 2.3 of [Hu1] we have:

Lemma 2.2. Let α ∈ Bn where α(Ti) = C1TkC
−1
1 , α(Tj) = C2TpC

−1
2 , with C1, C2 ∈ <

T1, . . . , Tn > and let C = C−1
1 C2 = T q1j1 . . . T qr

jr
be freely reduced with jr �= p, j1 �= k, qs �= 0

for s = 1, . . . , r and js �= js+1, for s = 1, . . . , r − 1. Then

α(aij) =
n∑

h=1

Ahahp
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where Ah is equal to the sum of all the products of the form

qr1qr2 . . . qrm
akjr1

ajr1 jr2
. . . ajrm−1 jrm

where 1 ≤ r1 < r2 < · · · < rm ≤ r and jrm
= h. If p �= jr, then the summand of α(aij) of

highest degree is unique and is equal to

±q1q2 . . . qrakj1aj1j2 . . . ajr−1jr
ajrp. �

For example if α(T1) = T3T
−1
2 T1T2T

−1
3 and α(T2) = T−1

2 T3T2, then we would have C =
T2T

−1
3 T−1

2 and
α(a12) = a13 + a13a32a23 + a12a23a32a23.

Note that (1.2) follows from Lemma 2.2 and the action of σr in (1.3) was already noted in
[Hu4, Hu5].

§3 Lifting the determinantal representation

Here we prove:

Proposition 3.1. There is an action of Gn1,...,ns
on the R

(0)
n /In1,...,ns

-algebra generated by
the (S|T )′ where the action of a generator σr is given by (1.3).

Proof. The proof consists in showing that the braid relations (1.1) are satisfied by the rule for
the σi given in (1.3) i.e. we need to show that σiσi+1σi(S|T )′ = σi+1σiσi+1(S|T )′ for i < n and
that σiσj(S|T )′ = σjσi(S|T )′ for |i − j| > 1. But, if S = (S1, . . . , Sk) and T = (T1, . . . , Tk),
then (S|T )′ = (S1|T1)′(S2|T2)′ . . . (Sk|Tk)′ and since the σi act as ring homomorphisms we
need only consider the case k = 1.

The alternative formula (1.4) can be interpreted as giving actions of Bn on the S part and
on the T part (which we put into some suitable category), namely:

σr(S) = tr(S − arr+1S
r+1
r S), σr(T ) = tr(T + ar+1rS

r+1
r T ). (3.1)

This is put in context in the following way: let Vn be a free R
(0)
n /In1,...,ns

-module with basis
x1, . . . , xn. We will associate to every subsequence S = (s1, . . . , sk) of {1, . . . , n} the element
xs1 ∧ · · · ∧ xsk

of the exterior algebra
∧k

Vn. Then we will check that the first equation of
(3.1) gives an action on

∧k
Vn and the second equation gives a dual action (relative to the

involution ∗). This will suffice to prove Proposition 3.1. The fact that these are dual actions
means that we need only do the S action for example. This then amounts to showing that
the action of the σi on the S part of (3.1) satisfies the relations in the standard presentation
(1.1).

Now the relation σiσj = σjσi for |i − j| > 1 is easy to check (since in this case ti and tj
commute, as do ti and Sj+1

j etc.). For the relation σiσi+1σi = σi+1σiσi+1 we note that this
is trivially true if S ∩ {i, i + 1, i + 2} = ∅. So we can assume that S ∩ {i, i + 1, i + 2} �= ∅. A
further simplification is that we need only do the case i = 1. Also when i = 1 we may ignore
the presence in S of any indices greater than 3 since these are unaffected by σ1 and σ2. There
are now 7 cases to consider: (i) S contains only 1 (out of 1, 2, 3); (ii) S contains only 2; (iii)
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S contains only 3; (iv) S contains only 1, 2; (v) S contains only 1, 3; (vi) S contains only 2, 3;
(vii) S contains 1, 2, 3.

For (i) by the above remarks we may (since we are ignoring all indices of S greater than
3) write S = (1) and so we have

σ1σ2σ1(1) = σ1σ2t1((1) − a12(2)) = σ1σ2((2) − a21(1))

= σ1((3) − a32(2) − (a31 − a32a21)(1))

= (3) − a31(1) − (a32((2) − a21(1));

σ2σ1σ2(1) = σ2σ1(1) = σ2((2) − a21(1))

= (3) − a32(2) − (a31 − a32a21)(1).

Thus σ1σ2σ1(1) = σ2σ1σ2(1). For (ii) we may similarly write S = (2) and we get:

σ1σ2σ1(2) = σ1σ2(1) = σ1(1) = (2) − a21(1);

σ2σ1σ2(2) = σ2σ1((3) − a32(2)) = σ2((3) − a31(1)) = (2) − a21(1).

For (iii) we write S = (3) and we get:

σ1σ2σ1(3) = σ1σ2(3) = σ1(2) = (1);

σ2σ1σ2(3) = σ2σ1(2) = σ2(1) = (1).

For (iv) we write S = (12) and we get:

σ1σ2σ1(12) = σ1σ2(−(12)) = −σ1((13) − a32(12)) = −((23) − a21(13) + a31(12));

σ2σ1σ2(12) = σ2σ1((13) − a32(12))) = σ2((23) − a21(13) + a31(12))

= (32) − (a31 − a32a21)(12) + a21((13) − a32(12))

= −((23) − a21(13) + a31(12)).

For (v) we write S = (13) and we get:

σ1σ2σ1(13) = σ1σ2((23) − a21(13)) = σ1((32) − (a31 − a32a21)(12))

= (31) + a32(12);

σ2σ1σ2(13) = σ2σ1(12) = −σ2(12) = −(13) + a32(12).

For (vi) we write S = (23) and we get:

σ1σ2σ1(23) = σ1σ2(13) = σ1(12) = (21);

σ2σ1σ2(23) = σ2σ1(32) = σ2(31) = (21).

For (vii) we write S = (123) and we get:

σ1σ2σ1(123) = σ1σ2(213) = σ1(312) = (321);

σ2σ1σ2(123) = σ2σ1(132) = σ2(231) = (321).

This concludes the proof of all cases �

The proof of the above result immediately gives:

Corollary 3.2. For all 1 ≤ k ≤ n we have an action of Bn on
∧k

Vn. �
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§4 Invariant ideals

Lemma 4.1. Let S be the sequence (1, 2, . . . , n). Then
(i) The ideal I(S) is Bn-invariant.
(ii) If cI = aijajk . . . ars is an is-word where i, j, k, . . . , r, s ∈ S, then there are two cases:

a) if i = s, then cI + I(S) = r + I(S), where r ∈ C(u);
b) if i �= s, then cI + I(S) = rais + I(S) for r ∈ C(u).

(iii) If i �= j, then aij + I(S) �= r + I(S) for r ∈ C(u).

Proof. (i) The proof is to check that if e = aijaji− u
u+1 , e = aijajk− 1

u+1aik or e = aijajk− 1
uaik

is one of the ideal generators (as in (1.5)), then σr(e) ∈ I(S). Note that if {i, j, k}∩{r, r+1} =
∅, then σr(e) = e. Thus one may assume that {i, j, k} ∩ {r, r + 1} �= ∅ so that card({i, j, k} ∪
{r, r + 1}) ≤ 4. One easily sees that in fact one may renumber so that i, j, k ∈ {1, 2, 3, 4}
and r = 1, 2, 3, thus reducing the checking to a finite number of cases, as indicated below.
(One may also use the invariance of the Bn-action under the involution ∗ to further reduce
the number of cases to be checked.) For example,

σ1(a12a23 − 1
u
a13) = (1 +

1
u

)(a21a13 − 1
u + 1

a23);

σ2(a12a23 − 1
u
a13) = (a13a32 − 1

1 + u
a12) + a12(a23a32 − 1

u(1 + u)
);

σ3(a12a23 − 1
u
a13) = (a12a24 − 1

u
a14) + a34(a12a23 − 1

u
a13);

σ1(a13a32 − 1
u + 1

a12) = (a23a31 − 1
u
a21) − a21(a13a31 − 1

u(u + 1)
);

σ2(a13a32 − 1
u + 1

a12) =
u

u + 1
(a12a23 − 1

u
a13);

σ3(a13a32 − 1
u + 1

a12) = (a14a42 − 1
u + 1

a12) + a13(a34a42 − 1
u
a32)

− a32(a14a43 − 1
u + 1

a13) − a13a32(a34a43 − 1
u(u + 1)

);

σ1(a12a21 − 1
u(u+ 1)

) = a12a21 − 1
u(u + 1)

;

σ2(a12a21 − 1
u(u+ 1)

) = (a13a31 − 1
u(u + 1)

) − a13(a32a21 − 1
u + 1

a31)

+ a31(a12a23 − 1
u
a13) − (a12a21 − 1

u(u+ 1)
)a23a32 +

1
u(u + 1)

(a13a31 − a23a32); etc.

Alternatively, for a fixed ring C = Q , F q , one can do these calculations (faster) using a
Gröbner basis algorithm, as implemented in, for example, Magma [MA], since, as we have
already noticed, one only has to deal with the case n = 4.

(ii) Given a cycle cI = aijajk . . . ars of degree d one can use the relations in I(S) to replace,
for example, aijajk by a non-zero C(u)-multiple of aik, thus reducing the degree, while the
resulting monomial of degree d− 1 is still an is-word. (ii) follows.

(iii) Define a ring homomorphism η = ηS : R(0)
n → R

(0)
n by its action on generators:

η(aij) =
1
u

if i, j ∈ S and i < j; η(aij) =
1

u + 1
if i, j ∈ S and i > j. (4.1)
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Then one checks that η(I(S)) = 0. But clearly η(aij) �= 0 and this gives (iii) �

Lemma 4.2. Suppose that S, T have a single row. Let (S|T )(0) be the minor of M (0)
n with

row indices from S and column indices from T . Then, when expanded out, each monomial of
(S|T )(0) is a product of rs-words and ii words for distinct choices of r ∈ S \ T and s ∈ T \S.

If α ∈ Bn and T ∩{1, 2, . . . , n} = ∅, then each monomial of α(S|T )′ has the form w(S′|T )′

where (S′|T )′ has the same shape as (S|T )′ and where either w ∈ C or w ∈ R
(0)
n is a product

of risi-words, i = 1, . . . , k, where the ri and the si are all distinct and si ∈ S′ and ri /∈ S′.
If α ∈ Bn and S∩{1, 2, . . . , n} = ∅, then each monomial of α(S|T )′ has the form (S|T ′)′w′

where (S|T ′)′ has the same shape as (S|T )′ and where either w′ ∈ C or w′ ∈ R
(0)
n is a product

of risi-words, i = 1, . . . , k, where the ri and the si are all distinct and ri ∈ T ′ and si /∈ T ′.
If α ∈ Bn, then each monomial of α(S|T )′ has the form w(S′|T ′)′w′ where (S′|T ′)′ has the

same shape as (S|T )′ and where w and w′ are as in the last two paragraphs.

Proof. The first statement follows from elementary properties of determinants. The rest fol-
lows from using (1.3) by induction on the length of α as a product of the standard generators.
�.

Remark 4.3. Now most of the time we will reduce the monomials w,w′ referred to in Lemma
4.2 mod In1,...,ns

and only deal with representatives which are products of risi-words of
smallest degree (see Lemma 4.1). We note that for w(S′|T ′)′w′ as in the last paragraph of
Lemma 4.2, Lemma 4.2 then places a bound on the degree of such monomials w, w′ (when
so reduced). However one should note that there may well be further reductions for ww′ e.g.
. . . aij(. . . , j, . . . | . . . , j, . . . )ajk . . . could be reduced to . . . aik(. . . , j, . . . | . . . , j, . . . ) . . . . Note
that this latter form may not look like it has the form indicated in Lemma 4.2.

We note that if σ is a Young diagram with a single row of length k, then there are only a
finite number of the (S|T )′ with |S| = |T | = k and by Lemma 4.2 there are only a finite number
of monomials w(U |V )′ in the Bn-orbit of such (S|T )′. Thus R1

n(σ) is a finite-dimensional free
C(u)-module and so Rm

n (σ) is a finite-dimensional free C(u)-module since it is a quotient of
the mth symmetric power of R1

n(σ) where a basis consists of all w(S1|T1)′ . . . (Sm|Tm)′ with
w satisfying conditions similar to those of Lemma 4.2. The case where σ has more than one
row is similar. This proves Theorem 1.1. �

From (1.5) we see that if (j− i)(k− i)(k− j) > 0 then mod In1,...,ns
we have aijajk = 1

uaik.
Acting on this latter equation by ∗ we get ajiakj = − 1

u∗ aki and comparing this with (1.5)
again we see that it is natural to define

u∗ = −(u + 1).

