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Abstract. We prove the following result and show a connection with geometric
intersection-number functions of curves on punctured discs and algebraic intersection
functions for curves on surfaces:

Let R be an associative ring with identity and �x r 2 Z(R), where Z(R) is the
centre of R. De�ne polynomials pn = pn(r) recursively by p0 = �2; p1 = r; pn =
�(rpn�1 + pn�2). Let � : R ! R be a ring homomorphism and assume that
�(r) = r. De�ne operators An = An(�; r); n � 0; by A0 = ��1 and for n > 0; we let
An = �2 + pn� + 1. De�ne operators Bn = Bn(�; r); n � 0 by Bn = A0A1 : : :An.

Suppose that u; v 2 R and that Bn(u) = Bm(v) = 0 for n;m � 0. Then
Bn+m(uv) = 0.

x1. Introduction.

In this paper we prove the following result and indicate connections with Cheby-
shev polynomials, symmetric polynomials, Dickson polynomials, the theory of geo-
metric intersection-number functions on punctured discs and algebraic intersection
functions for curves on surfaces. This result thus gives a common method for de�n-
ing both geometric and algebraic intersection numbers.

Theorem 1.1. Let R be an associative ring with identity and �x r 2 Z(R), where
Z(R) is the centre of R. De�ne polynomials pn = pn(r) recursively by

p0 = �2; p1 = r; pn = �(rpn�1 + pn�2):

Let � : R! R be a ring homomorphism and assume that �(r) = r. De�ne operators
An = An(�; r); n � 0; by A0 = �� 1 and for n > 0; we let An = �2+ pn�+1. Now
de�ne operators Bn = Bn(�; r); n � 0, by Bn = A0A1 : : :An.

Suppose that u; v 2 R and that Bn(u) = Bm(v) = 0 for n;m � 0. Then
Bn+m(uv) = 0.

The polynomials pn are polynomials in the variable p1 = r that are related to
Chebyshev polynomials T (n) and Dickson polynomials. Recall that the Chebyshev
polynomials are de�ned by T0(x) = 1; T1(x) = x and Tn(x) = 2xTn�1(x)�Tn�2(x)
for n � 2 [Ri, p. 35]. Then comparing the recurrence for pn(x) with this recurrence
we see that

pn(x) = (�1)n+12Tn(x=2): (1.1)

These polynomials are also related to the Dickson polynomials Dn(x; a) [LMT]
by pn(x) = (�1)n+1Dn(x; 1).

One of the results that we use to prove Theorem 1.1 is
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Theorem 1.2. Let n � m � 0. Suppose that �n; �m are roots of the polynomials
determined by An and Am, respectively, so that �2n+pn�n+1 = 0 and �2m+pm�m+
1 = 0. Then �n�m is a root of either An+m or An�m.

Let Dn denote the disc with n punctures �1; : : : ; �n. Let a1; : : : ; an�1 be a set
of arcs in Dn having disjoint interiors and such that ai joins the punctures �i
and �i+1. See Figure 1 in x5. Let C1 = C1n denote the set of isotopy classes of
positively-oriented simple closed curves on Dn.

Then the braid group Bn acts as (isotopy classes of) di�eomorphisms of Dn [Bi,
Ch.1]. The group Bn has standard generators �1; : : : ; �n�1 and presentation

�i�i+1�i = �i+1�i�i+1; for i = 1; : : : ; n� 2

�i�j = �j�i; for ji� jj > 1:

Here the generator �i acts as a half-twist on Dn and has a representative dif-
feomorphism which is supported in a tubular neighbourhood of the arc ai. For
1 � i < j � n let ij be a simple closed curve isotopic to the boundary of a tubular
neighbourhood of ai[ai+1[� � �[aj�1. Given any c; d 2 C1 we let �(c; d) denote the
geometric intersection-number of c and d. This is the minimum number of points
of c0 \ d0, where c0 and d0 are any simple closed curves isotopic to c and d. Note
that �(c; d) is always even since Dn is planar.

Note that in the context of Theorem 1.1, if m > n � 0 and Bn(u) = 0, then
Bm(u) = 0. The �rst part of the following result comes from [H1]:

Theorem 1.3. For n � 2 and a commutative ring R let

Rn = R[a12; a13; : : : ; a1n; a21; a23; : : : ; a2n; : : : ; an1; : : : ; ann�1]

be the polynomial ring in commuting indeterminates aij ; 1 � i 6= j � n. Then there
is an action of Bn on Rn whose kernel is the centre of Bn.

Let r = a12a21 + 2 2 Rn and let � = �1 2 Aut(Rn). Then �1(r) = r. Further,
there is a function � : C1 ! Rn such that for all c 2 C1 there is N = N(c) � 0
such that Bn(�; r)(�(c)) = 0. Let 
(c) be the minimal such N(c). Then we have


(c) = �(c; 12)=2:

This result thus gives a method for calculating geometric intersection-number
functions that can be compared to existing such algorithms of Reinhart [R], Zi-
eschang [Z1, Z2], Chillingworth [C1, C2], Birman and Series [BS], Cohen and Lustig
[CL] and Tan [T].

The representation of Bn in Aut(Rn) will be described later, but should be
thought of in the following way. Let Fn =< x1; : : : ; xn > denote the free group
of rank n, which we identify with the fundamental group of Dn. The Magnus
expansionM of Fn [Ma,MKS] is de�ned as follows: Let Pn be the algebra of formal
power series in non-commutative variables X1; : : : ; Xn over C . Then M is the
homomorphism M : Fn ! P given by

M(xi) = 1 +Xi; M(x�1i ) = 1�Xi +X2
i �X3

i + : : : :

Then M is injective, has connections with Fox's free di�erential calculus and is
used to de�ne interesting representations of the braid groups [Bi]. We obtain our
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representation of Bn in Aut(Fn) by looking at the situation where in Pn we have
the relations X2

i = 0 for all i = 1; : : : ; n. This is accomplished very concretely by
representing the free group Fn using transvections. This is all explained in more
detail in x5. A quotient of this algebra was used by Milnor [Mi1,Mi2] to study links.

We prove Theorem 1.1 in x4 after some preliminaries in x2 and x3 (where we
prove Theorem 1.2). In x5 we explain the connection between our polynomials pn
and interscetion-number functions for curves on planar surfaces and in x6 we give
a normal form for words representing simple closed curves on such surfaces. In x7
we study the combinatorial properties of a certain `trace' of such words. In x8 we
prove Theorem 1.3 and in x9 we show that in the context of x2 and x3 there is
an associated in�nite monotone family of commuting projections [AG, x33] which
gives rise to an in�nite family of orthogonal idempotents (Theorem 9.3). In x10 we
indicate how Theorem 1.1 applies to algebraic intersection functions for curves on
surfaces.

x2. Basic Results.

We note from the above de�nition of Bn = Bn(�; r) that Bn has degree 2n+ 1
when thought of as a polynomial in � (as we often will). De�ne

Bn(�) =
2n+1X
i=0

qn i�
i;

where the qn i are polynomials in p1. Then since Bn+1 = Bn(�
2 + pn+1� + 1) we

see that the qn i satisfy the following recursion:

qn+1 i = qn i�2 + pn+1qn i�1 + qn i: (2.1)

We also note that qn;0 = �1 and that qn;2n+1 = 1 for n � 0.
Now assume that for u 2 R we have Bn(u) = 0. Then since qn;2n+1 = 1 we have

�2n+1(u) = �
2nX
i=0

qn i�
i(u) (2.2)

and so for j � 2n + 1 we can write �j(u) as a sum of multiples of �i(u) for
i = 1; : : : ; 2n. Speci�cally we will de�ne

�j(u) =
2nX
i=0

rn;j;i�
i(u)

where each rn;j;i is a polynomial in p1. Then the rn;j;i satisfy the recursion given
in the following result.

Lemma 2.1. We have (i) rn;j;i = �ij if 0 � j � 2n;
(ii) rn;2n+1;i = �qn i;
(iii) rn;j+1;i = �qn irn;j;2n + rn;j;i�1; and
(iv) if 0 < i � 2n+ 1 then the degree of qni is (2n� i+ 1)i=2:
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Proof. (i) is clear, while (ii) follows from (2.2). For (iii) we note that if �j(u) =P2n
i=0 rn;j;i�

i(u), then (2.2) also gives:

�j+1(u) =
2nX
i=0

rn;j;i�
i+1(u) =

 
2n�1X
i=0

rn;j;i�
i+1(u)

!
+ rn;j;2n�

2n+1(u)

=
2n�1X
i=0

rn;j;i�
i+1(u)� rn;j;2n

2nX
i=0

qn i�
i(u):

The recursion (iii) follows.
The formula for the degree of qni follows by induction from the recursion (2.1).

The initial cases are easily checked and then one notes that deg(pn+1) = n+1 and
that since 0 � i � 2n+ 1 one �nds that (using (2.1))

(2n� i+ 3)i=2 = deg(pn+1qni�1) � max(deg(qn i�2); deg(qni))

with equality only occuring when i = 0. �

The following result indicates how we will prove Theorem 1.1.

Proposition 2.2. Theorem 1.1 will follow if we have

2(n+m)+1X
i=0

qn+mirn;i;jrm;i;k = 0

for all n;m; j; k � 0.

Proof. Suppose that u; v 2 R and that Bn(u) = Bm(v) = 0. Then, since p1 is
central in R, the rn;j;i are also central and we have

Bn+m(uv) =

2(n+m)+1X
i=0

qn+mi�
i(uv)

=

2(n+m)+1X
i=0

qn+mi�
i(u)�i(v)

=

2(n+m)+1X
i=0

qn+mi

2nX
a=0

rn;i;a�
a(u)

2mX
b=0

rm;i;b�
b(v)

=
2nX
a=0

2mX
b=0

0
@2(n+m)+1X

i=0

qn+m irn;i;arm;i;b

1
A�a(u)�b(v):

The result follows. �

Proposition 2.3. For n; y; t � 0 we have

rn;2n+1+t;y =
t+1X
j=1

tX
s=0

X
1�i1;i2;:::;is�tP

k ik=t+1�j

(�1)s+1qn y+1�j

sY
k=1

qn 2n+1�ik :
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Here we interpret the case s = 0 in this formula as rn;2n+1+0;y = (�1)0+1qn y+1�1.

Proof. This will be by induction on t � 0, the case t = 0 following from Lemma 2.1
(ii) and the rest following from the recursion given in Lemma 2.1 (iii), as follows.
First note that

rn;2n+1+t;y�1 =
t+1X
j=1

tX
s=0

X
1�i1;i2;:::;is�tP

k ik=t+1�j

(�1)s+1qn y�j

sY
k=1

qn 2n+1�ik

=
t+1X
j=1

t+1X
s=0

X
1�i1;i2;:::;is�tP

k
ik=t+1�j

(�1)s+1qn y�j

sY
k=1

qn 2n+1�ik :

We now consider the sum in Proposition 2.3 for t + 1. We split this sum up into
the cases j = 1 and j > 1 as follows:

t+2X
j=1

t+1X
s=0

X
1�i1;i2;:::;is�t+1P

k ik=t+2�j

(�1)s+1qn y+1�j

sY
k=1

qn 2n+1�ik

=
t+1X
s=0

X
1�i1;i2;:::;is�t+1P

k ik=t+1

(�1)s+1qn y

sY
k=1

qn 2n+1�ik

+
t+2X
j=2

t+1X
s=0

X
1�i1;i2;:::;is�t+1P

k ik=t+2�j

(�1)s+1qn y+1�j

sY
k=1

qn 2n+1�ik

=
t+1X
s=0

X
1�i1;i2;:::;is�t+1P

k ik=t+1

(�1)s+1qn y

sY
k=1

qn 2n+1�ik

+
t+1X
j=1

t+1X
s=0

X
1�i1;i2;:::;is�t+1P

k ik=t+1�j

(�1)s+1qn y�j

sY
k=1

qn 2n+1�ik

= rn;2n+1+t;y�1 +
t+1X
s=0

X
1�i1;i2;:::;is�t+1P

k ik=t+1

(�1)s+1qn y

sY
k=1

qn 2n+1�ik :

Now we also have

�qnyrn;2n+1+t;2n = �qny

t+1X
j=1

tX
s=0

X
1�i1;i2;:::;is�tP

k ik=t+1�j

(�1)s+1qn 2n+1�j

sY
k=1

qn 2n+1�ik

=
t+1X
j=1

tX
s=0

X
1�i1;i2;:::;is�tP

k ik=t+1�j

(�1)s+2qn y

 
sY

k=1

qn 2n+1�ik

!
qn 2n+1�j

=
t+1X
s=0

X
1�i1;i2;:::;is�tP

k ik=t+1

(�1)s+2qn y

 
sY

k=1

qn 2n+1�ik

!
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Putting this together with the previous calculation and the recursion from Lemma
2.1 (iii) gives the result. �

The following result indicates a connection with symmetric polynomials.

Proposition 2.4. For n;m � 0 we have

qnm =
mX
k=0

(�1)m+k+1

�
n� k

bm�k
2 c

� X
1�i1�i2�����ik�n

pi1pi2 : : : pik :

Proof. The proof is by induction on the pair (n;m), ordered lexicographically, where
n;m � 0, the cases m = 0 following since qn 0 = �1. We will use the following
notation �nk =

P
1�i1�i2�����ik�n

pi1pi2 : : : pik : Using the recursion (2.1) for qnm

we have

qn+1;m = qn;m�2 + pn+1qn;m�1 + qn;m

=

m�2X
k=0

(�1)m+k+1

�
n� k

bm�2�k
2 c

�
�nk + pn+1

m�1X
k=0

(�1)m+k

�
n� k

bm�1�k
2 c

�
�nk

+
mX
k=0

(�1)m+k+1

�
n� k

bm�k
2 c

�
�nk:

Now �n+1 k = �nk + pn+1�nk�1 and so the coe�cient of �ns in the above sum is

(�1)m+s+1

�
n� s

bm�2�s
2 c

�
� (�1)m+s+1

�
n� s+ 1

bm�s
2 c

�
+ (�1)m+s+1

�
n� s

bm�s
2 c

�

which is equal to zero by a standard binomial coe�cient identity. One similarly

�nds that the coe�cient of �n+1 k is (�1)m+k+1
�
n+1�k
bm�k

2
c

�
as required. �

Proposition 2.5. For n; t; y � 0 we have

2n+1X
i=0

qn irn;i+t;y = 0:

Proof. By Proposition 2.3 and Lemma 2.1 (i) we have

2n+1X
i=0

qn irn;i+t;y = qn y�t +
2n+1+tX
k=2n+1

qn k�trn;k;y

= qn y�t +
tX

u=0

qn 2n+1+u�trn;2n+1+u;y

= qn y�t +
tX

u=0

qn 2n+1+u�t

 
u+1X
j=1

qn y+1�j

uX
s=0

X
1�i1;:::;is�u+1�jP

k ik=u+1�j

(�1)s+1
sY

k=1

qn 2n+1�ik

!
:
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We will show how the terms in this sum cancel in pairs. Each summand in the
above sum is determined by a 4-tuple (u; j; s; (i1; : : : ; is)) where the values in this
4-tuple satisfy

0 � u � t; 1 � j � u+ 1; 0 � s � u and
sX

k=1

ik = u+ 1� j:

We will think of this latter condition as determining the value of j.

The summand corresponding to (u; j; s; (i1; : : : ; is)) is

qn 2n+1+u�tqn y+1�j(�1)
s+1

sY
k=1

qn 2n+1�ik

where j = u+1�
Ps

k=1 ik. Also note that since j � 1; u � t and
Ps

k=1 ik = u+1�j,
we must have ik � t for all k = 1; : : : ; s.

Assume that s > 0. Thus, since qn 2n+1 = 1, to the 4-tuple (t; j; s; (i1; : : : ; is))
we associate the summand

qn 2n+1qn y+1�j(�1)
s+1

sY
k=1

qn 2n+1�ik = qn y+1�j(�1)
s+1

sY
k=1

qn 2n+1�ik

where j = t+ 1�
Ps

k=1 ik.

Further, to the 4-tuple (t� is; j0; s� 1; (i1; : : : ; is�1)) we associate the summand

qn 2n+1�isqn y+1�j0(�1)
s

s�1Y
k=1

qn 2n+1�ik :

But we have

j0 = (t� is) + 1�
s�1X
k=1

ik = t+ 1�
sX

k=1

ik = j:

Then the two summands corresponding to the 4-tuples (t; j; s; (i1; : : : ; is)) and (t�
is; j; s� 1; (i1; : : : ; is�1)) cancel if s > 0.

Now the only summands of the sum not accounted for in the above argument
are the initial summand qn y�t and the summand corresponding to the 4-tuple
(t; t+ 1; 0; ()). This latter 4-tuple gives the summand qn 2n+1qn y�t(�1) = �qn y�t

which thus cancels with qn y�t. Thus all terms cancel in pairs and Proposition 2.5
follows. �

Now by repeated application of (2.1) we may write

qn+mi =
2mX
k=0

wn;m;kqn i�k (2.3)

for all n;m; i � 0, where wn;m;k are polynomials in p1.
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Proposition 2.6. (i) The wn;m;k satisfy the recursion

wn;m+1;k = wn;m;k�2 + pn+m+1wn;m;k�1 + wn;m;k;

with initial conditions wn;1;0 = wn;1;2 = 1; wn;1;1 = pn+1:
(ii) For N;n;m � 0 we have

wN;n;m =
mX
k=0

�
n� k�
m�k
2

�� X
1�i1;i2;:::;ik�n

pN+i1pN+i2 : : : pN+ik :

Proof. (i) follows immediately from (2.1), while the proof of (ii) is the same as that
for Proposition 2.4 with (2.1) replaced by the recursion given in (i). �

Proposition 2.7. For t; n; j; k � 0 we have

2(n+k)+1X
i=0

qk+n irn;i+t;y = 0:

Proof. This follows from Proposition 2.5 together with the formula (2.3) allowing us
to express qk+n i as a linear combination of qn i�u's with coe�cients not depending
on i. �

We remark that Propositions 2.5 and 2.7 do not rely on the polynomials pn
satisfying the recursion given in Theorem 1.1.