One then checks:

Lemma 4.4. For all w ∈ In1,...,ns
we have w∗ ∈ In1,...,ns

.

Proof. One need only consider the case where w is one of the generators of In1,...,ns
as in (1.5)

and we have already done one case above. The rest are also easily checked. �

We now define the action of the involution ∗ on the generators (S|T )′, where S, T have a
single row, by

((S|T )′)∗ = (T |S)′.

We extend this action naturally: (w1S|w2T )∗ = w∗
1w

∗
2(T |S), and then C(u)-linearly over

monomials. This now gives:
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Lemma 4.5. For α ∈ Bn we have

α((S|T )′)∗ = α(((S|T )′)∗).

In particular, for all x ∈ Rn and all α ∈ Bn we have α(x∗) = α(x)∗.

Proof. We need only prove the first statement, and this only in the case α = σr, 1 ≤ r < n.
Using (1.4) we have:

(σr(S|T )′)∗ = (tr(S − arr+1S
r+1
r S|T + Sr+1

r Tar+1r))∗

= (trS − ar+1rtrS
r+1
r S|trT + trS

r+1
r Tarr+1)∗

= (trT − trS
r+1
r Tar+1r|trS + arr+1trS

r+1
r S)

= tr(T − Sr+1
r Tar+1r|S + arr+1S

r+1
r S)

= σr(T |S)′ = σr(((S|T )′)∗),

as required �

Lemma 4.6. Let S = (1, . . . , n) and choose distinct u1, . . . , ur, v1, . . . , vr ∈ {1, . . . , n}, r ≥ 2.
Then for any ζ ∈ Sn there is c �= 0 ∈ C such that

au1v1au2v2 . . . aurvr
= c× au1vζ1au2vζ2 . . . aurvζr

mod I(S).

Proof. It will suffice to do the case r = 2, since transpositions generate Sn. Now u1, u2, v1, v2

are distinct and so there are c1, c2 ∈ C(u) such that:

au1v1au2v2 = c1au1u2au2v1au2v2 = c1au1u2au2v2au2v1 = c1c2au1v2au2v1 ,

as required. �

Remark 4.7. For those who like their ring involutions to look like complex conjugation we
can (in the situation where C = C ) put u = −1

2 + iy, where i2 = −1.

Proposition 4.8. Suppose 2 is invertible in C and that V is a Bn-invariant subrepresentation
of Rk

n(σ) with V ∗ = V . Then V splits as V + ⊕ V − where

V ± = {b ∈ V |b∗ = ±b}.

Here V ± are both Bn-invariant.

Proof. Lemma 4.5 shows that each of V ± are invariant under the action of Bn. The rest
follows since for b ∈ V we can write b = (b + b∗)/2 + (b − b∗)/2 = b+ + b−, where b± ∈ V ±.
�

Let w(S|T ) be a monomial where S, T have a single row. We assume that w is in normal
form (see Lemma 4.2) so that w = w1w2 with w1 = ar1s1 . . . arzsz

, w2 = ap1q1 . . . apyqy
with

si ∈ S, pi ∈ T, si, qi /∈ S ∪ T . Then we let

E− = (S ∪ {r1, . . . , rz}) \ {s1, . . . , sz}, E+ = (T ∪ {q1, . . . , qy}) \ {p1, . . . , pz}.
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Lemma 4.9. Suppose that S, T have a single row. Let α ∈ Bn and let µ be a monomial in
α(w(S|T )′). Then

|E+(w(S|T )′) ∩ E−(w(S|T )′)| = |E+(µ) ∩ E−(µ)|.
If σ is a Young diagram, then we have the following Bn-invariant splitting

R1
n(σ) = ⊕|S|

i=0Wi

where Wi is spanned by all monomials µ ∈ R1
n(σ) with |E+(µ)∩E−(µ)| = i. Further we have

Wi = W+
i ⊕W−

i .

Proof. The last sentence follows from Proposition 4.8. The first statement follows from (1.3)
and (1.4): induct on the length of α as a word in the standard braid generators. The rest
follows from the first sentence. �

Construction 4.10. We now indicate another way to get Bn-invariant summands. Fix
k < n. Suppose that Vk is the Bn-space generated by all α(S|T )′ where α ∈ Bn and S, T
are subsequences of {1, . . . , n}, thought of as tableau with a single row. As in Example 1.2
we note that the element ([1, . . . , n]|[1, . . . , n]) is fixed by the Bn action. Now for S as above
we let eS be the element of Vk which is obtained by expanding ([1, . . . , n]|[1, . . . , n]) along all
rows labeled i where i /∈ S. Then each monomial in eS has the form w(S|T )′ for some w, T .
For example, if n = 4 and S = [2, 3, 4], then

eS = −a12([2, 3, 4]|[1, 3, 4])′ + a13([2, 3, 4]|[1, 2, 4])′− a14([2, 3, 4]|[1, 2, 3])′.

Then the Bn-orbit of all such eS , |S| = k generates a Bn-invariant C(u)-submodule Ek of Vk.
It is clear that Ek is invariant under the involution ∗ and so Proposition 4.8 shows that we
have the Bn-invariant splitting: Ek = E−

K ⊕E+
k (if 2 is invertible in C).

§5 Invariant forms

We will first consider the case where the Young diagram has a single row.
By the above we have an action of Bn on the ring R

(0)
n . This can be extended to an action

of Bn on a ring
R∞
n = C[aij |i, j ≥ 1, aii = 0 for i ≤ n].

The action is still given by (1.2) so that α(aij) = aij for α ∈ Bn and i, j > n. As usual, we
will think of the aij as entries in a matrix of sufficiently large degree.

Given finite subsequences S, T, U, V of N of the same size and w1, w2 ∈ Rn we define

< w1(S|T )′, w2(U |V )′ >′= w1w
∗
2(S|U)(0)(V |T )(0) mod In = I({1, . . . , n}).

We will say that S, T, U, V and w1, w2 are compatible if < w1(S|T )′, w2(U |V )′ >′ is in the
subring C(u)[aij|i, j > n] of R∞

n (so that it is fixed by the action of Bn). We define

< w1(S|T )′, w2(U |V )′ >=

{
< w1(S|T )′, w2(U |V )′ >′ if S, T, U, V, w1, w2 are compatible;

0 otherwise

We extend <,> C(u)-linearly to act on R1
n. For notational convenience we will sometimes

use det(S|T ) for (S|T )(0).
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Example 5.1. If n = 4, S = [1], T = [5], then the only w(U |V )′ which are compatible with
(S|T )′ are b1 = (S|T )′, b2 = a12([2], [5])′, b3 = a13([3], [5])′, b4 = a14([4], [5])′ and the values of
< bi, bj > are given in the following matrix (where we suppress the det([5], [5]) = a55 factor) :


0 − 1

u(u+1) − 1
u(u+1) − 1

u(u+1)
1

u(u+1) 0 − 1
u(u+1)2 − 1

u(u+1)2

1
u(u+1)

− 1
u2(u+1)

0 − 1
u(u+1)2

1
u(u+1)

− 1
u2(u+1)

− 1
u2(u+1)

0


 .

Proposition 5.2. The form <,> is C(u)-linear in both entries and for w ∈ R∞
n , x, y ∈ R1

n

satisfies

< wx, y >= w < x, y >, < x, wy >= w∗ < x, y >, < x, y >∗=< y, x > .

Further, <,> is Bn-invariant: for all α ∈ Bn, x, y ∈ R1
n we have < α(x), α(y) >=< x, y >.

Proof. The linearity and the first two properties are clear. To show that < x, y >∗=< y, x >
we need only do the case where x = (S|T ), y = (U |V ). We need to note that det(S|T )∗ =
(−1)|S|det(T |S) and then we have:

< (S|T )′, (U |V )′ >∗ = (det(S|U)det(V |T ))∗ mod In

= det(S|U)∗det(V |T )∗ mod In

= det(U |S)det(T |V ) mod In

=< (U |V )′, (S|T )′ > .

We now prove the invariance under the Bn-action, again noting that it suffices to check
this for α = σr, 1 ≤ r < n, and x = (S|T )′, y = (U |V )′. First note that by (1.4) we have

σr(S) = trS − ar+1rtrS
r+1
r S, σr(U) = trU − ar+1rtrS

r+1
r U

and so

< σr(S|T ), σr(U |V ) > =< (σrS|σrT ), (σrU |σrV ) >

= det(σrS, σrU)det(σrV, σrT ) mod In.

We will now prove that det(σrS, σrU) = σrdet(S, U):

det(σrS, σrU) = det(trS − ar+1rtrS
r+1
r S, trU − ar+1rtrS

r+1
r U)

= det(trS, trU) − ar+1rdet(trSr+1
r S, trU) − det(trS, ar+1rtrS

r+1
r U)

+ ar+1rdet(trSr+1
r S, ar+1rtrS

r+1
r U)

= det(trS, trU) − ar+1rdet(trSr+1
r S, trU) + arr+1det(trS, trSr+1

r U)

− ar+1rarr+1det(trSr+1
r S, trS

r+1
r U)

= σrdet(S|U).

We similarly have det(σrV, σrT )′ = σrdet(V, T )′. Now combining these results we get

< σr(S|T ), σr(U |V ) > = det(σrS, σrU)det(σrV, σrT ) mod In

= σrdet(S, U)σrdet(V, T ) mod In

= σr(det(S, U)det(V, T )) mod In

= det(S, U)det(V, T ) mod In,

the last equality coming from the fact that S, T, U, V are compatible. �



REPRESENTATIONS OF BRAID GROUPS VIA DETERMINANTAL RINGS 15

Proposition 5.3. The form <,> is non-degenerate.

Proof. We will need:

Lemma 5.4. Let s0(x, y) = 1 and for n > 0 let sn(x, y) = xn + xn−1y + xn−2y2 + · · · + yn

and

Xn =




0 1
u

1
u . . . 1

u
1

u+1 0 1
u . . . 1

u
1

u+1
1

u+1 0 . . . 1
u

...
...

...
. . .

...
1

u+1
1

u+1
1

u+1 . . . 0


 .

Then det(Xn) = (−1)n−1 1
u(u+1)sn−2( 1

u ,
1

u+1 ).

Proof. This follows directly from the last exercise in [Mu, §828, p. 764]. �

Now we have noted above that we may find a basis of R1
n of the form {bi = wi(Si|Ti)′}i.

We may order this basis so that b1, . . . , bN1 are all compatible, bN1+1, . . . , bN1+N2 are all
compatible (but not compatible with b1), etc. In fact the number of bi compatible with a
given bj is the same, so we have Ni = Nj . Relative to this basis the matrix representing the
form <,> has block form 


C1 0 0 . . .
0 C2 0 . . .
0 0 C3 . . .
...

...
...

. . .


 ,

where each Ci is an N1 × N1 matrix. Thus to show that the form <,> is non-degenerate
it suffices to show that each of the matrices Ck = (< bi, bj > |(k − 1)N1 ≤ i, j ≤ kN1) is
non-degenerate.

Fix (S|T )′ with |S| = |T | = k and consider all bi which are compatible with (S|T )′. We
will first consider the case of arbitrary S and T = (n+ 1, n+ 2, . . . , 2n). In fact there is little
loss in this case in assuming that S = (1, 2, . . . , k). Now note that given the compatibility of
each such bi = w(S′|T )′ with (S|T )′ we see that S′ completely determines w (and vice-versa).
Further, for each S′ ⊂ {1, 2, . . . , n} with |S′| = k there is w′ such that w′(S′|T )′ is a basis
element. It follows that there are exactly

(
n
k

)
of the bi which are compatible with (S|T )′, one

for each subset of {1, 2, . . . , n} of cardinality k. Thus N1 =
(
n
k

)
.

Recall the ring homomorphism η = η{1,...,n} : R(0)
n → C(u) defined in the proof of Lemma

4.1 (iii). We there showed that it satisfies: η(In) = 0. We can extend η as follows:

η(aij) =
1
u

if {i, j} ∩ {1, . . . , n} �= ∅ and i < j;

η(aij) =
1

u + 1
if {i, j} ∩ {1, . . . , n} �= ∅ and i > j;

η(aij) = aij if {i, j} ∩ {1, . . . , n} = ∅.

Lemma 5.5. For compatible bi = wi(Si|T ) and bj = wj(Sj |T ) we have

< wi(Si|T ), wj(Sj |T ) >= η(wiw∗
jdet(Si|Sj)det(T |T )).