Lemma 2.8. (i) For non-negative integers n � m we have

pnpm = �(pn+m + pn�m):

(ii) For non-negative integers n � m we have

(pn+m + 2)(pn�m + 2) = (pn � pm)
2:

(iii) For all m;n � 0 we have

1

4�

Z 2

�2

pnpmp
1� p21=4

dp1 = �mn

(iv) For all m;n � 0 we have

pmn = �(pmpm(n�1) + pm(n�2)):

Proof. (i) From [R, p. 5] we have the following relation for Tn(x): Tn(x)Tm(x) =
1
2 (Tn+m(x) + Tjm�nj(x)). The result follows by substituting for pn(x) using (1.1).

(ii) From [R, p. 5] we also have (Tn(x) � 1)(Tm(x) � 1) = (Tn(x) � Tm(x))
2.

Our relation for pn follows from this. For (iii) use the well-known orthogonality
condition for Chebyshev polynomials [R, p.30]. For (iv) use (1.1) and the relation
Tn(Tm(x)) = Tmn(x) for all m;n � 0 [R, p.5]. �
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x3 Results on roots

In this section we will prove Theorem 1.2.

Proposition 3.1. We have
(i) p2n � 2 = �p2n;
(ii) p2n+1 � 2 = (p1 � 2)(1 +

Pn
i=0(�1)

ipi)
2;

(iii) (a) p4n + 2 = �(p1 + 2)(p1 � 2)(
Pn

i=1 p2i�1)
2;

(iii) (b) p4n+2 + 2 = �(p1 + 2)(p1 � 2)(1 +
Pn

i=0 p2i)
2;

(iv) p2n+1 + 2 = (p1 + 2)(1 +
Pn

i=0 pi)
2.

Proof. (i) follows by putting m = n in Lemma 2.8 (i). To prove the rest of this
result we will need

Lemma 3.2. We have
(i) (1 +

Pn

i=0 pi)
2 = 2n+ 1�

P2n�1
i=0 (i+ 1)p2n�i;

(ii) (1 +
Pn

i=0(�1)
ipi)

2 = 2n+ 1�
P2n�1

i=0 (�1)i(i+ 1)p2n�i;

(iii) (
Pn

i=1 p2i�1)
2 = n�

P2n�2
i=1 (i+ 1)p4n�2�2i;

(iv) (1 +
Pn

i=0 p2i)
2 = 2n+ 1�

P2n
i=1 ip4n+2�2i:

Proof. (i) This is by induction on n � 0, the cases n = 0; 1 being easily checked.

Assume that (1 +
Pn

i=0 pi)
2 = 2n+ 1�

P2n�1
i=0 (i+ 1)p2n�i: Then

(1 +
n+1X
i=0

pi)
2 = ((1 +

nX
i=0

pi) + pn+1)
2

= (1 +
nX
i=0

pi)
2 + 2pn+1(1 +

nX
i=0

pi) + p2n+1

= 2n+ 1�
2n�1X
i=0

(i+ 1)p2n�i + 2pn+1

� 2
nX
i=0

(pn+1+i + pn+1�i)� (p2n+2 + p0)

= 2n+ 3�
2n�1X
i=0

(i+ 1)p2n�i � 2p1 � 2pn+1

� 2
nX
i=1

(pn+1+i + pn+1�i)� p2n+2

= 2n+ 3�
2n�1X
i=0

(i+ 1)p2n�i � 2
n+1X
i=1

(pn+1+i + pn+1�i)

= 2n+ 3�
2n+1X
i=0

(i+ 1)p2n+2�i:

The result follows.

The proofs of (ii), (iii) and (iv) are similar to the above. �
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Now we use Lemma 3.2 (i) to prove Propositon 3.1 (iv):

(p1 + 2)(1 +
nX
i=0

pi)
2 = (p1 + 2)(2n+ 1�

2n�1X
i=0

(i+ 1)p2n�i)

= (2n+ 1)(p1 + 2)�
2n�1X
i=0

(i+ 1)(2p2n�i � p2n+1�i � p2n�1�i):

One now sees that for k 6= 0; 1; 2n+ 1 the coe�cient of pk is

2(2n� k + 1)� (2n+ 2� k)� (2n� k) = 0;

as required. The constant term in the above is seen to be 2,the coe�cient of p1 is
0 while the coe�cient of p2n+1 is 1. The result follows.

The proofs of the rest of Proposition 3.1 follow similarly from Lemma 3.2. �

Let �0�1 = 1 and for n � 1 let �n �; � = �1; be the roots of the quadratic

equation An(x) = 0, where �n� = (�pn + �
p
p2n � 4)=2: By Lemma 2.8 (i) we have

p2n � 4 = �p2n � 2; thus

�n � = (�pn + �
p
p2n � 4)=2 = (�pn + �

p
�p2n � 2)=2

and by Proposition 3.1 the discriminant �p2n � 2 can be written as (p21 � 4)u2n
where un is given in Proposition 3.1 (iii) (a) and (b):

u2m =
mX
i=1

p2i�1 and u2m+1 = 1 +
mX
i=0

p2i:

We now wish to specify �n � more explicitly by taking the square root of u2n so as
to be able to write

�n � = (�pn + �un

q
p21 � 4)=2:

Lemma 3.3. For positive integers n � m we have
(i) p2n

Pm

i=1 p2i�1 � p2m
Pn

i=1 p2i�1 = �2
Pn�m

i=1 p2i�1;
(ii) p2np2m � (p21 � 4)(

Pn
i=1 p2i�1)(

Pm
i=1 p2i�1) = �2p2(n�m);

(iii) (a) p2n(1 +
Pm

i=0 p2i) + p2m+1

Pn

i=1 p2i�1 = 2� 2
Pn+m

i=1 p2i;

(iii) (b) p2n(1 +
Pm

i=0 p2i)� p2m+1

Pn

i=1 p2i�1 = 2� 2
Pn�m�1

i=1 p2i;
(iv) p2np2m+1 � (p21 � 4)(

Pn

i=1 p2i�1)(1 +
Pm

i=0 p2i) = �2p2(n�m)�1;

(v) (a) p2n+1(1 +
Pm

i=0 p2i) + p2m+1(1 +
Pn

i=0 p2i) = �2
Pn+m+1

i=1 p2i�1;

(v) (b) p2n+1(1 +
Pm

i=0 p2i)� p2m+1(1 +
Pn

i=0 p2i) = 2
Pn�m

i=1 p2i�1:
(vi) (a) p2n+1p2m+1 + (p21 � 4)(

Pn

i=0 p2i)(1 +
Pm

i=0 p2i) = �2p2(n+m+1);

(vi) (b) p2n+1p2m+1 � (p21 � 4)(
Pn

i=0 p2i)(1 +
Pm

i=0 p2i) = �2p2(n�m):

Proof. All of the proofs are straightforward applications of Lemma 2.8 (i). One
uses the relations:�

pnum = �un+m � um�n; if m � n and

pnum = �un+m + un�m if n � m

which are also proved using Lemma 2.8. �

The following result proves Theorem 1.2.
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Proposition 3.4. For all positive integers n � m and �; � 2 f�1g there are inte-
gers N;� with � 2 f�1g and N = n�m such that �n ��m� = �N �: In particular
we have
(i) �n ��n�� = 1; for all n � 0 and � 2 f�1g.
(ii) �2n ��2m� = �2(n+��m) �; for all n � m � 1 and �; � 2 f�1g;
(iii) �2n ��2m+1 � = �2n+��(2m+1) �; for all 2n � 2m+ 1 � 1 and �; � 2 f�1g;
(iv) �2n+1 ��2m� = �2n+1+��2m�; for all 2n+ 1 � 2m � 1 and �; � 2 f�1g;
(iv) �2n+1 ��2m+1 � = �2n+1+��(2m+1) �; for all 2n+1 � 2m+1 � 1 and �; � 2 f�1g.