16 STEPHEN P. HUMPHRIES

Proof. Since η(I(S)) = 0, and bi and bj are compatible we have

η(w1w2det(S1, S2)det(T |T )) = η(< bi, bj >) =< bi, bj >,

as required. �

Now we wish to show that det(Ck) �= 0 where (Ck)ij is < wi(Si|T ), wj(Sj |T ) >; but by
Lemma 5.5 and the fact that η is a ring homomorphism, it suffices to show that the matrix
E with i, j entry equal to η(< (Si|T ), (Sj|T ) >) is non-degenerate. But since det(T |T ) is a
constant and non-zero factor this latter fact will follow if we can show that the matrix D with
i, j entry equal to η(det(Si|Sj)) is non-degenerate.

Lemma 5.6. Fix 1 ≤ k ≤ n and let Xn be as in Lemma 5.4. Let S1, . . . , S(n
k) be the subsets

of {1, . . . , n} of cardinality k and let D be the
(
n
k

) × (nk) matrix (η(det(Si, Sj))). Then D is
invertible.

Proof. Lemma 5.4 shows that Xn is invertible. We can think of Xn as acting on a C(u)-vector
space Vn with basis x1, . . . , xn. Then by [Bo, Prop. 10 p. 529; see also Ex. 11 p. 640 (watch
for the misprint!)] we see that the matrix D represents the action of Xn on the exterior
algebra

∧k
Vn. Since Xn is invertible we see that D is also. �

Conjecture 5.7. We conjecture that the determinants det(Ci) have the form (u+1)m−um

(u(u+1))p for
some m, p. If this were the case and one solves det(Ci) = 0, then one obtains (u+1)m−um = 0
and finds (over C ) that the solutions are:

u = −1
2
− i

sin(2kπ/m)
1 − cos(2kπ/m)

,

for 1 ≤ k < m. We compare these solutions with Remark 4.7.

Lemma 5.8. Assume that |S| = |T | = k. Then the action of Bn on (S|T )′ is the same as
the action of Bn on the elements (S|[n + 1, . . . , n + k])′([n + 1, . . . , n+ k]|T )′.

Proof. We need only check that for α ∈ Bn we have

α(S|T )′ = α(S|[n + 1, . . . , n+ k])′α([n + 1, . . . , n+ k]|T )′,

and in fact we need only check this for α = σi, i < n. However this latter fact in this case
follows from (1.3). �

We now show how the above implies the non-degeneracy for general S, T .
Now the action of Bn on the w([n+ 1, . . . , n+ k]|T ) is dual to the action on the w∗(S|[n+

1, . . . , n+k]). Thus by the above the action of Bn on the tensor product (over C(u)) generated
by all w(S|[n+ 1, . . . , n+ k])⊗w′([n+ 1, . . . , n+ k]|T ) is also a Bn-representation space with
the Bn action fixing a non-degenerate Bn-invariant form; denote this space by Un⊗U∗

n. Then
Un ⊗ U∗

n splits as a sum of Bn-irreducibles.
Now by Lemma 5.8 we see that the Bn-representation space that we are interested in is a

quotient of this tensor product; denote it by Q. Thus, due to the above splitting property,
this quotient can be identified with a summand of Un ⊗ U∗

n i.e. Un ⊗ U∗
n
∼= Q⊕ Y . Then the

form on Un ⊗ U∗
n restricts to a form on Q, which, since Q and Y are orthogonal relative to

the form on Un⊗U∗
n , is also non-degenerate. This does the case where S, T have a single row.

The general case follows by a similar argument since R1
n(σσ′) is a quotient of R1

n(σ)⊗R1
n(σ′).

�
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§6 Diagonalisability

In this section we prove

Theorem 6.1. For all Young diagrams σ of n ≥ 2 and all 1 ≤ i < n the matrix representing
the action of σi on R1

n(σ) is diagonalisable over a finite extension of C(u).

Proof. It clearly suffices to prove the result in the case where σ has a single row. Now fix
a monomial µ. We will show that the orbit Oi(µ) = {σki (µ)}k∈Z is spanned by a certain
finite set Mi(µ) of monomials and that the action on the subspace Vi(µ) spanned by these
monomials is diagonalisable. Now by Lemma 4.2 we may assume that µ = w1(S|T )′w2 with
w1, w2 as in Lemma 4.2. Since σi(ars) = ars for all r, s �= i, i + 1 we see that there are a
finite number of cases to be checked, depending upon whether i, i + 1 occur in S or T or as
subscripts of factors of w1, w2. Here, for example, aji(i|−) will indicate a monomial where aji
is a divisor of w1, j �= i, i + 1, (but none of aij , ai+1j, aji+1, aii+1, ai+1i are) and i ∈ S (but
i + 1 /∈ S), and i, i + 1 /∈ T . The cases are: µ =

(i) (−|−), (ii + 1|−), (−|ii + 1); (ii) (i|−); (iii)(i + 1|−); (iv) (i|i); (v) (i|i + 1);

(vi) (ii + 1|−); (vii) (ii + 1|i); (viii) (ii + 1|i + 1); (ix) aji(i|−); (x) aji(i|i + 1);

(xi) aji(ii + 1|−); (xii) aji(ii + 1|i); (xiii)aji(ii + 1|i + 1); (xv) aij(|−); (xvi)aij(|i);
(xvii) aij(−|i); (xviii) ai+1i(i|−); (ixx) aii+1(i + 1|−); (xx) ai+1i(i|i + 1);

(xxi) aii+1(i + 1|i); (xxii) ai+1i(i + 1|i + 1); (xxiii) ai+1i(i|i); (xxiv) a2
i+1i(i|i + 1);

(xxv)a2
ii+1(i + 1|i); (xxvi) aji(i|i + 1)ai+1i; (xxvii) aji+1(i + 1|i + 1);

(xxviii) aji+1(i + 1|i); (xxix) aji+1(i|i); (xxx) aji(i + 1|i + 1); aji(i|i);
(xxxi) aji+1aii+1(i + 1|i); (xxxii) ajiai+1i(i|i + 1); (xxxiii) ajiai+1k(−|−); etc.

Here we have only indicated some of the cases, other cases will follow by duality.
We now indicate how each case can be checked. Of course σi(−|−) = (−|−) and similarly

σi(ii + 1|−) = −(ii + 1|−) and so these cases are easy. For (ii) µ = (i|−), we have

M(µ) = {(i|−), (i+ 1|−), ai+1i(i|−), aii+1(i + 1|−)

and relative to this basis the matrix representing the action of σi is

M =




0 1 0 0
1 0 −1 0
0 −1

u(u+1)
0 1

0 0 1 0




which has characteristic polynomial (z2 − u
u+1 )(z2 − u+1

u ) and so M is diagonalisable over a
finite extension of C(u). This is case (ii), but we note that this also takes care of cases (iii),
(xviii) and (ixx).

For (iv) we have

M(µ) = {(i + 1|i + 1), (i|i), ai+1i(i|i + 1); aii+1(i + 1|i)}
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and relative to this basis the matrix representing the action of σi is

M =




0 1 0 0
1 −1

u(u+1) −1 1
0 −1

u(u+1) 0 1
0 1

u(u+1) 1 0




and this has characteristic polynomial (z − 1)2(z + u
u+1 )(z + u+1

u ). To obtain the result in
this case we just need to note that (1, 1, 0, 1), (0, 0, 1, 1) span the 1-eigenspace. This does (iv)
and also (xx) and (xxi).

For (v) we have

M(µ) = {(i + 1|i), (i|i+ 1), ai+1i(i + 1|i + 1),ai+1i(i|i), aii+1(i + 1|i + 1),

aii+1(i|i); a2
i+1i(i|i + 1), a2

ii+1(i + 1|i)},

and relative to this basis the matrix representing the action of σi is

M =




0 1 0 0 0 1 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0
0 −1

u(u+1) 0 0 1 −1
u(u+1) 0 1

0 0 0 1 0 0 0 0
1

u(u+1)
0 1 −1

u(u+1)
0 0 −1 0

0 0 0 0 0 −1
u(u+1) 0 1

0 0 0 1
u(u+1) 0 0 1 0



.

This has characteristic polynomial

(z − 1)2(z + 1)2(z − u

u + 1
)(z +

u

u + 1
)(z − u + 1

u
)(z +

u + 1
u

).

Here we note that the eigenspaces for the ±1 eigenvectors are generated (respectively) by

(1, 0, u(u+ 1), u(u+ 1), u(u+ 1), u(u+ 1), 0, u(u+ 1)),

(0, 1,−u(u+ 1),−u(u+ 1),−u(u+ 1),−u(u+ 1), u(u+ 1), 0),

(1, 0, u(u+ 1), u(u+ 1),−u(u+ 1),−u(u+ 1), 0,−u(u+ 1)),

(0, 1, u(u+ 1), u(u+ 1),−u(u+ 1),−u(u+ 1),−u(u+ 1), 0).

This does this case and (xxii), (xxiii), (xxiv), (xxv).

For (ix) we have M(µ) = {aji(i|−), aji+1(i + 1|−)} and the matrix is
(

0 1
u+1
u

−1
u

)
which

has distinct eigenvalues.
For (x) we have

M(µ) = {aji+1(i + 1|i + 1), aji+1(i + 1|i),aji+1(i|i), aji(i + 1|i + 1), aji(i|i + 1), aji(i|i),
ajiai+1i(i|i + 1), aji+1aii+1(i + 1|i)}.
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Here the σ1 matrix is


0 0 0 0 0 1 0 0
0 0 1

u 0 1 0 0 0
0 1

u
0 1 0 −1

u(u+1)
−1 0

0 0 u+1
u

0 0 0 0 0
0 u+1

u 0 0 0 −1
u 0 0

u+1
u 0 − 1

u2 0 0 0 0 u+1
u

0 0 − 1
u2 0 0 0 0 u+1

u

0 0 0 0 0 1
u(u+1) 1 0



.

This has characteristic polynomial

(z2 − u

u + 1
)(z2 − u + 1

u
)2(z2 − (u + 1)3

u3
)

and the eigenvectors for the squared factor are:

(−u
√

(u + 1)u, 0,−u
√

(u + 1)u,− (u + 1)u,
√

(u + 1)u,− (u + 1)u, 1, 0),

((u + 1)u,
√

(u + 1) u, (u + 1) u,
√

(u + 1)u (u + 1) , 0,
√

(u + 1)u (u + 1) , 0, 1),

((u + 1)u,−
√

(u + 1)u, (u + 1)u,−
√

(u + 1)u (u + 1) , 0,−
√

(u + 1) u (u + 1) , 0, 1),

(u
√

(u + 1) u, 0, u
√

(u + 1)u,− (u + 1)u,−
√

(u + 1) u,− (u + 1) u, 1, 0).

This again shows diagonalisability for (x) and (xxvi)-(xxxii).
The rest of the cases are similarly checked, giving Theorems 6.1 and 1.4. �

§7 The (1, 2, . . . , n|1, 2, . . . , î, . . . , n, n + 1) representation.

In this section we prove Theorem 1.5. Let µi = µ
(n)
i = (1, 2, . . . , n|1, 2, . . . , î, . . . , n, n+ 1).

Lemma 7.1. For any 1 ≤ i ≤ n the C(u)-module Vn generated by the Bn-orbit of µi is freely
generated by µk, aijµj for i, j, k = 1, . . . , n with i �= j. It has dimension n2.

Proof. We note the following:

σi(µi) = −µi+1; σi(aii+1µi+1) = −ai+1iµi − u

u + 1
µi+1;

σi(aijµj) =
u

u + 1
ai+1jµj ; σi(ai+1jµj) = aijµj ; σi(µi+1) = −µi − aii+1µi+1;

σi(ajiµi) = −(u + 1)
u

aji+1µi+1; σi(aji+1µi+1) = −ajiµi − 1
u
aji+1µi+1. (7.1)

Here j �= i, i + 1. The first of these equations shows that all the ±µj are in the orbit of µ1,
for example. For i < j < n the 5th equation shows that we can get ajj+1µj+1 and then

σiσi+1 . . . σj−1(ajj+1µj+1) = aij+1µj+1.