Proof. (i) is obvious since �n� is a root of s
2+ pns+1. We will now prove (ii) and

(iii), the rest being similar. For (ii) we have, using Proposition 3.1 (iii) (a) and
Lemma 3.3 (i) and (ii),

�2n ��2m� =

�
�p2n + �u2n

q
p21 � 4

�
=2

�
�p2m + �u2m

q
p21 � 4

�
=2

=

 
p2np2m + ��(p21 � 4)

nX
i=1

p2i�1

mX
i=1

p2i�1

!
=4

�

 
�p2m

nX
i=1

p2i�1

q
p21 � 4 + �p2n

mX
i=1

p2i�1

q
p21 � 4

!
=4

=

 
�2p2(n+��m) + �2

n+��mX
i=1

p2i�1

q
p21 � 4

!
=4

= �2(n+��m) �:

For (iii) we have to consider two cases, � = ��, so that for � = �� we have

�2n ��2m+1�� =
1

4

�
�p2n + �u2n

q
p21 � 4

��
�p2m+1 � �u2m+1

q
p21 � 4

�

=
1

4

 
p2np2m+1 � (p21 � 4)

nX
i=1

p2i�1(1 +
mX
i=0

p2i)

!

�
1

4

 
�p2m+1

nX
i=1

p2i�1 � �p2n(1 +
mX
i=1

p2i)

!q
p21 � 4

=
1

4

 
�2p2n�2m�1 + �(2� 2

n�m�1X
i=0

p2i

q
p21 � 4)

!
= �2n�2m�1;�:

The other case is proved similarly. �

x4 Proof of Theorem 1.1

Since the roots �n;j are distinct the recursion given by Proposition 2.5, together
with standard results about recursions (see for example [B] Ch. 7) allow us to
conclude that for �xed n; y there are constants cn;y;j;k such that

rn;i;y = cn;y;0;0 +
nX

j=1

(cn;y;j;��
i
j;� + cn;y;j;+�

i
j;+) (4.1)
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for each i � 0.
Conversely, we note that for N � n and for any constants cn;y;j;k we have

2N+1X
i=0

qN;i

0
@cn;y;0;0 + nX

j=1

(cn;y;j;��
i
n;� + cn;y;j;+�

i
n;+)

1
A = 0: (4.2)

But by (4.1) we see that for �xed n;m; j; k and varying i any product rn;i;jrm;i;k

can be written as a linear sum of terms each of which is either constant or has the
form �in;u or �in;u�

i
m;v. But by Proposition 3.4 any such term is of the form �iN;w

where N � n+m. Thus by (4.2) the sum
P2(n+m)+1

i=0 qn+m;irn;i;jrm;i;k is zero, as
required. �

x5 Braid group action on simple closed curves on surfaces

Let Cm = Cmn denote the set of isotopy classes of oriented simple closed curves
on Dn where each such simple closed curve surrounds m of the punctures.

In [H2] we used the action of Bn on C2 to obtain linear representations of the
braid groups Bn over Z[t] by �rst �nding a natural map from C2 to a polynomial
algebra, and then considering the induced action of Bn on certain quotients of ideals
in this polynomial algebra. We need to explain some of this more carefully now.

For R a commutative ring with identity we de�ned the ring Rn[aij ] in x1. It will
be convenient for us to let aii = 0 for all i = 1; : : : ; n.

For i; j; k; : : : ; r; s 2 f1; 2; : : : ; ng let cijk:::rs denote the cycle aijajk : : : arsasi 2
Rn[aij]. Then the cycles generate a subalgebra of Rn[aij ] denoted Yn. A cycle
cijk:::rs will be called simple if i; j; k; :::; r; s are all distinct. The ring Yn is generated
by the (�nite number of) simple cycles.

Note that the action of Bn on Dn �xes the boundary of Dn and so there is an
induced action of Bn on the fundamental group of Dn (where we choose a base
point p on the boundary of Dn). This fundamental group is the free group Fn
of rank n. We choose a standard set of generators x1; : : : ; xn for Fn, where xi is
a simple closed curve enclosing the ith puncture �i and such that x1x2 : : : xn is
parallel to the boundary of Dn. See Figure 1.

• • • • •. . . . . .
π

1a ia

ix

Figure 1

•
an - 1

1b
2b ib i+1b

p

n-1b
nb

1 2π iπ i+1π
n-1π nπ

E 1

In Figure 1 we have shown the arcs ai and the generators xi; we have also shown
some cut arcs b1; : : : ; bn for the generators x1; : : : ; xn. Thus if c is an oriented simple
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closed curve in Dn which is based at p and which is in general position with all the
arcs bi, then the word w(c) in Fn corresponding to c is determined by the sequence
of oriented intersections of c with the oriented arcs b1; : : : ; bn.

The action of Bn on the generators xi is as follows:

�j(xi) = xi if i 6= j; j + 1; �j(xj) = xjxj+1x
�1
j ; �j(xj+1) = xj :

We now �nd a particularly convenient representation of the free group Fn: For
i = 1; : : : ; n de�ne the following n� n matrices (transvections)

Ti =

0
BBBBBBBBB@

1 0 : : : 0 : : : 0 0
0 1 : : : 0 : : : 0 0
...

...
. . .

... : : :
...

...
ai1 ai2 : : : 1 : : : ain�1 ain
...

... : : :
...

. . .
...

...
0 0 : : : 0 : : : 1 0
0 0 : : : 0 : : : 0 1

1
CCCCCCCCCA

where the non-zero o�-diagonal entries occur in the ith row. Here a transvection [A]
is a matrix M = In + A where In is the identity matrix, det(M) = 1 and A2 = 0.
In particular, conjugates of transvections are transvections.

Then < T1; : : : ; Tn > is a free group of rank n (see [H1]). This allows us to
identify xi and Ti for i = 1; : : : ; n and so to identify Fn and < T1; : : : ; Tn > .

Now, from the above, Bn acts by automorphisms on Fn in such a way that for
� 2 Bn the matrix �(Ti) is a conjugate of some Tj ; 1 � j � n i.e. �(Ti) is also a
transvection. Further, if c 2 C1, then c represents a conjugacy class in Fn and so
its trace is well-de�ned (the trace of the corresponding product of transvections in
Fn =< T1; : : : ; Tn >). In fact one easily sees that trace(c) 2 Yn [H1]. Then a map
� : C ! Rn is de�ned uniquely by

�(c) = trace(c)� n:

Thus � can be thought of as being de�ned on certain conjugacy classes of elements
of Fn (namely those representing simple closed curves). This map can be extended
to act on all of Fn, by the requirement that for s 2 Fn we have �(s) = trace(s)�n.

Now for m � n and s 2 Fn we may also consider s as an element of Fm under
the natural inclusion of Fn in Fm. In this case we note that �(s) has the same value
whether we consider s as an element of Fn or Fm.

Now for all i; j we have trace(TiTj) = aijaji + n and in general if A;B 2 Fn,
then

trace(ATiA
�1BTjB

�1) = bijbji + n

where bij 2 Rn[aij ] (see [H1]; in fact this also follows from Proposition 7.1). It is
also easy to see that there is a natural choice so that

bij = aij + terms of higher degree:

Now for � 2 Bn the image �(Ti) is a conjugate ATjA
�1 for some A 2 Fn and

1 � j � n. Here the action of � on the aij is de�ned by

trace(�(Ti)�(Tj)) = �(aij)�(aji) + n;
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(see [H1] for more details) so that it has the following naturality property (with
respect to the action of Bn on Fn): for all w 2< T1; : : : ; Tn > we have

�(�(w)) = �(�(w)): (5.1)

For example the action of �i is given by

�i(ai i+1) = ai+1 i; �i(ai+1 i) = ai i+1; �i(ah i) = ah i+1;

�i(ah i+1) = ah i � ah i+1ai+1;i; �i(ai j) = ai+1 j ;

�i(ai+1 j) = ai j + ai i+1ai+1 j ; etc.

where 1 � h < i; i+ 1 < j � n.

It follows from Theorem 2.5 and Theorem 6.2 of [H1] that the kernel of the action
of Bn on Rn is the centre of Bn and that if Bn and Rn are thought of as sub-objects
of Bn+1 and Rn+1 (respectively), then the action of Bn on Rn+1 is faithful. We note
as in [Hu2] that there is a natural ring involution � on R(n)[aij] which commutes
with the action of Bn; this involution is determined by its action on the generators
aij which is as follows: a�ij = �aji. This involution has the following property:

trace(A�1) = trace(A)�;

for all A 2 Fn. Thus �(c
�1) = �(c)�, where c�1 is the curve c with its orientation

reversed.

If c is a simple closed curve in Dn surrounding k punctures, then we let �(c)
denote the spine of , so that �() is an embedded tree in Dn [f�1; : : : ; �ng whose
k vertices are in f�1; : : : ; �ng and such that c is isotopic to the boundary of a small
tubular neighbourhood of �(c) (with some orientation).