We can similarly get all aijµj for i > j. �
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Define the following vectors:

v1 = µ1 − ua12µ2 + ua13µ3 − ua14µ4 + ua15µ5 − · · · + (−1)n+1ua1nµn

v2 = −(u + 1)a21µ1 + µ2 − ua23µ3 + ua24µ4 − ua25µ5 + · · · + (−1)nua2nµn

v3 = (u + 1)a31µ1 − (u+ 1)a32µ2 + µ3 − ua34µ4 + ua35µ5 − · · · + (−1)n+1ua3nµn;

v4 = −(u + 1)a41µ1 + (u + 1)a42µ2 − (u + 1)a43µ3 + µ4 − ua45µ5 + · · · + (−1)nua4nµn;
...

vn = ±(u + 1)an1µ1 ∓ (u + 1)an2µ2 ± (u + 1)an3µ3 ∓ (u + 1)an4µ4

± (u + 1)an5µ5 ∓ · · · + µn. (7.2)

We now note that σi(ajk) = ajk and σi(µj) = µj for all j, k �= i, i+ 1. From (7.1) we see that
for j �= i, i + 1 the only monomials in vj which are not fixed are ajiµi and aji+1µi+1, both
having the same coefficients only differing in sign; so we have:

σi(ajiµi − aji+1µi+1) = −(u + 1)
u

aji+1µi+1 + ajiµi +
1
u
aji+1µi+1 = ajiµi − aji+1µi+1,

showing that σi(vj) = vj for all j �= i, i + 1. We also have (for j �= i, i + 1):

σi(aijµj) =
u

u + 1
ai+1jµj , and

σi(µi − uaii+1µi+1) = −µi+1 + u(ai+1iµi +
1

u(u + 1)
µi+1) = uai+1iµi − u

u + 1
µi+1.

This shows that σi(vi) = − u
u+1vi+1. Similarly we have σi(ai+1jµj) = aijµj for j �= i, i + 1

and

σi((u + 1)ai+1iµi − µi+1) = −(u + 1)aii+1µi+1 + µi + aii+1µi+1 = µi − uaii+1µi+1.

Which shows that σi(vi+1) = −vi. Thus we get a monomial representation ρ of degree n
where

ρ(σ1) =




0 − u
u+1 0 0 . . .

−1 0 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .


 , ρ(σ2) =




1 0 0 0 . . .
0 0 − u

u+1
0 . . .

0 −1 0 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .


 , etc. (7.3)

We recall that a monomial representation of a group G is a representation ρ : G → GL(V ),
where for each g ∈ G the matrix ρ(g) has only one entry in each row and each column;
such a matrix is called a monomial matrix. General results about monomial groups and
representations can be found in [O, Sc].

We now show that this representation V =< v1, . . . , vn > is irreducible. For suppose that
W is an invariant subspace and let v ∈ W, 0 �= v =

∑n
i=1 λivi. Let r = r(v) = min{i|λi �= 0}.

From the above we see that the action of σ2
i is represented relative to the basis v1, . . . , vn by
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the diagonal matrix diag(1, . . . , 1, u
u+1 ,

u
u+1 , 1, . . . , 1), where the u

u+1 entries are in the i and
i + 1 positions. Thus if r = r(v) > 1, then the span of v and σ2

r−1(v) contains vr. Since V is
a monomial representation whose corresponding permutation representation is transitive we
see that vi ∈ W for all i ≤ n and so W = V .

Similarly, if W is not 1-dimensional, then there is 0 �= v ∈ W with r(v) > 1 and so as in
the above we are done. Thus we may assume that dim(W ) = 1,W =< v > and r(v) = 1 and
in this situation the span < v, σ2

1(v) > contains an element of the form w = λ1v1 + λ2v2. If
λ1λ2 = 0, then vi ∈ W for some i = 1, 2; whereas if λ2 �= 0, then v2 ∈< w, σ2

2(w) >. In either
case we again see that W = V and we are done.

Remark 7.2. The action of Bn on < v1, . . . , vn > is not faithful since, for example, one
can show that the images of σ2

1 and of σ2
2 are both diagonal and so commute. However it is

well-known [Bi] that the subgroup < σ2
1 , σ

2
2 > of B3 is free on the two given generators.

Now any µi can be evaluated as a minor of the (n+ 1)× (n+ 1) matrix (ars) and then we
can look at this element mod In+1). This map we denote by In+1.

Lemma 7.3. (i) Let n ≥ 2 and 1 ≤ j ≤ n. Then

In+1(µj) = (−1)j+1 1
(u + 1)j−1un−j

ajn+1.

(ii) For n ≥ 2 we have

In+1(det(aij)n×n) = (−1)n+1

(
1

un−1
− 1

(u + 1)n−1

)
.

(iii) For n ≥ 2 and 1 ≤ i < j ≤ n we have

In((1, . . . î, . . . , n|1, . . . ĵ, . . . , n)) = (−1)n+i+j+1 1
un+i−j−1(u+ 1)j−i−1

aji

Proof. We first show that (ii) for n follows from (i) for n− 1. Expanding det(aij) along the
last row we get (remembering that aii = 0):

det(aij) =
n−1∑
i=1

(−1)n+iani(1, 2, . . . , n− 1|1, 2, . . . , î, . . . , n)

=
n−1∑
i=1

(−1)n+iµ
(n−1)
i =

n−1∑
i=1

(−1)n+iani(−1)i+1 ain
(u + 1)i−1un−1−i

= (−1)n+1
n−1∑
i=1

1
(u + 1)iun−i

= (−1)n+1 1
un

u

u + 1

n−2∑
i=0

(
u

u + 1

)i

= (−1)n+1 1
un

u

u + 1

(
1 −

(
u

u+1

)n−1
)

1 − u
u+1

= (−1)n+1

(
1

un−1
− 1

(u + 1)n−1

)
.
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Proof of (i). This is by induction on n ≥ 2, the case n = 2 being easy to check. So assume
that the lemma is true for n− 1 ≥ 2 and for all j ≤ n− 1. Then expanding along the jth row
we have:

µ
(n)
j =

j−1∑
i=1

(−1)j+iaji(1, 2, . . . , ĵ, . . . , n|1, 2, . . . , î, . . . , ĵ, . . . , n, n+ 1)

+
n∑

i=j+1

(−1)j+i−1aji(1, 2, . . . , ĵ, . . . , n|1, 2, . . . , ĵ, . . . , î, . . . , n, n+ 1)

+ (−1)j+n+1ajn+1(1, 2, . . . , ĵ, . . . , n|1, 2, . . . , ĵ, . . . , n)

=
j−1∑
i=1

(−1)j+iajiµ
(n−1)
i +

n∑
i=j+1

(−1)j+i−1ajiµ
(n−1)
i−1 + (−1)j+n+1ajn+1det((aij)(n−1)×(n−1))

=
j−1∑
i=1

(−1)j+iaji
(−1)i+1ain+1

(u + 1)i−1un−1−i +
n∑

i=j+1

(−1)j+i−1aji
(−1)iain+1

(u + 1)i−2un−i

+ (−1)j+najn+1(−1)n
(

1
un−2

− 1
(u+ 1)n−2

)

= (−1)j+1

j−1∑
i=1

ajn+1

(u + 1)iun−i−1
+ (−1)j+1

n∑
i=j+1

ajn+1

(u + 1)i−2un−i+1

+ (−1)jajn+1

(
1

un−2
− 1

(u + 1)n−2

)

= (−1)j+1ajn+1


j−1∑
i=1

1
(u + 1)iun−i−1

+
n∑

i=j+1

1
(u + 1)i−2un−i+1

− 1
un−2

+
1

(u + 1)n−2




= (−1)j+1ajn+1


 1
un−1

j−1∑
i=1

(
u

u + 1

)i
+

(u + 1)2

un+1

n∑
i=j+1

(
u

u + 1

)i
− 1
un−2

+
1

(u + 1)n−2




= (−1)j+1ajn+1


 1
un−1

(
u

u+1 − uj

(u+1)j

)
(1 − u

u+1 )
+

(u + 1)2

un+1

(
uj+1

(u+1)j+1 − un

(u+1)n

)
(1 − u

u+1 )
− 1
un−2

+
1

(u + 1)n−2




= (−1)j+1ajn+1(
u

un−1

(
1 −

(
u

u + 1

)j−1
)

+
(u + 1)3

un+1

uj+1

(u + 1)j+1

(
1 −

(
u

u + 1

)n−j)

− 1
un−2

+
1

(u + 1)n−2
)

= (−1)j+1ajn+1(
1

un−2
− 1

(u + 1)j−1un−1−j +
1

un−j(u + 1)j−2
− 1

(u + 1)n−2

− 1
un−2

+
1

(u + 1)n−2
)

= (−1)j+1ajn+1
1

(u + 1)j−1un−j
,
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as required for (i). (iii) is just a variation of (i). �

Note that as a C(u)-module the image of In+1 has dimension n with generators a1n+1,
a2n+1, . . . , ann+1. Now let Kn = {x ∈ Vn|In+1(x) = 0}. Then by Lemma 4.1 Kn is Bn-
invariant and by Lemma 7.1 and the above remark it has dimension n(n− 1). Now we have

In+1(v1) = In+1(µ1 − ua12µ2 + ua13µ3 − ua14µ4 + ua15µ5 − · · · + (−1)n+1ua1nµn)

=
1

un−1
+

u

(u + 1)un−2
a12a2n+1 +

u

(u + 1)2un−3
a13a3n+1 + . . .

+
u

(u + 1)n−1
a1nann+1

=
(

1
un−1

+
1

(u + 1)un−2
+

1
(u + 1)2un−3

+ · · · +
1

(u+ 1)n−1

)
a1n+1,

which is clearly non-zero. One similarly (or even directly from this) sees that In+1(vj) is a
non-zero multiple of ajn+1 for all j ≤ n. Thus < v1, . . . , vn > ∩Kn = {0}. It follows that
< v1, . . . , vn > is a complement to Kn, both being Bn-invariant.

We now show that Kn is an irreducible representation of Bn. For this we define the following
basis: for 1 ≤ i �= j ≤ n let

γij = aijµj − (−1)i+j

u

(
u

u + 1

)j−i
µi if i < j;

γij = aijµj − (−1)i+j

u + 1

(
u + 1
u

)i−j
µi if i > j.

It will be convenient to put γii = 0 for all i. Then using Lemma 7.3 we see that In+1(γij) = 0
for all i �= j. Since the γij are clearly independent, they form a basis for Kn. We will find it
convenient to write γij = aijµj − λijµi, which thus defines the λij ∈ C(u).

Lemma 7.4. (i) For 1 ≤ i < n and j �= i, i + 1 we have

σi(γii+1) = −γi+1i; σi(γi+1i) = (λi+1i − 1)γii+1; σi(γij) =
u

u + 1
γi+1j;

σi(γi+1j) = γij + λi+1jγii+1; σi(γji) = −u + 1
u

γji+1;

σi(γji+1) = −γji − 1
u
γji+1.

(ii) For the action of σ2
i we have:

σ2
i (γii+1) =

u + 1
u

γii+1; σ2
i (γj) =

u

u + 1
(γij + λi+1jγii+1);

σ2
i (γji) =

u + 1
u

(γji +
1
u
γji+1); σ2

i (γi+1j) =
u

u + 1
γi+1j − λi+1jγi+1i;

σ2
i (γji+1) =

1
u

+
u2 + u + 1

u2
γji+1; σ2

i (γi+1i) =
1 + u

u
γi+1i.

Proof. (i) follows from (1.2) and (7.1), and (ii) follows from (i). �
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Lemma 7.5. Let 1 ≤ i < n. The matrix m2
i representing the action of σ2

i on Kn is diago-
nalisable and has eigenvalues 1, u

u+1
, u+1

u
, (u+1)2

u2 .

Proof. We need only consider i = 1 and so we will give a basis for the eigenspaces of m2
1

corresponding to these eigenvalues. The dimensions will be seen to sum to n(n − 1) and so
the result will follow.

The elements γrs for r, s �= i, i+ 1 are 1 eigenvectors; there are (n− 2)(n− 3) of these. For
i > 2 the elements γi1 − γi2 are also fixed; there are n− 2 of these.

The elements γii+1, γi+1i are eigenvectors for the eigenvalue u+1
u .

For i > 2 the elements γi1 + u+1
u γi2 are eigenvectors for the eigenvalue (u+1)2

u2 ; there are
n− 2 of these.

For 1 < i < n the elements γ1i − λ2j

λ2n
γ1n are eigenvectors for u

u+1 ; there are n− 2 of these.

For i �= 2, n the elements γ2i− λ2j

λ2n
γ2n are eigenvectors for u

u+1 ; there are n− 2 of these. �

This last result shows that this representation (over C say) has at least 4 eigenvalues for
each σi. Since we will show that it is irreducible, it follows that it is not a summand of the
Jones representation [J].

Let 0 �= b ∈ Kn and write b =
∑

cijγij with cij ∈ C(u). Let i′ = min{i|cij �=
0 for some j}, j′ = min{j|cij �= 0 for some i}. Let r = min{i′, j′}. Assume r = i′ (the other
case is similar). Let s = min{j|crj �= 0}. Note that if r > 1, then σr−1(γrs) = γr−1s+λisγr−1r

and so we have a smaller r in σr−1(b). Thus we may assume that r = 1. Similarly, if s �= 2,
then we can lower s by acting on b by σs−1. It follows that we may assume that c12 �= 0.