Suppose that c is a simple closed curve which is disjoint from 12. Then �1(c) = c
and soB0(�1; a12a21+2)(�(c)) = 0 which shows that 
(c) = 0. It easily follows that
for such a curve 2
(c) = �(12; c). The key observation that indicates a connection
with the previous sections was made in [H2] and is

Lemma 5.1. Let �; �1; �2; 1; 2 2 C2 be curves with spines as shown in Figure 2,
where we assume that there are no punctures inside the heart-shaped diagram other
than the three shown (�i; �j and �k).
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α

β1 β2

γ1 γ2

• •

•

Figure 2

π i π j  

π k

Then we have the following relation:

[�(1)� �(2)] + (1 + a12a21)[�(�1)� �(�2)] = 0: (5.2)

Now note that we may take 1 = �21(23); 2 = ��11 (23); �1 = 23 and �2 =
�1(23): (In fact the proof of Lemma 5.1 consists essentially of checking that the
relation holds in this case, which is easily done.) Thus we can write (5.2) as (�21 �
��11 � (1+a12a21)(1��1))[23] = 0: Upon acting on this equation by �1 on the left
and factoring this gives (since �1(a12a21) = a12a21)

(�1 � 1)(�21 + (2 + a12a21)�1 + 1)�(23) = 0: (5.3)

Thus if p1 = a12a21+2, then the above operator is B1(�1; a12a21+2) and we have
B1(�1; a12a21 + 2)(�(23)) = 0. Now if c is any curve such that if �(12; c) = 2,
then the pair (12; c) is di�eomorphic to the pair (12; 23) and we check that
B0(�1; a12a21 + 2)(�(23)) 6= 0. The above gives B1(�1; a12a21 + 2)(�(23)) = 0.
Thus B0(�1; a12a21 + 2)(�(c)) 6= 0 and B1(�1; a12a21 + 2)(�(c)) = 0.

Now we note that up to di�eomorphism there are only two ways in which we can
have �(12; c) = 4. These are (i) w(c) = x2(x3 : : : xu)x

�1
2 (xu+1xu+2 : : : xv); and (ii)

w(c) = x2(x3 : : : xv)x1(x3 : : : xu)
�1 where 2 < u < v � n. One easily checks that

B2(�1; a12a21 + 2)(�(c)) = 0 and B1(�1; a12a21 + 2)(�(c)) 6= 0 in each case. Thus
we have proved

Lemma 5.3. If c is a simple closed curve on Dn with �(12; c) � 2, then 2
(c) =
�(12; c). �

This indicates the initial connection of the operators Bn(�; a12a21 + 2) with
intersection-number functions. We now prove:
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Proposition 5.4. Let Un be the subring of Rn which is generated by all elements
of the form aij for 2 < i; j � n and all

ai1a1j; ai2a2j; a12a21; ai1a12a2j; ai2a21a1j

for 2 < i; j � n. Then Un contains Yn and for u 2 Un there is a positive integer
N = N(u) such that BN (�1; a12a21 + 2)(u) = 0.

Proof. As we noted before Yn is generated by the simple cycles and it is easily seen
that each such simple cycle is in Un. Next we check that for 2 < i; j � n we have
B0(aij) = 0 and

B1(ai1a1j) = 0; B1(ai2a2j) = 0; B0(a12a21) = 0;

B1(ai1a12a2j) = 0; B1(ai2a21a1j) = 0: (5.4)

The result now follows from Theorem 1.1. �

For u 2 Un we will let 
(u) denote the minimal N such that BN (�1; a12a21 +
2)(u) = 0.

We note that the operators Bm(�1; a12a21 + 2) act on some Rn and so depend
on the number n. However it will be convenient for us to ignore this dependency,
so that Bm(�1; a12a21+2) will be considered as acting on all of the Rn; n � 2. This
is consistent with considering Dn as a subspace of Dn+1 for all n.

x6 A normal form for curves on Dn

Let c be a simple closed curve on Dn and let w(c) 2 Fn represent c. Note that we
may (and will) choose w(c) to be cyclically reduced. We will say that a cyclically
reduced word w 2 Fn is 1,2-reduced if w is cyclically conjugate to a word of the
form w0 = A1B1 : : :ArBr, where

Ai 2< T3; T4; : : : ; Tn > and Bi 2 fT�11 ; T�12 ; (T1T2)
�1g

with Ai 6= id for i = 1; : : : r.
In this section we prove the following result which gives a normal form for an

element of Fn representing a simple closed curve on Dn and derive some relevant
consequences.

Theorem 6.1. Let c be a simple closed curve on Dn. Then there is k 2 Z such
that w(�k1 (c)) is 1; 2-reduced.

Proof. Considering Figure 1 in x5 we see that the arcs a1; b1; b2 cut o� a simply-
connected subset E1 of Dn. See Figure 3. Let O1 denote a tubular neighbourhood
of the union of E1 and the interior of the curve x1 in Dn such that O1 contains
only the punctures �1; �2 together with the base point p.

Let c be a simple closed curve on Dn. Then w(c) certainly has a cyclic conjugate
w0 which can be written w0 = A1B1 : : :ArBr, where Ai 2< T3; T4; : : : ; Tn >, Bi 2<
T1; T2 > and Ai; Bi 6= id for i = 1; : : : r. Fix 1 � i � r and let T�1u ; T�1v be the
terminal and initial letters of Ai and Ai+1 respectively. Since u; v � 3 we see that
there is a subarc c0 of c, with end points on the cut arcs bu and bv, representing
the subword T�1u BiT

�1
v . Now note that we can homotope c0 so that the end points

go to p, while all the points of c0 \ E1 are held �xed during the homotopy. Call



INTERSECTION-NUMBER OPERATORS AND CHEBYSHEV POLYNOMIALS 17

the resulting curve c00 = c00i . We may also require that c00 is in O1. Now O1 is a
twice-puctured disc and c00 is a simple closed curve in O1 based at p. Further, the
fundamental group of O1 based at p is generated by x1; x2. It follows that either
(i) c00 = �k1 (x

�1
1 ) for some k = k(i) 2 Z, or (ii) c00 = �112 . These two cases occur

when the interior of c00 has one or two punctures inside it (respectively).

If for all i = 1; : : : ; r we have case (ii), then w0 is 1; 2-reduced and the Theorem
follows. If, on the other hand, there is some 1 � i � r such that we have case
(i), then we replace c by ��k1 (c). This means that we can assume that A1 = T�11

(cyclically permute w0 as necessary). Now if for any 1 < j � r we now have
k(j) 6= 0, then the curve c00j can be homotoped so as to meet x1 only at the base

point p. It follows that c00j is either (a) x�11 ; (b) x�12 ; (c) �112 ; or (d) the curve

�1(x1), this being the curve x1x2x
�1
1 . The �rst three cases are covered by Theorem

6.1, while if we have the fourth case, then we act on c by ��11 so that now we have
A1 = T�12 and Aj = T�11 .

Now suppose that we are in this latter case where A1 = T�12 and Aj = T�11 .
Let 1 < i � r; i 6= j. Then c00i can be homotoped so as to meet x1 and x2 only
at the point p. One easily sees that either (i) c00i = x�11 ; or (ii) c00i = x�12 ; or (iii)
c00i = (x1x2)

�1, and so w0 is 1; 2-reduced. �

For c and k as in Theorem 6.1 we will call w(�k1 (c)) the normal form for c. We
note that the normal form is not unique.

Lemma 6.2. Let k 2 Z and let c be a simple closed curve on Dn and let c0 = �k1 (c);
for example c0 could be the normal form for c. If Bm(�1; a12a21 + 2)(�(c)) = 0,
then Bm(�1; a12a21 + 2)(�(�k1 (c))) = 0. In particular, we have 
(c0) = 
(c).

Proof. Since �1(a12a21) = a12a21 it follows that �1 commutes with the operator
Bm(�1; a12a21 + 2). Also, we have �(�k1 (c)) = �k1 (�(c)) by (5.1). Thus

Bm(�1; a12a21 + 2)(�(�k1 (c))) = �k1 (Bm(�1; a12a21 + 2)(�(c))) = 0:

The rest follows from this. �

We now show the connection of the above normal form with intersection-numbers.

Theorem 6.3. Let c be a simple closed curve on Dn and let c0 = �k1 (c) be its
normal form. Suppose that w(c0) = A1B1 : : :ArBr, where Ai 2< T3; T4; : : : ; Tn >,
Bi 2 fT�11 ; T�12 ; (T1T2)

�1g and Ai 6= id for i = 1; : : : r. Let h be the number of i
such that Bi 2 fT�11 ; T�12 g. Then h = �(12; c

0) = �(12; c):

Proof. It is clear that �(12; c
0) = �(12; c) from Lemma 6.2. Now note that in a

neighbourhood of E1 (oriented) arcs coming from any Bi are as shown in Figure 3.
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a 1

b1
b2

Figure 3

π1 π2

E1

Now any Bi = T�11 corresponds to an arc of c\E1 which crosses the arc b1 once
and does not cross b2. It thus crosses a1 and contributes 1 to the intersection number
�(12; c). Similarly for any Bi = T�12 . Lastly, any Bi = (T1T2)

�1 corresponds to an
arc of c \ E1 which does not cross a1. The result follows. �

x7 Combinatorial results on traces

In this section we will introduce a way of grouping together terms of �(c) and
use this to prove that 
(c) � �(c; 12)=2.