For this b we can now let b =
∑4

j=1 bj where each bj is an eigenvector for σ2
i ; namely

σ2
1(b1) = b1, σ

2
1(b2) = u+1

u b2 etc. But c12 �= 0 shows that b2 �= 0 and so we see that some
C(u)-combination of σ2k

1 (b) contains a non-zero element in the u+1
u -eigenspace of σ2

1 . This
eigenspace is spanned by γ12 and γ21 and so we may assume that b = c1γ12 + c2γ21. But one
now checks that either γ12 or γ21 is a linear combination of b, σ2

2(b), σ4
2(b), σ6

2(b) (use Lemma
7.4). Thus Lemma 7.4 shows that C(u)(Bn(b)) contains γ12. But C(u)(Bn(γ12)) contains all
the elements γij and so Kn is irreducible. This proves Theorem 1.5. We will denote the Kn

representation of Bn by Vn,n2−n.

We now consider how these two irreducible Bn-representations split when considered as
Bn−1-modules. First, the representation < v1, . . . , vn > clearly splits as < v1, . . . , vn−1 >
⊕ < vn >, both of which are irreducible Bn−1 representations. We will denote the trivial
representation of Bn−1 by Vn−11 and the < v1, . . . , vn−1 > representation of Bn−1 by Vn−1n−1.

For the Kn representation we note that the element
∑n−1

i=1 (−1)iγni is fixed by Bn−1. This
gives a 1-dimensional summand. From the above we clearly see that the span of {γij|1 ≤
i, j ≤ n− 1} is an irreducible Bn−1-module; it has dimension (n− 1)(n− 2).

Now let wi = γni + u+1
u γni+1 for 1 < i < n and W =< w2, . . . , wn−1 >. We will show that
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W is an irreducible Bn−1-module. We first note:

σi(wi−1) = σi(γni−1 +
u + 1
u

γni) = γni−1 +
u + 1
u

(
−u + 1

u
γni+1

)

= γni−1 +
u + 1
u

γni − u + 1
u

(
γni +

u + 1
u

γni+1

)
= wi−1 − u + 1

u
wi;

σi(wi) = σi(γni +
u + 1
u

γni+1) = −u + 1
u

γni+1 +
u + 1
u

(−γni − 1
u
γni+1) = −u + 1

u
wi;

σi(wi+1) = σi(γni+1 +
u + 1
u

γni+2) = −γni − 1
u
γni+1 +

u + 1
u

γni+1 = −wi + wi+1.

Thus the (n− 2) × (n− 2) matrices mi, i < n− 1 representing σi relative to the basis wi are
(where t = u+1

u ):

m1 =




−t 0 0 0 . . .
−1 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .


 , m2 =




1 −t 0 0 . . .
0 −t 0 0 . . .
0 −1 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .


 ,

m3 =




1 0 0 0 . . .
0 1 −t 0 . . .
0 0 −t 0 . . .
0 0 −1 1 . . .
...

...
...

...
. . .


 , etc.

We now show that this gives an irreducible representation of Bn−1. It will suffice to show
that the action of these matrices on the row space is irreducible. Let U be a non-trivial sub-
representation and let w ∈ U . We first show that U contains some ei = (0, . . . , 0, 1, 0, . . . , 0).
This is certainly the case if wmi �= w for some i. Now if wmi = w for all i, then wM = 0,
where

M = m1 + · · · + mn−2 − (n− 2)In−2 =




−t −t 0 0 0 . . .
−1 −t −t 0 0 . . .
0 −1 −t −t 0 . . .
0 0 −1 −t −t . . .
...

...
...

...
...

. . .


 .

But this matrix has non-zero determinant and so w = 0; thus ei ∈ W for some i.
Now suppose that ei ∈ W . Then ei+1 ∈< ei, eimi+1 > and one easily sees that W =<

e1, . . . , en−2 >. This gives the irreducibility. We will denote this representation of Bn−1 by
Vn−1n−2.

For the last representation we let

z1 = −uγ12 + uγ13 − uγ14 + uγ15 − . . .

z2 = −(u + 1)γ21 − uγ23 + uγ24 − uγ25 + . . .

z3 = (u + 1)γ31 − (u + 1)γ32 − uγ34 + uγ35−...
. . .

zn−1 = ±(u + 1)γn−11 ∓ (u+ 1)γn−12 ± (u + 1)γn−13 ∓ (u + 1)γn−14 . . .
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exactly in analogy to how we defined the vi in (7.2). Then the same argument used there
shows that Z =< z1, . . . , zn−1 > is an irreducible Bn−1-module with the (n − 1) × (n − 1)
matrices given by (7.3). We denote this representation by Vn−1,n−1.

We have now proved that the restrictions of Vn,n and of Vn,n2−n to Bn−1 are multiplicity
free:

Theorem 7.6. The restrictions ResBn

Bn−1
Vnn and ResBn

Bn−1
Vnn2−n decompose according to the

following diagram (branching law):
Vn - 1, 1 Vn - 1, n - 1 Vn - 1, n - 2

Vn, n Vn, n   - n2

V(n - 1, n - 1)   - (n - 1)2

The restriction ResBn

Bn−1
Vn,n−1 decomposes as Vn−1,1 ⊕ Vn−1,n−2. �

For results concerning the existence of branching laws for the classical groups see [GW,
Ch. 8].

§8 The action of Bn on (S|{n + 1, . . . , n + |S|})

By Corollary 3.2 and Lemma 5.8 the action on the elements in the Bn-orbit of (S|{n +
1, . . . , n+ |S|}) is the same as the action on a submodule of R(0)

n -module
∧|S|

Vn. By Lemma
4.2 we see that every monomial in the Bn-orbit of (S|{n + 1, . . . , n + |S|}) has the form
ar1s1 . . . arksk

(S′|{n + 1, . . . , n + |S|}) where si ∈ S′ and ri /∈ S′. Let V (S) denote the
C(u)-module generated by all such elements.

Lemma 8.1. The dimension of V (S) is
(
n
|S|
)2.

Proof. We will need the following:

Lemma 8.2. Let ar1s1 . . . arksk
be given as above. Let π be any permutation of the set

{r1, . . . , rk}. Then there is c ∈ C(u) such that

aπ(r1)s1 . . . aπ(rk)sk
= car1s1 . . . arksk

modI({1, 2, . . . , n}).

Proof. From the defining relations for I({1, . . . , n}) we see that for any distinct i, j, k,m
there are non-zero c, c′ ∈ C(u) such that caimamj = aij and akmamj = c′akj. Thus in
Rn/I({1, . . . , n}) we have

aijakm = caimamjakm = caimakmamj = cc′aimakj = cc′akjaim.

Thus in Rn/I({1, . . . , n}) we can interchange i and k in any product of the form aijakm. The
result easily follows. �
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We count the number of elements of the form ar1s1 . . . arksk
(S′|{n + 1, . . . , n + |S|}) with

the ri, si as described above and with S′ fixed. Note that there exactly
(
n
|S|
)

of the (S′|{n +
1, . . . , n+ |S|})s.

Now for fixed |S| ≥ k ≥ 0 there are
(
n−s
k

)
choices of the ri and

(
s
k

)
choices of the si and so

there are
(
n−s
k

)(
s
k

)
total such choices. Summing over the various k gives

dimV (S) =
|S|∑
k=0

(
n− s

k

)(
s

k

)
=
(
n

|S|
)
,

the last equality being a well-known binomial identity [R]. This proves Lemma 8.1. �

We will need the following construction. Let S be a subsequence of {1, 2, . . . , n} with
|S| = k. For m > 0 we let Nm = [n + 1, n + 2, . . . , n + m]. Then to the element (S|Nk)′ we
associate

ω(S|Nk)′ = (S,Nn−k|1, 2, . . . , n)′.

We extend the action of ω so as to obtain an R∞
n -module map, also denoted by ω.

The action of Bn on (Nn|1, 2, . . . n)′ gives the sign permutation ε : Bn → Sn → {±1}.
Thus the action of α ∈ Bn on the ω(S|Nk)′ is given by

α(ω(S|Nk)′) = ε(α)ω(α(S|Nk)′).

Thus the representation theory for the (S|Nk)′ is the same as for the ω(S|Nk)′.
Now we define a map J = Jn+1 by

Jn+1(w(S|Nk)′) = w × det(ω(S|Nk)′) mod In.

Since the ideal In is Bn-invariant we see that the Bn-action commutes with J : for all
α ∈ Bn, b ∈ Rk

n we have Jα(b) = αJ (b). Thus the image of J is a Bn-representation space
which is isomorphic to a direct sum of the Bn-irreducible summands of R1

n. We will next
show that J is not the zero homomorphism:

Lemma 8.3. For 1 ≤ k < n we have

Jn+1(([1, 2, . . . , k]|Nk)′) =
(−1)k

uk
det(n + 1, n + 2, . . . , n|k + 1, k + 2, . . . , n).

Proof. Consider the matrix Mk = (1, 2, . . . , k, n+ 1, n + 2, . . . n + (n− k)|1, 2, . . . , n). Then

Mk =




0 a12 a13 . . . a1k a1k+1 . . . a1n

a21 0 a23 . . . a2k a2k+1 . . . a2,n

...
...

... . . .
...

... . . .
...

ak1 ak2 ak3 . . . 0 ak,k+1 . . . ak,n
an+1,1 an+12 an+13 . . . an+1k an+1,k+1 . . . an+1,n

an+21 an+22 an+23 . . . an+2,k an+2,k+1 . . . an+2,n

...
...

... . . .
...

... . . .
...

an+n−k,1 an+n−k,2 an+n−k,3 . . . an+n−k,k an+n−k,k+1 . . . an+n−k,n
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Now a12a2p = 1
ua1p for p > 2 and so adding −ua12 times the second row to the first row

produces the matrix whose first row is ( −1
u+1

, a12, 0, 0, . . . , 0). Similarly, adding −ua23 times
the third row to the second row produces the matrix whose second row is (0, −1

u+1
, a23, 0, . . . , 0).

Repeating this process k − 1 times and then adding −(u + 1)akn+1 times the k + 1th row to
the kth row produces the matrix



−1
u+1 a12 0 0 . . . 0 0 . . . 0
0 −1

u+1 a23 0 . . . 0 0 . . . 0
0 0 −1

u+1
a34 . . . 0 0 . . . 0

...
...

...
... . . .

...
... . . .

...
0 0 0 0 . . . −1

u+1
ak−1,k . . . 0

−1
u
ak1

−1
u
ak2

−1
u
ak3

−1
u
ak4 . . . −1

u
ak,k−1

−1
u

. . . 0
an+11 an+12 an+13 an+14 . . . an+1,k−1 an+1k . . . an+1n

an+21 an+22 an+23 an+24 . . . an+2,k−1 an+2k . . . an+2n

...
...

...
... . . .

...
... . . .

...
a2n−k,1 a2n−k,2 a2n−k,3 a2n−k,4 . . . a2n−k,k−1 a2n−k,k . . . a2n−k,n




One can now see that the determinant of this matrix is det(n+ 1, n+ 2, . . . , n+ n− k|k +
1, k+2, . . . , n) multiplied by the determinant of the principal k×k matrix. To find this latter
determinant, which we prove is (−1/u)k, we induct on k ≥ 1 the case k = 1 being clear (look
at the (k,k) entry, not the (1,1) entry). For k > 1 we note that by the k − 1 case the (1, 1)
entry of the adjoint matrix is (−1/u)k−1; thus expanding along the first row we get:

−1
u + 1

(−1
u

)k−1

− a12a23a34 . . . ak−1k

(−1
u
ak1

)
(−1)k−1

=
−1
u + 1

(−1
u

)k−1

− 1
uk−2

(−1
u

)
1

u(u + 1)
(−1)k

=
(−1)k

uk−1(u + 1)

(
1 +

1
u

)
=

(−1)k

uk
,

as required. �

Proposition 8.4. The image and the kernel of J are non-trivial.

Proof. That the image is non-trivial follows from Lemma 8.3. Let η = η{1,...,n,n+1} as in (4.1).