Let w = T e1
i1
T e2
i2
: : : T er

ir
2 Fn =< T1; : : : ; Tn > where ei = �1 for i = 1; : : : ; r.

Then by a subword of w we mean any w0 = T ea
ia
T eb
ib
: : : T ez

iz
where 1 � a < b < � � � <

z � r. In fact we will really be thinking of w0 as being the sequence 1 � a < b <
� � � < z � r, but it will be convenient to write w0 = T ea

ia
T eb
ib
: : : T ez

iz
. We will need

the following generalisation of [H1, Lemma 2.3].

Proposition 7.1. Let w = T e1
i1
T e2
i2
: : : T er

ir
2 Fn. Then trace(w)�n is equal to the

sum of all terms of the form

(eheiejek : : : em)ahiaijajk : : : amh;

where T eh
h T ei

i T
ej
j T ek

k : : : T em
m is a non-empty subword of w.

Proof. We �rst prove the following result by induction. The induction hypothesis
is: the hk entry of the matrix w is the sum of all terms of the kind

(ej1ej2ej3ej4 : : : ejm)aj1j2aj2j3aj3j4 : : : ajmk;

where T
ej1
j1

: : : T
ejm
jm

is a subword of w and j1 = h. This is easily proved (similar to

the proof of Lemma 2.3 of [H1]) and Lemma 7.1 follows directly from this. �

Thus, for example, if n = 4 and w = T1T
2
2 T

3
3 T

�1
2 , then

trace(w)�4 = a12a21+3a13a31+3a23a32�3a13a32a21+6a12a23a31�6a12a21a23a32:
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We introduce the following notation: Fix a word w = T e1
i1
T e2
i2
: : : T er

ir
2 Fn,

which we will think of as a cyclic word. Then by Lemma 7.1 for any subword
s = T eh

h T ei
i T

ej
j : : : T em

m of w we obtain the contribution

�(s) = (eheiejek : : : em)ahiaijajk : : : amh

to the trace of w. Such a contribution we call a term. Note that by Lemma 7.1
trace(w)�n is the sum of all such terms �(s) for all such non-empty subwords s of
w. We now look for a way of grouping together some of these terms in a way that
will be compatible with the action of the operators Bn(�1; a12a21 + 2).

Let s be a subword of w. Then we can write �(s) uniquely as

�(s) = Ca1b1a2b2 : : : aubuau+1;

where C is a constant, ai is either 1 or is a monomial in the generators ars where
r; s � 3 and bi is a monomial of the form ari1ai1i2 : : : ait�1itaits where r; s � 3 and
ij 2 f1; 2g for j = 1; : : : ; t. Note that 
(ai) = 0 for all i and so by Theorem 1.1 we
see that


(a1b1a2b2 : : : aubuau+1) � 
(b1) + 
(b2) + � � �+
(bu): (7.1)

Now we de�ne a 12 -reduction of s to be any subword s0 of s which can be
obtained from s by deleting any (or all) of the letters T�11 or T�12 occuring in s.

Let  1̂2̂(s) denote the sum of all of the �(s0) where s0 is a 12 -reduction of s.
From the above we see the following:

Lemma 7.2. Let s be a subword of w as above and write a = A1B1 : : :AuBuAu+1

where Ai 2< T3; : : : ; Tn > and Bi 2< T1; T2 > nfidg. Then the element  1̂2̂(s) has
a factorization

 1̂2̂(s) = E1G1E2G2 : : :Gu�1EuGuEu+1

where Ei = 1 or Ei =  1̂2̂(Ai) 2 R[arsj3 � r 6= s � n] and Gi =  1̂2̂(ti) where ti is
the subword T p

yi
BiT

q
zi

for some p; q = �1 and yi; zi � 3. �

Example 7.3. Let s = T3T1T2T4T6T4T
�1
2 T5T1T5. Then

 1̂2̂(s) = (a31a12a24 + a31a14 + a32a24 + a34)a46a64(�a42a25 + a45)(a51a15)a53:

We now calculate the Gi =  1̂2̂(ti) in the above Lemma.

Lemma 7.4. Choose integers 3 � r; s � n and u � 0. Then

B0(�1; a12a21 + 2)( 1̂2̂(Tr(T1T2)
uTs)) = 0; and

B0(�1; a12a21 + 2)( 1̂2̂(Tr(T
�1
2 T�11 )uTs)) = 0;

while if y 2< T1; T2 >, then

B1(�1; a12a21 + 2)( 1̂2̂(TryTs)) = 0:

Proof. Now any monomial summand of  1̂2̂(TryTs) is of the form Cari1ai1i2 : : : aius
where C is a constant and i1; i2; : : : ; iu = 1; 2. Any such word can be factored as
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C(a12a21)
kQ where Q is one of ar1a1s; ar1a12a2s; ar2a2s; ar2a21a1s. Now the second

part of the result follows from Theorem 1.1 and equations (5.4) which show that
B0(�1; a12a21 + 2)((a12a21)

k) = 0 and B1(�1; a12a21 + 2)(Q) = 0.
Now consider the element w = Tr(T1T2)

kTs. Then by Lemma 7.1 we have

trace(w)� n =  1̂2̂(w)asr + U;

where each monomial summand � of U is a product of aij's where the set of such
subscripts i; j for this �xed � contains only one of r; s.

But w represents a closed curve c on Dn which, since r; s > 2, does not meet the
arc a1. Thus we have �1(c) = c which implies (by (5.1)) that �1(trace(w)� n) =
trace(w)� n: Since �1(asr) = asr we see that we must have �1( 1̂2̂(w)) =  1̂2̂(w)
from which it follows that B0(�1; a12a21 + 2)( 1̂2̂(w)) = 0: �

Refering back to Lemma 7.2 we now have

Lemma 7.5. Let w 2 Fn. Let �(s) = A1B1A2B2 : : :BuAu+1; for a subword s of
w.

Suppose that k of the Bi are of the form Tu
1 or Tu

2 . Then

Bk(�1; a12a21 + 2)( 1̂2̂(s)) = 0:

Proof. This follows from Lemma 7.2, Lemma 7.4 and equation (7.1). �

Let c be a simple closed curve and let w = w(c). Let �(w) = A1B1 : : :BuAu+1.
Let w0 be the word w0 = w0(w) = A1A2 : : :Au+1. Now to every subword of w0 there
corresponds naturally a subword of �(w); conversely, we can project any subword s

of �(w) to a subword �(s) of w0 by just deleting from the subword s all T j
1 's and

T j
2 's that are in it.
Now let S denote the set of all subwords of �(w) (including the empty subword).

Let S 0 denote the set of all subwords of �(w0). Then we have a natural map
� : S ! S 0, which consists of deleting from any element of S all elements of the form
T j
1 or T j

2 . We partition the elements of S into preimages of �. This in turn gives a
way of collecting together terms of �(c) = trace(w)�n into sums each of which has
the form E1G1E2G2 : : :Gu�1EuGuEu+1 indicated in Lemma 7.2. Now if k is as
de�ned in Lemma 7.5, then at most k of the Gi in E1G1E2G2 : : :Gu�1EuGuEu+1

can satisfy B0(�1; a12a21 + 2)(Gi) 6= 0. So by Theorem 1.1 we have

Bk(�1; a12a21 + 2)(E1G1E2G2 : : :Gu�1EuGuEu+1) = 0;

as required to prove that 
(c) � �(c; 12)=2.

Example 7.6. For n = 4 consider the curve c represented by the conjugacy class
w = w(c) = T1T2T3T2T

�1
3 T�12 T4: One easily sees that �(12; c) = 2: Also

S 0 = f;; T3; T
�1
3 ; T4; T3T

�1
3 ; T3T4; T

�1
3 T4; T3T

�1
3 T4g:

For example we have

��1(T3T
�1
3 T4) = fT3T

�1
3 T4; T1T3T

�1
3 T4; T2T3T

�1
3 T4; T1T2T3T

�1
3 T4; T3T2T

�1
3 T4;

T1T3T2T
�1
3 T4; T2T3T2T

�1
3 T4; T1T2T3T2T

�1
3 T4; T3T

�1
3 T�12 T4;

T1T3T
�1
3 T�12 T4; T2T3T

�1
3 T�12 T4; T1T2T3T

�1
3 T�12 T4; T3T2T

�1
3 T�12 T4;

T1T3T2T
�1
3 T�12 T4; T2T3T2T

�1
3 T�12 T4; T1T2T3T2T

�1
3 T�12 T4g:
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This gives rise to the product

� = (a32a23)(�a34 + a32a24)(a43 + a42a23 + a41a13 + a41a12a24):

which occurs as a summand of trace(w) � 4 of the kind indicated in Lemma 7.2.
Now

B1(�1; a12a21 + 2)(a32a23) = 0;

B1(�1; a12a21 + 2)(�a34 + a32a24) = 0; and

B0(�1; a12a21 + 2)(a43 + a42a23 + a41a13 + a41a12a23) = 0:

This shows that B2(�1; a12a21 + 2)(�) = 0: At the other extreme one has that for
the trivial subword ; 2 S 0 we see that ��1(;) contributes a12a21. One similarly
calculates the contributions made by each of the other members of S 0.