Lemma 8.5. A Gröbner basis for the ideal In relative to the ‘degree lexicographical’ order
[AL, p. 19] consists of all elements of the following forms (where 1 ≤ i, j, k ≤ n):

aijaji − 1
u(u + 1)

, for i �= j;

aijajk − 1
u
aik, if (j − i)(k − i)(k − j) > 0;

aijajk − 1
u + 1

aik if (j − i)(k − i)(k − j) < 0

aijars − η(aijars)
η(aisarj)

aisarj if i, j, r, s are distinct and i < r, j < s.
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Proof. We should here also note that we are ordering the polynomial ring generators aij in
decreasing order with a12 > a13 > · · · > a1n > a21 > a23 > · · · > an,n−1. One can now check
the the elements given satisfy the requirements for a Gröbner basis relative to the degree
lexicographical order [AL, §1.6]. (Note that this order is called ‘glex’ in [MA]). �

Now note that if S is a subsequence of {1, . . . , n} with |S| = k, then J (S|Nk) is the
determinant of a certain matrix, which determinant can be expanded along the row labeled
n + 1:

J (S|Nk)′ =
n∑
i=1

(−1)n+1+ian+1idet(S, n + 2, . . . n + n− 1|1, . . . , î, . . . , n)

and then the monomials can be reduced mod In+1, so that each monomial looks like µ =
an+1ibn+2c2bn+3c3 . . . bn+n−kcn−k

where bn+ici
either has the form an+vj(v)aj(v)e(v) or the

form an+vuk(v). In the first case we will call the j(v) the middle indices of the monomial. We
note that no two bn+ici

have the same middle indices.
We will say that such a monomial µ has end set {i, e(2), e(3), . . . , e(n − k)}. We note

that for a monomial of J (S|Nk) as in the above we must have {i, e(2), e(3), . . . , e(n− k)} =
{1, . . . , n} \ S. We can collect together all such terms and so are able to write

Jn+1((S|Nk)′) =
∑
i/∈S

an+1iµi (8.1)

where each µi is a sum of monomials all having the same end set, and each monomial of µi is
in normal form an+1ibn+2,c2bn+3,c3 . . . bn+n−k,cn−k

(as in the above) relative to the Gröbner
basis of Lemma 8.5.

It is now easy to see from Lemma 8.3 that Jn+1(([1, 2, . . . , k]|Nk)′ �= 0. We will next show
that the kernel of J is non-trivial.

Note that given any subsequence S ⊂ {1, . . . , n}, |S| = k and any end set E, |E| = n− k,
there is w ∈ R

(0)
n such that all monomials in w× det(S, n+ 1, . . . n+ n− k|1, . . . , n) have the

end set E.
Now note that if S, S′ are subsequences of {1, . . . , n} with |S| = |S′| = k, then J (S|Nk)′ �=

J (S′|Nk)′ whenever S �= S′, as they have different end sets. Since there are
(
n
k

)
of the Ss we

see that we must check for relations among the wJ (S|Nk)′ only in the set of such which have
the same end sets.

For S a subsequence of {1, . . . , n} and {1, . . . , n} \ S = {s1, . . . sn−k} let

δS = δs1,s2,...,sn−k
= det(n + 1, n + 2, . . . , n+ n− k|s1, s2, . . . , sn−k) mod In+1.

Then Lemma 8.3 shows that we have δk+1,k+2,...,n in the image of J . From the above we see
that for any end set E and any sequence S ⊂ {1, . . . , n + 1} with |S| = k there is w ∈ R

(0)
n

such that each monomial of the expanded form of wδS has the end set E.
We also see from (1.3) that

σ2
kδk+1,k+2,...,n = σkδk,k+2,...,n

= δk+1,k+2,...,n + ak,k+1δk,k+2,...,n.
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Similarly we have

σk−1σ
2
kδk+1,k+2,...,n = δk+1,k+2,...,n + ak−1,k+1δk−1,k+2,...,n,

σk−2σk−1σ
2
kδk+1,k+2,...,n = δk+1,k+2,...,n + ak−2,k+1δk−2,k+2,...,n,

etc. Thus we can get all ahk+1δh,k+2,...,n for h < k + 1. We also have

σ2
kσ

2
k+1(ahk+1δ(h,k+2,...,n)) =

u + 1
u2

ah,k+2ak,k+1δh,k,k+3,...,n

+
(u + 1)2

u2
ah,k+1δh,k+2,...,n +

u + 1
u2

ah,k+2δh,k+1,k+3,...,n;

σ4
kσ

2
k+1(ahk+1δ(h,k+2,...,n)) =

2u2 + 2u + 1
u3

ah,k+2ak,k+1δh,k,k+3,...,n

+
(u + 1)3

u3
ah,k+1δh,k+2,...,n +

u2 + u + 1
u3

ah,k+2δh,k+1,k+3,...,n,

from which we see that we can get ah,k+2ak,k+1δh,k,k+3,...,n and ah,k+2δh,k+1,k+3,...,n. Con-
tinuing in this way we get the first sentence of:

Lemma 8.6. The C(u)-span of the Bn-orbit of δk+1,...,n contains all wδS with the end set
{k+ 1, . . . , n}. The C(u)-span of the Bn-orbit of δk+1,...,n contains all wδS with any end set.

Proof. For the second sentence we let VE be the C(u)-span of all wδS with end set E. Then
this follows from the fact that for α ∈ Bn we have α(VE) = VΠn(α)(E). �

Next we note that if E = {s1, . . . , sn−k+1} with s1 < s2 < · · · < sn−k+1, then we can
evaluate det(s1, n+ 1, n+ 2, . . . , n+ n− k|s1, . . . , sn−k+1) in two ways: (i) by Lemma 8.3 we
see that it is equal to − 1

uδs2,...,sn−k+1 ; (ii) expanding along the row labeled s1 we have

det(s1, n + 1, n + 2, . . . , n + n− k|s1, . . . , sn−k+1) =
n−k+1∑
i=1

(−1)ias1si
δs1,...,ŝi,...sn−k+1

=
n−k+1∑
i=2

(−1)ias1si
δs1,...,ŝi,...sn−k+1 .

Thus we have the relation

n−k+1∑
i=2

(−1)ias1si
δs1,...,ŝi,...sn−k+1 +

1
u
δs2,...,sn−k+1 = 0, (8.2)

among the wδS . This is a relation involving terms all having the same end set, namely
{s2, . . . , sn−k+1}. However, given any end set E′ we can multiply such an expression (8.2)
by some w ∈ R∞

n so that the resulting product has end set E′. There are
(
n
k

)
end sets. This

proves Proposition 8.4. �

We now show that there are exactly
(
n−1
k

)
of the wδS with |S| = k and all having the

same end set E. We may clearly take E = {k + 1, . . . , n} and we count them according to
the degree of w (where we always take w reduced as in the above). For deg(w) = 0, there
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is just one possibility. If deg(w) = 1, then w = an+z,i, where z = 2, . . . n − k, 1 ≤ i ≤ k

and there are
(
n−k−1

1

) × (k1) possibilities. If deg(w) = 2, then w = an+z1,ian+z2,j , where
z1, z2 = 2, . . . n − k, z1 �= z2, 1 ≤ i �= j ≤ k and there are

(
n−k−1

2

) × (k
2

)
possibilities (by

Lemma 8.5 or Lemma 4.6). Continuing in this way we see that the total number is

k∑
i=0

(
n− k − 1

i

)
×
(
k

i

)
=
(
n− 1
k

)
,

as required. It follows from Lemma 8.5 that these are all linearly independent over C(u).
Thus the image of Jn+1 has dimension

(
n
k

)(
n−1
k

)
, proving the first part of Theorem 1.7.

We now show that this image is an irreducible representation. We have the following
actions:

σi(an+z,i) =
u + 1
u

an+z,i+1, σi(an+z,i+1) = an+z,i,

σi(an+z,j) = an+z,j for j �= i, i + 1,

σi(δs1,...,sm
) = δs1,...,sm

if {s1, . . . , sm} ∩ {i, i + 1} = ∅,
σi(δs1,...,sm

) = −δs1,...,sm
if {s1, . . . , sm} ∩ {i, i + 1} = {i, i + 1},

σi(δs1,...,sj=i,...,sm
) = δs1,...,i+1,...,sm

+ ai+1,iδs1,...,i,...,sm
,

σi(δs1,...,sj=i+1,...,sm
) = δs1,...,i,...,sm

. (8.3)

Recall that a generator wδS is completely determined by its end set together with w (always
chosen in normal form). Choose b �= 0, an element in an irreducible subrepresentation of
C(u) < wδS >. We will show that the C(u)-span of the Bn-orbit of b contains some wδS ;
this will show irreducibility of C(u) < wδS >. Then by (8.3) we can assume that (some
image of) b has a non-trivial monomial of the form wδ1,2,...,m; and then that the span of
b, σ2

m(b), σ4
m(b), . . . contains a single monomial. This proves the irreducibility. �

Conjecture 8.7. We conjecture that the kernel of J (having dimension
(
n
k

)(
n−1
k−1

)
) is also irre-

ducible.

§9 Plücker relations

Here we prove Theorem 1.8. We first describe the Plücker relations. These give the relations
between the minors of generic matrices:

Lemma 9.1. [BH Lemma 7.2.3] For every m × n matrix X, m ≤ n, with entries in a
commutative ring A and all indices

a1, . . . , ap, bq, . . . , bm, c1, . . . , cs ∈ {1, 2, . . . , n}
such that s = m− p + q − 1 > m and t = m− p > 0, we have

∑
i1<···<it
it+1<···<is

{i1,...,is}={1,...,s}

σ(i1, . . . , is)[a1, . . . , ap, ci1 , . . . , cit ][cit+1 , . . . , cis , bq, . . . , bm] = 0.

Here if {1, . . . , s} = {i1, . . . , is}, then σ(i1, . . . , is) is the sign of the permutation determined
by (i1, . . . , is) and [x1, . . . , xm] is the minor of X using columns indexed by x1, . . . , xm.
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Example 9.2. The simplest non-trivial Plücker relation is the following ‘Pfaffian’:

[1, 2][3, 4]− [1, 3][2, 4] + [1, 4][2, 3] = 0.

Now given any set U of Plücker relations we can look at the corresponding elements of
(Rn/In)[(S|N)′|S ⊂ {1, . . . , n}, |S| = k]. These are obtained by replacing each [S] in the
Plücker relation by (S|N)′. For example for n = 4, S = [1, 2], N = [5, 6] and [1, 2][3, 4] −
[1, 3][2, 4] + [1, 4][2, 3] ∈ U (as in 9.2) then the element of R2

4 would be

(1, 2|5, 6)′(3, 4|5, 6)′ − (1, 3|5, 6)′(2, 4|5, 6)′ + (1, 4|5, 6)′(2, 3|5, 6)′.

The orbit of such elements under the action of Bn would then generate a Bn-invariant C(u)-
submodule < Bn(U) >⊂ R2

n.

Lemma 9.3. If U is finite, then < Bn(U) > is a finitely-generated free C(u)-module.

Proof. We need only consider the case where U = {a} has a single element. But now each
monomial in a has the same form and there are only a finite number of monomials of the
same form as the monomials in a. The result follows. �

If π is a Plücker relation, then the corresponding ring element will be denotes by (π|N)′.
In the next result we will give the action of Bn on these Plücker relations.

Lemma 9.4. Let S, T ⊂ {1, 2, . . . , n} with |S| = |T | = k and let N = Nk. Let π be the
Plücker relation determined by (S|N)′(T |N)′ and let 1 ≤ r < n. Then

σr(π|N)′ = −(π|N)′ if r, r + 1 ∈ S ∪ T ;

σr(π|N)′ = tr(π|N)′ − ar+1r(π|N)′ if r ∈ S ∪ T, r + 1 /∈ S ∪ T ;

σr(π|N)′ = tr(π|N)′ if r /∈ S ∪ T, r + 1 ∈ S ∪ T ;

σr(π|N)′ = (π|N)′ if r, r + 1 /∈ S ∪ T.

Here tr ∈ Sn is the transposition.

Proof. We consider the action of the generators σr on the monomial summands of (π|N). Let
(S|N)(T |N) represent one of these monomial summands. First from (1.3) we note that

σr(S|N)′ = (S|N)′ if r, r + 1 /∈ S;

σr(S|N)′ = −(S|N)′ if r, r + 1 ∈ S;

σr(S|N)′ = (trS|N)′ − ar+1r(S|N)′ if r ∈ S, r + 1 /∈ S;

σr(S|N)′ = (trS|N)′ if r + 1 ∈ S, r /∈ S. (9.1)

Now consider the situation where r, r+ 1 ∈ S ∪ T . Then there are four cases: (i) r, r+ 1 ∈ S;
(ii) r, r + 1 ∈ T ; (iii) r ∈ S, r + 1 ∈ T ; (iv) r ∈ T, r + 1 ∈ S.

For (i) (9.1) shows that σ(S|N)′ = −(S|N)′, σ(T |N)′ = −(T |N)′ and so the result follows.
(ii) is similar.

For (iii) (9.1) gives

σr(S|N)′ = (trS|N); σr(T |N)′ = (trT |N)′ − ar+1r(T |N)′.
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Now let U = trS, V = trT . Then the monomial summand (U |N)′(V |N)′ also occurs in
(π|N)′, only with sign opposite to the sign of (S|N)′(T |N)′. Now we note that

σr(U |N)′ = (trU |N)′ and σr(V |N)′ = (trV |N)′ − ar+1r(V |N)′

form which it follows that

σr((S|N)′(T |N)′ − (U |N)′(V |N)′) = −((S|N)′(T |N)′ − (U |N)′(V |N)′).

Thus σr(π|N)′ = −(π|N)′ as required. Case (iv) is similar (interchange S, T with U, V ) and
so this proves the first statement in Lemma 9.4. The rest is similar. �

Proposition 9.5. Let n = 2m + 1 > 3 be odd. Then there is an n-dimensional proper
subrepresentation of the the Plücker representation which is Bn-invariant. This representation
is irreducible and monomial.

Proof. For i ≤ m let πi be the Plücker generator corresponding to (Si|N)(Ti|N) where Si ∩
Ti = ∅, Si∪Ti = {1, 2, . . . , n} \ {i}, |Si| = |Ti| = m. Thus, for example, when n = 5, we would
have π5 = (1, 2|5, 6)′(3, 4|5, 6)′− (1, 3|5, 6)′(2, 4|5, 6)′ + (1, 4|5, 6)′(2, 3|5, 6)′. Now for i ≤ n we
let

v1 =
1
u
π1 − 1 + u

u
a21π2 +

1 + u

u
a31π3 − . . .

...

vi = a1iπ1 − a2iπ2 + · · · + (−1)i+1 1
u
πi − (−1)i+1 1 + u

u
ai+1iπi+1 + . . .

...

vn = a1nπ1 − a2nπ2 + · · · + (−1)nan−1nπn−1 − (−1)n
1
u
πn.

Now using Lemma 9.4 one can now check the following actions:

σi(vi) = −1 + u

u
vi+1; σi(vi+1) = −vi; and

σi(vj) = −vj for all j �= i, i + 1.

It is now clear that we have a representation and that the representation is monomial relative
to the basis v1, v2, . . . , vn. The irreducibility is proved in the same way that the matrices in
(7.3) were proved to generate an irreducible representation. �

§10. Algebras with straightening law

Let R be a commutative ring, let A be an R-algebra and Π ⊂ A a finite subset with a
partial order ≤. Then A is a graded algebra with straightening law (on Π, over R) (shortened
to ASL most of the time) if we have:

(1) A =
⊕

i≥0 Ai is a graded R-algebra such that A0 = R, the poset Π consists of
homogeneous elements of positive degree which generate A as an R-algebra.
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(2) The products ψ1 . . . ψm, m ∈ N , ψi ∈ Π, such that ψ1 ≤ ψ2 ≤ · · · ≤ ψm are linearly
independent. They are called the standard monomials.

(3) For all incomparable ψ, ν ∈ Π the product ψν has a representation

ψν =
∑

aµµ, aµ ∈ R, µ a standard monomial

where the µ’s occuring in the above sum with non-zero coefficients each contain a
factor ζ ∈ Π such that ζ ≤ ψ, ζ ≤ ν.

The standard monomials form a basis for A as an R-module. For a proof of this fact and
general information about ASL’s see [BV]. ASL’s are called ordinal Hodge algebras in [DEP2].

In this section we will point out various situations where Rn is an ASL.

Lemma 10.1. Let n = 3 and (S|T ) = (1, 2|4, 5). Putting (i, j) = (i, j|4, 5) then

b1 = (2, 3), b2 = (1, 3), b3 = (1, 2), b12 = a12(2, 3), b13 = a13(2, 3),

b21 = a21(1, 3), b23 = a23(1, 3), b31 = a31(1, 2), b32 = a32(1, 2)

are a basis for R1
3(S|T ). Further Rn(S|T ) is an ASL with partial order as follows:

b
12

b
23

b
21

b
31

b
32

b
13

b
1

b
2

b
3

Proof. Standard monomials will be products of the bi, bij where we do not have bij and bjk
in such a product. Note that for distinct 1 ≤ i, j, k ≤ 3 we see that bijbjk ∈ bikbjC(u) and
that bijbji ∈ bibjC(u). This shows that every monomial in the bi, bjk is a C(u)-multiple of a
standard monomial. We have also thus shown that incompatible products satisfy (3) of the
above definition. The rest is easy. �

§11 The R
(0)
n /In Representations

In this section we look at the situation where Bn acts on R
(0)
n /In.

We need to recall the standard generators for Pn [Bi p. 20]: For 1 ≤ i < j ≤ n we let

Aij = σj−1σj−2 . . . σi+1σ
2
i σ

−1
i+1 . . . σ

−1
j−2σ

−1
j−1.

The action of the generators of Bn and Pn on R
(0)
n /In is given in
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Lemma 11.1. (i) For all 1 ≤ i < n we have

σi(ai i+1) = ai+1 i, σi(ai+1 i) = ai i+1, σi(ah i+1) = ah i,

σi(ah i) =
u + 1
u

ah i+1, σi(ai+1 j) = ai j ,

σi(ai j) =
u

u + 1
ai+1 j , σi(ah j) = ah j ,

where h, j �= i, i + 1.
(ii) For all 1 ≤ i < j ≤ n we have

Aij(aij) = aij, Aij(aji) = aji, Aij(aih) =
u

u + 1
aih, Aij(ajh) =

u

u + 1
ajh,

Aij(ahi) =
u + 1
u

ahi, Aij(ahj) =
u + 1
u

ahj, Aij(ars) = ars,

for all r, s, h �= i, j.
(iii) Let 1 ≤ k < n. Then

(σ1σ2 . . . σk)k+1(aij) =
uk

(u + 1)k
aij , (σ1σ2 . . . σk)k+1(aji) =

(u + 1)k

uk
aji

for all 1 ≤ i ≤ k, j > k.

Proof. (i) follows immediately from (1.2) and the definition of In. (ii) follows from (i) by
induction on j − i ≥ 1. For (iii) we use (ii) and the formula

(σ1σ2 . . . σk)k+1 = A12 × A13A23 × · · · ×A1 k+1A2 k+1 . . .Ak k+1

found in [Bi, p.28] as follows. We note that for fixed 1 ≤ i < j ≤ n there are exactly k + 1
occurrences of the generators Ars in this product where {r, s}∩ {i, j} �= ∅, one of these being
Aij . The action of each such Ars on aij is given in (ii), with the action of Aij being trivial,
and so we get the factor of uk

(u+1)k or its reciprocal. �

Now given any monomial µ ∈ R
(0)
n we let

I(µ) = {i|aij divides µ for some j ≤ n}, J(µ) = {i|aji divides µ for some j ≤ n}.

For I, J ⊆ {1, 2, . . . , n} we will say that µ has type IJ if I(µ) = I and J(µ) = J . For any
b ∈ R

(0)
n we may write

b =
∑

I,J⊆{1,2,...,n}
µIJ

where µIJ is a sum of C(u)-multiples of monomials of type IJ . Further, given such a monomial
µ ∈ Rn there are c ∈ C(u) and µ′ ∈ Rn such that µ ≡ cµ′ mod In and where µ′ has type
IJ with I ∩ J = ∅; for if j ∈ I ∩ J , then there are aij and ajk both dividing µ and we can
replace the product aijajk in µ by a C(u)-multiple of aik, thus reducing the degree of the
monomial. In this section we will always assume that all monomials in R

(0)
n /I({1, 2, . . . , n})

are so represented.
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Further, to any such monomial µ ∈ R
(0)
n /I({1, 2, . . . , n}) (or any non-trivial C(u)-multiple

of µ) we may associate the directed, weighted graph Γ(µ) whose vertices are the numbers
1, 2, . . . , n and where we have an edge from i to j of weight k if akij divides µ (but ak+1

ij doesn’t).
We note that by Lemma 11.1 for α ∈ Bn the graphs Γ(µ) and Γ(α(µ)) are isomorphic as
directed, weighted graphs; in fact we have Γ(α(µ)) = Πn(α)Γ(µ) where Sn acts on the graphs
Γ(µ) in the obvious way.

It is easily seen from Lemma 11.1 that the Bn-orbit of a monomial µ consists of C(u)-
multiples of monomials µ′ such that Γ(µ) ∼= Γ(µ′) and that, conversely, if µ, µ′ are monomials
with Γ(µ) ∼= Γ(µ′), then there is α ∈ Bn and c ∈ C(u) with α(µ) = cµ′. Thus the C(u)-
module generated by all µ′ with Γ(µ) ∼= Γ(µ′) is Bn-invariant. We denote it by C(u)(Bn(µ)).
Elementary group theory shows that

dimC(u)(C(u)(Bn(µ))) =
n!

|Sym(Γ(µ))|

where Sym(Γ(µ)) ⊆ Sn is the group of all symmetries of the directed, labeled graph Γ(µ).
Now the action of Bn on R

(0)
n /In thus splits as a sum of irreducible summands of these

C(u)(Bn(µ)), which we now investigate.
Note that Γ(µ) is a bipartite graph with vertices being either sources or sinks (if aij

divides µ, then the vertex i is a source and j is a sink). Now to each vertex i of Γ(µ) we
associate its signed degree (the sum of the weights of the adjacent edges) which we denote
by di(µ) = di(Γ(µ)). Here we let di(µ) be positive if the vertex i is a source, and negative
otherwise. Note then that by Lemma 11.1 (ii) we have

Aw
ij(µ) =

(
u

u + 1

)w(di(µ)+dj (µ))

µ (11.1)

for all 1 ≤ i < j ≤ n and w ∈ Z.
For a monomial µ ∈ Rn/I({1, 2, . . . , n}) we let

Win(µ) =
∑

i∈J(µ)

di(µ), Wout(µ) =
∑
i∈I(µ)

di(µ),

so that Win(µ) ≤ 0 and Wout(µ) ≥ 0.

Lemma 11.2. Let 0 �= b ∈ Rn/I({1, 2, . . . , n}). Then there is k ≥ 1 such that in the
C(u)-span of the Bn-orbit of b there is some b′ which is a sum of monomials all of type
{1, 2, . . . , k}, {k + 1, . . . , n} and all having the same Win and Wout values.

Proof. Choose a monomial µ in b such that (i) Wout(µ) is maximal among all monomials
of b; and (ii) among all monomials µ satisfying (i) we choose a µ with |J(µ)| smallest. For
such a µ let k = |J(µ)|. Let I = I(µ), J = J(µ). Now the fact that Bn surjects onto the
symmetric group Sn, together with Lemma 11.1 shows that there is α ∈ Bn such that α(µ)
is a C(u)-multiple of a monomial µ′ of type {1, 2, . . . , k}, {k + 1, . . . , t} for some t ≤ n.

Now write b′ = α(b) =
∑

bI,J,r,s, where bI,J,r,s is the sum of all cµ′, c ∈ C(u), such that
I(µ′) = I, J(µ′) = J,Wout(µ′) = r,Win(µ′) = s. Let β = (σ1σ2 . . . σk)(k+1)w and consider
the action of β. Lemma 11.1 (iii) shows that bI,J,r,s gets multiplied by ukw

(u+1)kw while every
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other µI′,J ′,r′,s′ is multiplied by a strictly smaller power of uk

(u+1)k . Thus bI,J,r,s is in the
C(u)-span of the Bn-orbit of b. �

Now suppose that b is a C(u)-sum of monomials all of type {1, 2, . . . , k}, {k + 1, . . . , n}:
b =

∑r
m=1 cmµm where cm �= 0, m = 1, . . . , r. We will call r = r(b) the length of b. Suppose

that 1 ≤ i �= j ≤ n and that di(µs)+dj(µs) �= di(µt)+dj(µt) for some s �= t ≤ r. Then (11.1)
above shows that the C(u)-linear span of the elements Aw

ij(b) contains a non-zero element b′

with r(b′) < r(b). We thus have the first part of

Lemma 11.3. For 0 �= b ∈ R
(0)
n /In and k as in Lemma 11.2 we see that there is b′ ∈

C(u)(Bn(b)) such that if b′ =
∑r

m=1 cmµm, where 0 �= cm ∈ C(u), then

di(µs) + dj(µs) = di(µt) + dj(µt),

for all s �= t ≤ r and for all 1 ≤ i �= j ≤ n. In particular, the µm satisfy I(µs) = I(µt) and
J(µs) = J(µt) for all 1 ≤ s, t ≤ r.

Further, we may suppose that for all α ∈ Pn we have α(b′) ∈ C(u)b′.
Lastly, if di(µs) = dj(µs), then di(µt) = dj(µt) for all t.

Proof. We only need to prove the statement in the last paragraph. Since n ≥ 3 we can choose
k �= i, j and from the above we obtain

di(µs) + dk(µs) = di(µt) + dk(µt) and

dj(µs) + dk(µs) = dj(µt) + dk(µt).