Lemma 7.7. For any simple closed curve c with �(w) = A1B1 : : :BuAu+1 where
w = w(c) as in the above we have

�(c) = trace(w)� n =
X
s

 1̂2̂(s)

where the sum is over all subwords s 2 S 0. Moreover each  1̂2̂(s) has the form
E1G1 : : :EuGuEu+1 given in Lemma 7.2 where each Gi is one of

� ar1a1r; �ar2a2r; �arsasr � ar1a1s; �ar2a2s � ar2a2s;

�(auv + au2a2v + au1a1v + au1a12a2v); �(auv � au2a2v � au1a1v + au2a21a1v);

where u; v; r 6= s � 3:

Proof. The exact nature of the Gi is the only thing that hasn't been noticed and
this follows from the fact that Bi has one of the forms

T�1r T�11 T�1s ; T�1r T�12 T�1s ; T�1u T1T2T
�1
v ; T�1u T�12 T�11 T�1v

where r; s; u; v � 3: A calculation of each such Gi shows that those given in Lemma
7.7 are the only possibilities. �

x8 Proof of Theorem 1.3

Let x = ar1a1s or x = ar2a2s for some 3 � r; s � n. Then using the action of �1
given in x5 we see that for any k 2 Z; k � 0; we can write

�k1 (x) = ck11(ar1a1s) + ck12(ar1a12a2s) + ck21(ar2a21a1s) + ck22(ar2a2s); (8.1)

where the ckij = ckij(x) are polynomials in a12a21 = p1 � 2.

Lemma 8.1. The polynomials ckij satisfy the following recursion:

ckij + p1ck�1 ij + ck�2 ij = dij (8.2)
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for all k � 2 where dij = dij(x) are polynomials in p1 also. In particular for
x = ar1a1s; ar2a2s we have

d11(x) = 2; d11(x) = 1; d21(x) = �1; d22(x) = 2:

We also have

ck�1 11 = ck 22; ck12 = �ck21; ck11+2a12a21ck12 = a12a21ck�1 11+ck�211: (8.3)

Proof. This will be by induction on k � 2. We will only deal with the case x =
ar1a1s, the other case being similar. A calculation shows that we have

c011 = 1; c012 = 0; c021 = 0; c022 = 0; c111 = �a12a21; c112 = 1; c121 = �1; c122 = 1;

c211 = (a12a21 + 1)2; c212 = �a12a21 � 1; c221 = a12a21 + 1; c222 = �a12a21:

This allows one to check the �rst case (k = 2).
Now assume that for some k � 2 we have (8.1). Then, since �1(ckij) = ckij for

all k; i; j, we have (using the action of �1 given in x5)

�k+11 (x) = ck11(ar2 + ar1a12)(a2s � a21a1s) + ck12(ar2 + ar1a12)a21a1s

+ ck21ar1a12(a2s � a21a1s) + ck22ar1a1s:

From this we obtain:

ck+111 = �ck11a12a21 + ck12a12a21 � ck21a12a21 + ck22;

ck+112 = ck11 + ck21; ck+1 21 = �ck11 + ck12; ck+122 = ck11:

Using these latter equations we can check that the equations (8.3) for k + 1 follow
from (8.3) for k. Then one uses (8.3) to likewise prove (8.2) for k + 1. �

Using the recurrence given in Lemma 8.1 we see that standard results for solving
non-homogeneous recurrence equations [B] allow one to conclude that

ckij = eij+

 
�p1 +

p
p21 � 4

2

!k

+ eij�

 
�p1 �

p
p21 � 4

2

!k

;

where

eij� =
1p
p21 � 4

 �
c0ij �

dij
2 + p1

� 
�p1 +

p
p21 � 4

2

!
� c1ij +

dij
2 + p1

!
;

and eij+ = c0ij �
dij
2+p1

� eij�. One then �nds that

e11� =
p1 +

p
p21 � 4

2(p1 + 2)
; e11+ =

p1 �
p
p21 � 4

2(p1 + 2)
;

and so

ck11 =
�1

p1 + 2

0
@ �p1 +pp21 � 4

2

!k+1

+

 
�p1 �

p
p21 � 4

2

!k+1

� 2

1
A : (8.4)
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Lemma 8.2. For an integer k � 0 the degree of

 
�p1 +

p
p21 � 4

2

!k

+

 
�p1 �

p
p21 � 4

2

!k

is k.

Proof. Expanding the kth powers in this sum using the binomial theorem we see
that all terms involving the square root cancel and the term of highest degree is
�pk1 . �

We use the above ideas to prove:

Proposition 8.3. Let n;m � 0; ri; si; ti; ui � 3 and

w =
nY
i=1

ari1a1si ; w0 =
mY
i=1

ati2a2ui

Then 
(w) = n, 
(w0) = m and 
(ww0) = n+m.

Proof. We will prove the third of these results, the proofs of the �rst and second
being similar. We will prove this result by induction on n+m � 0, the cases n+m �
1 following from equations (5.4). By Theorem 1.1 we see that Bn+m(ww

0) = 0 so
that 
(ww0) � n+m. We will show that Bn+m�1(ww

0) 6= 0.
Now

Bn+m�1(ww
0) =

2(n+m�1)+1X
i=0

qn+m�1 i�
i
1(ww

0)

=

2(n+m)�1X
i=0

qn+m�1 i�
i
1

0
@ nY

j=1

arj1a1sj

1
A� �i1

0
@ mY

j=1

atj2a2uj

1
A :

But by (8.1) and (8.3) we have

�i1(arj1a1sj ) = ci11arj1a1sj + : : : and �i1(atj2a2uj ) = ci�1 11atj1a1uj + : : : :

Thus the coe�cient of
Qn

j=1 arj1a1sj �
Qm

j=1 atj2a2uj in qn+m�1 i�
i
1(ww

0) is

qn+m�1 i

nY
j=1

ci11

mY
j=1

ci�1 11 = qn+m�1 ic
n
i11c

m
i�1 11:

Now using Lemma 2.1, Lemma 8.2 and equation (8.4) (where we can ignore the �2
and the initial factor of �1

p1+2
) we see that this term has degree

d(i) = (2(n+m� 1)� i+ 1)i=2 + n(i+ 1) +mi:

Now as a function of i (for �xed n;m) d(i) is a quadratic function with a maximum
value at i = 2(n +m) � 1=2 and so on the interval [0; 2(n+m) � 1] the function
d(i) is increasing. Thus for integer values of i in this interval the maximum value
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is attained at the unique value i = 2(n+m)� 1. Thus the sum for Bn+m�1(ww
0)

cannot be zero. This proves that 
(ww0) = n+m as required. �

We now conclude the proof of Theorem 1.3. Let c be a simple closed curve on
Dn and let w = w(c). Let �(w) = A1B1 : : :AuBuAu+1. Recall the decomposition
of trace(w) � n given in Lemma 7.7 relative to the set S 0. Then the set S 0 has
a maximal element i.e. there is an element S of S 0 such that every other element
of S 0 is a subword of S. Thus every monomial in  1̂2̂(S) has more indices in its
ars factors with r > 2 or s > 2 than does any other  1̂2̂(s

0) for s0 2 S 0; s0 6= S:

Suppose that k of the Bi are T
�1
1 or T�12 . Theorem 1.3 will follow if we can show

that Bk�1(�1; a12a21 + 2)( 1̂2̂(S)) 6= 0:
Now  1̂2̂(S) = E1G1 : : :EuGuEu+1 where the Ei are monomials in ars with

r; s � 3 and the Gi are in the list given in Lemma 7.7. Now B0(Ei) = 0;B0(ars +
ar2a2s + ar1a1s + ar1a12a2s) = 0 and B0(ars � ar2a2s � ar1a1s + ar2a21a1s) = 0
and so we may ignore all terms that come from Ei and from terms of the latter two
forms. What is left is a product

u =
nY
i=1

ari1a1si �
mY
i=1

ati2a2ui

for some n;m � 0 with k = n + m. The fact that Bk�1(�1; a12a21 + 2)(u) 6= 0,
which implies that Bk�1(�1; a12a21+2)( 1̂2̂(S)) 6= 0, now follows from Proposition
8.3. This proves Theorem 1.3. �.

Remark 8.4. We here remark that our method gives a way of �nding intersection
numbers of any two simple closed curves c; c0 on Dn. If one of the curves (say c)
surrounds 2 punctures, then we can �nd a di�eomorphism � so that �(c) = 12.
Thus �(c; c0) = �(12; �(c

0)). One then �nds the intersection number of 12 and
�(c0) using the operators Bn(�1; a12a21 + 2).