Thus if di(µs) = dj(µs), then di(µt) = dj(µt) as required. �

Now Sn clearly acts on the algebra R
(0)
n and so on monomials µ ∈ R

(0)
n and on the graphs

Γ(µ). Given any monomial µ we let

Aut(µ) = {α ∈ Sn|α(µ) = µ}, DAut(µ) = {α ∈ Sn|dα(i)(µ) = di(µ), for all i = 1, . . . , n}.

Note that if 0 �= b ∈ R
(0)
n /In, then Lemma 11.3 shows that there is 0 �= b′ ∈ C(u)(Bn(b))

with b′ =
∑r

m=1 cmµm where I(µm) = {1, 2, . . . , k} for every m and J(µs) = J(µt) for all
s, t. We also have: if di(µs) = dj(µs), then di(µt) = dj(µt) for all t. It follows that for
1 ≤ i ≤ r there is α ∈ DAut(µ1) with α(µ1) = µi. In particular we see that if r > 1, then
DAut(µ1) �= Aut(µ1).

We now notice that if C(u)(Bn(b)), b =
∑r

m=1 cmµm, is to give an irreducible representation
of Bn, then all the monomials µm with cm �= 0 are isomorphic under the action of Sn
in the sense that there is some α ∈ Sn with α(µ) = µ′. For otherwise we could write
b = b1 + b2 + · · ·+ by, y > 1, where each of the bi is a C(u)-sum of isomorphic monomials, and
this would give a splitting of C(u)(Bn(b)). We have:

Lemma 11.4. Let b =
∑r

m=1 cmµm, cm �= 0. If C(u)(Bn(b)) is an irreducible representation
of Bn, then all the µm are isomophic monomials. �
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Proposition 11.5. Let W be an irreducible subrepresentation of R(0)
n /In. Then W is con-

tained in C(u)(Bn(µ)) for some monomial µ ∈ Rn.
Let µ ∈ R

(0)
n /In be a monomial. Suppose that DAut(µ) = Aut(µ). Then C(u)(Bn(µ)) is

an irreducible, monomial representation of Bn of degree n!/|Aut(µ)|.
Proof. The first statement follows directly from Lemma 11.4.

We note that for any monomial µ the representation C(u)(Bn(µ)) is a monomial repre-
sentation (see (11.1)). Now suppose that there is a subrepresentation W of C(u)(Bn(µ)) and
that 0 �= b ∈ W, b =

∑r
m=1 cmµm, where cm �= 0. Then by Lemma 11.3 and Lemma 11.4 we

may assume that I(µi) = I(µj) and J(µi) = J(µj) for all i, j, and that if for some i, j, s we
have di(µs) = dj(µs), then di(µt) = dj(µt) for all t. Now if r > 1, then there would be an
element of DAut(µ) \Aut(µ), a contradiction. The rest is standard. �

Now for a monomial µ and d ≥ 1 we let Id(µ) be the set of vertices of Γ(µ) having degree
d; similarly for Jd(µ). Now note that

DAut(µ) =
∑
d

Sym(Id(µ)) ×
∑
d

Sym(Jd(µ)).

Let N ⊂ N be finite. We recall the basis facts about representations of symmetric groups
Sym(N) [FH]. Given any tableau T with entries from N we let

P = PT = {g ∈ Sr|g preserves each row of T},
Q = QT = {g ∈ Sr|g preserves each column of T};

aT =
∑
g∈P

g and bT =
∑
g∈Q

sgn(g)g.

The Young symmetriser is cT = aT bT ∈ C Sym(N), the fundamental fact being that a complex
multiple of cT is an idempotent. Further cT C Sym(N) is an irreducible representation of
Sym(N), where different tableau corresponding to the same Young diagram give isomorphic
representations.

Let µ be a monomial such that each of Id(µ), Jd(µ) is an interval of distinct positive
integers. Let X(µ) be the space generated by all µ′ such that Id(µ′) = Id(µ), Jd(µ′) =
Jd(µ), d = 1, 2, . . . . Then X(µ) is an Sn-module. Further, if α ∈ Pn and x ∈ X(µ), then
(11.1) shows that α(x) = c(α)x for some c(α) ∈ C(u). Thus the representation of Pn on
X(µ) is 1-dimensional, and so any representation induced from it is monomial [S]. Define the
following subgroup of Bn:

Bn(µ) =< σi|there is d ≥ 1 with i, i + 1 ∈ Id(µ) or i, i + 1 ∈ Jd(µ) > .

By (11.1) we see that X(µ) is invariant under the action of Pn. Further, by Lemma 11.1 we
see that X(µ) is invariant under the action of Bn(µ). Thus X(µ) is invariant under the action
of B̄n(µ) =< Bn(µ), Pn >. But the index of B̄n(µ) in Bn is clearly finite and so we get an
induced action IndBn

B̄n(µ)
[S]. Now note that if Y is an Sn-invariant subspace of X(µ) with

matrices M(α), α ∈ Sn, then Y is also a B̄n(µ)-invariant subspace of W (see Lemma 11.1)
and the matrices for the elements α′ ∈ B̄n(µ) have the form M(πn(α′))D(α′) where D(α′)
is a diagonal matrix. Thus if Y is irreducible as an Sn-module, then Y is irreducible as a
B̄n(µ)-module.
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Now given any irreducible Bn-invariant subspace W of V = C(u)(Bn(µ)) Lemmas 11.3
and 11.4 show that there is b′ =

∑
m cmµm ∈ W where all the µm are isomorphic and where

I(µm) = I(µm′), J(µm) = J(µm′) for all m,m′. We may also assume that each of Id(µ), Jd(µ)
is an interval of positive integers. Note that the Id(µ), Jd(µ) determine a partition of n. Thus
X(µ1)∩W �= {0} and so the action of Bn on W is induced by a non-trivial action of B̄n(µ1).
Putting this all together gives:

Proposition 11.6. Let µ ∈ R
(0)
n /In be a monomial. Then X(µ) is a Πn(B̄n(µ))-module and

let X(µ) = ⊕iXi be a decomposition into irreducibles as a Πn(B̄n(µ))-module. Then, there
is a corresponding decomposition of the action of Bn on V (µ) = C(u)(Bn(µ)), as V = ⊕iVi
where Vi = IndBn

B̄n(µ)
. �

Example 11.7. One situation that has received a lot of attention is that, in our context,
where Aut(µ) = {id}, so that Sλ = Πn(B̄n(µ)) = Sn1 × Sn2 × · · · × Snr

. Recalling that the
irreducible representations of Sn correspond to Young diagrams, we see that the multiplicities
of the irreducible components (corresponding to a Young diagram κ) of the induced represen-
tations IndSn

Sλ
are given by the Kostka numbers Kλκ. Here Kλκ is defined to be the coefficient

of the monomial Xλ = xλ1
1 xλ2

2 . . . xλr
r in the Schur polynomial Sκ [FH, p. 56]. Explicit bases

for these irreducible subspaces are given in [E].
The situation where Aut(µ) �= {id} is more complicated.

§12 Rigidity

It is well-known that there is an epimorphism ψn : Pn → Pn−1 obtained by “pulling out
the nth string” [Bi, p. 23]. Composing ψn, ψn−1, . . . , ψ4 we see that there is an epimorphism
φn : Pn → P3. Now using the presentation for P3 given in [Bi, p. 20] or [Ha] with generators

Aij = σiσi+1 . . . σj−1σ
2
jσ

−1
j−1 . . . σ

−1
i+1σ

−1
i

for 1 ≤ i < j ≤ n we see that

P3 =< A12, A13, A23 >=< A12, A23 > × < A23A13A12 >∼= F2 × Z.

Here z3 = A23A13A12 generates the centre of B3 [Bi, p.28]. This allows the construction
of an epimorphism τn : Pn → F2 for each n ≥ 3. Now F2 has infinitely many irreducible
representations in dimension 2; for example we could just choose the degree 2 irreducible
representations of the dihedral groups Dm =< r, s|rm, s2, (rs)2 > of order 2m. These are
described in [S]. For simplicity let us only consider the case where m = 2k is even. Let
w = e2πi/m and h ∈ Z. Then a representation ρh of Dm is defined by

ρh(rk) =
(
whk 0

0 w−hk

)
, ρh(srk) =

(
0 w−hk

whk 0

)
.

Then for 0 < h < m/2 the representation ρh is irreducible and these account for all such
degree 2 irreducible representations of Dm [S]. Let Wmh be the corresponding representation
space.

Now the induced representation IndBn

Pn
Wmh has degree 2 × n! and if the irreducibles so

obtained (for varying m and h) were finite in number, then only a finite number of primes
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would show up in the orders of the matrix groups IndBn

Pn
Wmh so induced. But m is arbitrary

and the order of IndBn

Pn
Wmh is clearly divisible by m. Thus we must have infinitely many

distinct representations of Bn, all of degree at most 2×n!. This proves the Bn case of Theorem
1.9.

Now for the B′
n case we note that Gorin and Lin [GL] show that B′

n is finitely generated
and is perfect for n > 4. We have Bn/B

′
n
∼= Z and so B′

n consists of those braids having zero
exponent sum in the standard generators σi. Also [B′

n : B′
n∩Pn] = n!/2. Using the above we

have maps
B′
n ∩ Pn ↪→ Pn → F2 × Z→ F2.

Call this composite ζn. The generator of this central Z in F2×Z is z3 = A23A13A12 which has
exponent 6 in the standard generators. Thus any word w ∈ F2 =< A12, A23 > of exponent
a multiple of 6 is in the image of ζn. The set of such words is a subgroup of F2 of finite
index and so the image of ζn is a finitely generated free group [MKS]. This now allows the
construction of an epimorphism B′

n∩Pn → F2 and an argument similar to that used to prove
that Bn is not rigid now proves the B′

n case of Theorem 1.9. �

We now explain the relationship between B4 and Aut(F2) described in [DFG] that will
allow us to prove Theorem 1.10. Recall Artin’s embedding of Bn in Aut(Fn). The fact that
each α ∈ Bn ⊂ Aut(Fn) fixes T1 . . . Tn implies that there is a representation Bn → B∗

n <
Aut(Fn−1). The kernel of this representation is the centre Z(Bn) ∼= Z [DFG]. The connection
between B4 and Aut(F2) is now expressed as: B∗

4(∼= B4/Z(B4)) is isomorphic to a subgroup
Aut+(F2) of Aut(F2) of index 2. In [DFG] they use this result to show that B4 has a faithful
representation over C if and only if Aut(F2) does. To prove Theorem 1.10 it will thus suffice
to show that B4/Z(B4) is not rigid.

Now there is an epimorphism β : B4 → B3 given by its action on the generators σi:

β(σ1) = σ1, β(σ2) = σ2, β(σ3) = σ1.

We obtain by composition an epimorphism

P4 → P3 =< A12, A13 > × < A23A13A12 >→< A12, A13 >∼= F2.

Call this α : P4 → F2 and note that α(A23A13A12) = id. Now the cyclic generator of
Z(B4) = Z(P4) is z4 = (σ1σ2σ3)4 = A34A24A23A14A13A12 [Bi, p. 28] and so the above
gives

β(z4) = β((σ1σ2σ3)4) = (σ1σ2σ1)4 = (z3)2.

Thus α(z4) = id, showing that α induces an epimorphism α : P4/Z(P4) → F2. Since
[B∗

4 : P4/Z(P4)] = 24 we can now construct infinitely many distinct irreducible degree 2
representations of B∗

4 = B4/ < z4 > as in the Bn case. This proves Theorem 1.10. �

Remarks 12.1. 1. The group H(n) of symmetric automorphisms of the free group Fn is
the subgroup of automorphisms α such that α(xi) is a conjugate of xj , where i  → j is a
permutation of {1, . . . , n}. A set of relations for H(n) is given by McCool [Mc]. Let PH(n)
be those corresponding to the identity permutation. Then PH(n) is a subgroup of index n!
in H(n) and there are epimorphisms PH(n) → PH(n− 1). From the presentation given by
McCool one can see that H(3) is an extension of F3 by F3 and one easily uses ideas similiar
to those used in the above to show that PH(n) and H(n) are not rigid for n ≥ 3.
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2. In each of Theorem 1.9, 1.10 we obtained our infinite set of irreducible representations
in some fixed degree by using the epimorphisms F2 → Dm. This meant that the degrees
were necessarily bounded by a function of n. However we could also use epimorphisms F2 →
SLr(Fp) for any r ≥ 3 and prime p, since SLr(Fp) is a 2-generator group. Using these
representations the above methods show that there are an infinite number of degrees d such
that Bn, B

′
n and Aut(F2) have an infinite number of irreducible representations of degree d.

Acknowledgement. All the calculations in writing this paper were made using MAGMA [MA].
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