On the other hand, if c does not surround two punctures, then we think of Dn as
a subset of Dn+2 and consider the curve d such that w(d) = w(c)xn+1w(c)

�1xn+2.
Then d surrounds two punctures and we can calculate the intersection �(d; c0) =
2�(c; c0) using the operators Bn(�1; a12a21 + 2). See Figure 4 for the relationship
between c and d, where we have drawn the curve c and the spine �(d) in a particular
example.

. . .
1 2

n + 1 n + 2

p

c

Σ(d)

Figure 4
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x9 A matrix interpretation

For n � 1 let Rn be the in�nite matrix whose ij entry is rnij for i; j � 0. Then
by Lemma 2.1 Rn has the following block form�

I2n+1 0
Un 0

�
(9.1)

where I2n+1 is the identity matrix of rank 2n+ 1 and each 0 is a matrix of zeros.

Proposition 9.1. For n � 1 we have
(i) R2

n = Rn;
(ii) RnRm = Rn if n � m;
(iii) RnRm = RmRn for n;m � 1.

Proof. (i) and (ii) are obvious from the block form (9.1) for Rn and Rm. (iii) will
follow from the following result:

Lemma 9.2. For all m � n � 1 and for all j; k � 0 we have

2mX
i=0

rmjirnik = rnjk:

Proof. The proof will be by induction on j � 0. If j = 0, then we note from
Lemma 2.1 that rmji = �ji and so

P2m
i=0 rm0irnik = rn0k as required. Now assume

that
P2m

i=0 rmjirnik = rnjk. Then since rmj 2m+1 = 0 we have (using Lemma 2.1)

2mX
i=0

rmj+1 irnik =
2m+1X
i=0

rmj+1 irnik

=
2m+1X
i=0

(�qmirmj 2m + rmj i�1)rnik

= �rmj i�1

2m+1X
i=0

�qmirnik +
2m+1X
i=0

rmj i�1rnik:

Note that by Proposition 2.7 the �rst sum is equal to 0. Thus the above is equal to

2m+1X
i=0

rmj i�1rnik =
2m+1X
i=0

rmj i�1(�qnkrn i�1 2n + rn i�1 k�1)

= �qnk

2m+1X
i=0

rmj i�1rn i�1 2n +
2m+1X
i=0

rmj i�1rn i�1 k�1

= �qnk

2mX
i=0

rmj irn i 2n +
2m+1X
i=0

rmj irn i k�1

= �qnkrn j 2n + rn j k�1 = rn j+1 k;

as required. In this last calculation we used Lemma 2.1 and the inductive hypoth-
esis. �

This now proves Proposition 9.1 �

Let Qn be the in�nite diagonal matrix diag(qn0; qn1; : : : ; qn 2n+1; 0; 0; : : : ) and let
(1) denote the in�nite all 1 vector. Let T denote transpose.
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Theorem 9.3. a) The set fRngn�1 is an in�nite family of independent commuting
idempotents.
b) If P1 = R1 and Pn = Rn � Rn�1 for n > 1, then fPngn�1 is an in�nite family
of independent orthogonal idempotents.
c) For n;m � 1 we have RT

mQn+mRn = 0.
d) For 1 � m � n we have RT

mQn(1) = 0.

Proof. a) Follows from Proposition 9.1. b) Using Proposition 9.1 one easily checks
that P 2

n = Pn and PnPm = 0 if n 6= m. The commutativity of Pn and Pm follows
from Proposition 9.1.

Now c) is a direct consequence of the fact that
P2(n+m)+1

i=0 qn+mirn;i;jrm;i;k = 0
for all n;m � 1 and j; k � 0 which was what we proved on the way to proving
Theorem 1.1 (see Proposition 2.2 and x4). Lastly, d) follows from Proposition 2.7.
�

x10 An application to algebraic

intersection numbers of curves on surfaces

Let Sg be a closed orientable surface of genus g � 1 and letMg denote the map-
ping class group of Sg [Bi]. Let a1; : : : ; ag; b1; : : : ; bg be a symplectic basis [MKS]
for the �rst homology group H1 = H1(Sg;Z) �= Z2g, which we will write multi-
plicatively. Let <;> denote the symplectic form or `algebraic intersection number
function', this being well-de�ned on homology classes. Thus a1; : : : ; ag; b1; : : : ; bg
satisfy < ai; bi >= 1 for i = 1; : : : ; g all other products being zero. Let RH1 denote
the group algebra of H1 over the commutative ring with identity R.

Now an element of H1 can be represented by a simple closed curve if and only
if it is primitive i.e. if and only if its coordinates relative to some (any) basis are
relatively prime. For any element c 2 H1 we let

r(c) = �c� c�1 2 RH1:

We also de�ne the element Tc 2 Aut(H1) = Sp2g(Z) by

Tc(x) = xc<c;x>

for all x 2 H1. Then in the situation where c is primitive and represents the
simple closed curve  we note that Tc is the symplectic transvection [A] which is
the image of the Dehn twist � 2 Mg about  under the canonical map �g :Mg !
Sp2g(Z). Here �g just gives the action of Mg on H1 [MKS]. Then Tc extends to an
automorphism of the group ring RH1.

Theorem 10.1. Let c 2 H1 be primitive and let d 2 H1. Let Bn(Tc; r(c)); n > 0;
be the operators on the group ring RH1 de�ned in Theorem 1.1. Then j < c; d > j
is equal to the minimal number m � 0 such that Bm(Tc; r(c))(d) = 0.

Proof. Up to an action of Sp2g(Z) we can assume that c = a1 (since Mg acts
transitively on non-bounding simple closed curves in Sg). Then we can write d =

ae11 b
f1
1 : : : a

eg
g b

fg
g where < c; d >= f1. Now note that Ta1(ai) = ai for i = 1; : : : ; g

and that Ta1(bj) = bj for j = 2; : : : ; g. It follows that we may as well take d = bk1
where k =< c; d >. Now if the polynomials pn = pn(r(c)) are as de�ned in Theorem
1.1, then it is easy to check that

pn(r(c)) = �cn � c�n
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for all n � 0. We also have Tam
1
(d) = Tam

1
(bk1) = (am1 b1)

k for all m; k 2 Z. Now
B0(Ta1 ; r(a1))(b1) = a1b1 � b1 6= 0 and

B1(Ta1 ; r(a1))(b1) = (T 2
a1
� (a1 + a�11 )Ta1 + 1)(Ta1 � 1)(b1)

= (T 2
a1
� (a1 + a�11 )Ta1 + 1)(a1b1 � b1)

= a31b1 � a21b1 � (a1 + a�11 )(a21b1 � a1b1) + a1b1 � b1

= 0; (10.1)

and similarly thatB1(Ta1 ; r(a1))(b
�1
1 ) = 0 as required. It follows from Theorem 1.1

that Bjkj(Ta1 ; r(a1))(b
k
1) = 0 for all k 2 Z. Theorem 10.1 will follow if we can show

that Bk(Ta1 ; r(a1))(b
k+1
1 ) 6= 0 for all k � 0 (the cases where k < 0 are similar).

Lemma 10.2. Let 1 � n < j. Then

Bn(Ta1 ; r(a1))(b
j
1) = (

X
i

�i(n; j)a
i
1)b

j
1; (10.2)

where �i(n; j) 2 R and �j(2n+1)(n; j) = 1 and �i(n; j) = 0 for i > j(2n+ 1).

Proof. Since the action of T k
a1

only multiplies each element of H1 by some power
of a1 and since Bi(Ta1 ; r(a1)) is a sum of such operators with coe�cients in R[a1]
one sees that we do have (10.2). We prove the rest by induction on n for all values
of j > n. The case n = 1 follows (for all j > n) from a calculation similar to (10.1).

Now assume that we for some n we have Bn(Ta1 ; r(a1))(b
j
1) = (

P
i �i(n; j)a

i
1)b

j
1

where �j(2n+1)(n; j) = 1 and �i(n; j) = 0 for i > j(2n+1). Note that according to
the theorem, in order to consider the n+ 1 case, we must assume j > n+ 1 and so
we have

Bn+1(Ta1 ; r(a1))(b
j
1) = An+1(Ta1 ; r(a1))Bn(Ta1 ; r(a1))(b

j
1)

= (T 2
a1
� (an+11 + a

�(n+1)
1 )Ta1 + 1)(a

j(2n+1)
1 bj1 + : : : )

where : : : indicates terms of lower degree. Thus the terms of highest degree in the
above are

T 2
a1
(a

j(2n+1)
1 bj1) = a

j(2n+1)
1 (a21b1)

j and

an+11 Ta1(a
j(2n+1)
1 bj1) = a

j(2n+1)
1 an+11 (a1b1)

j :

But since j > n+1 one checks that the �rst of these has the largest degree. Lemma
10.2 and Theorem 10.1 now both follow. �

Remark 10.3. We remark that Theorem 10.1 can easily be extended to the situation
of any orientable surface. In fact it can be generalised to any compact triangulated
orientable homology (4n+2)-manifold X (n � 0), where we consider the symplectic
structure on the cohomology group H2n+1(X;Q) given by the cup product.
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