INTERSECTION-NUMBER OPERATORS FOR CURVES ON DISCS II

Stephen P. Humphries

Abstract

Let the braid group B_{n} act as (isotopy classes of) diffeomorphisms of an n-punctured disc D_{n}. Then there is an action of B_{n} on a polynomial algebra $R=\mathbb{C}\left[a_{1}, \ldots, a_{N}\right]$ and a way of representing simple closed curves on D_{n} as elements of R. Fix $k \in 2 \mathbb{N}$. Using this approach we show that the image in $\operatorname{Aut}(\mathrm{R})$ of each Dehn twist τ about a simple closed γ in D_{n} satisfies a kind of characteristic equation when its action is restricted to the image in R of the set of curves γ having geometric intersection number k with γ.

AMS Classification: 57M50.

Key words: Intersection number, polynomial ring, braid group, simple closed curve.

§1. Introduction.

Let D_{n} be the disc with n punctures π_{1}, \ldots, π_{n} and let \mathcal{C}_{m} denote the set of isotopy classes of oriented simple closed curves on D_{n} which surround $m \geq 2$ of the punctures. Let $\mathcal{C}=\cup_{m=2}^{n} \mathcal{C}_{m}$. Then the braid group B_{n} acts as (isotopy classes of) diffeomorphisms of $D_{n}[\mathrm{Bi}, \mathrm{Ch} .1]$. In fact B_{n} acts transitively on \mathcal{C}_{m} for all $2 \leq m \leq n$. The group B_{n} has standard generators $\sigma_{1}, \ldots, \sigma_{n-1}$ and presentation

$$
\begin{gathered}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \text { for } i=1, \ldots, n-2 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad \text { for }|i-j|>1
\end{gathered}
$$

Here the generator σ_{i} acts as a half-twist [Bi] on D_{n} interchanging π_{i} and π_{i+1} and has a representative diffeomorphism which is supported in a tubular neighbourhood of the arc a_{i} (see Figure 1). For $1 \leq i<j \leq n$ let $\gamma_{i j}$ be a simple closed curve isotopic to the boundary of a tubular neighbourhood of $a_{i} \cup a_{i+1} \cup \cdots \cup a_{j-1}$. Given any $c, d \in \mathcal{C}$ we let $\iota(c, d)$ denote the geometric intersection-number of c and d. This is the minimum number of points of $c^{\prime} \cap d^{\prime}$, where c^{\prime} and d^{\prime} are any simple closed curves isotopic to c and d. Note that $\iota(c, d)$ is always even since D_{n} is planar.

Let R be a commutative ring with identity. In a previous paper [H2, §3] we have shown that by representing the free group $\pi_{1}\left(D_{n}\right)$ using transvections (see below) and looking at certain traces we obtain an injective map $\phi: \mathcal{C} \rightarrow R_{n}$, where

$$
R_{n}=R\left[a_{12}, a_{13}, \ldots, a_{1 n}, a_{21}, a_{23}, \ldots, a_{2 n}, \ldots, a_{n 1}, \ldots, a_{n n-1}\right]
$$

is a polynomial ring in commuting indeterminates $a_{i j}, 1 \leq i \neq j \leq n$. It will be convenient for us to put $a_{i i}=0$ for $i=1, \ldots, n$. In this situation we obtain an action of B_{n} on the ring R_{n} i.e. we have a homomorphism

$$
\psi_{n}: B_{n} \rightarrow \operatorname{Aut}\left(R_{n}\right)
$$

the kernel of ψ_{n} is the centre of $B_{n}[\mathrm{H} 1]$. We note that to each curve $\gamma \in \mathcal{C}_{m}$ there is a $1 / m$ twist τ_{γ} whose m th power is the Dehn twist [Bi] about the curve γ. In particular for $1 \leq k<m \leq n$ we have

$$
\tau_{\gamma_{k m}}=\sigma_{m-1} \ldots \sigma_{k+1} \sigma_{k}
$$

In general if $\gamma \in \mathcal{C}_{m}$, then there is $\alpha \in B_{n}$ such that $\alpha\left(\gamma_{1 m}\right)=\gamma$; in this situation we have $\tau_{\gamma}=\alpha \tau_{\gamma_{1 m}} \alpha^{-1}$. In this paper we prove:
Theorem 1.1. Let $n, m, r \in \mathbb{Z}, n \geq m \geq 2, r \geq 0$. Then there exist polynomials $\mathfrak{B}_{m r}(x) \in R_{n}[x]$ such that for all $\gamma \in \mathcal{C}$ with $\iota\left(\gamma_{1 m}, \gamma\right)=2 r$ we have

$$
\mathfrak{B}_{m r}\left(\psi_{n}\left(\tau_{\gamma_{1 m}}^{m}\right)\right) \phi(\gamma)=0
$$

Further, for $\gamma \in \mathcal{C}$ there is an integer $2 r$ such that $\mathfrak{B}_{m r}\left(\psi_{n}\left(\tau_{\gamma_{1 m}}^{m}\right)\right) \phi(\gamma)=0$ and the minimal such $2 r$ is equal to $\iota\left(\gamma_{1 m}, \gamma\right)$.

In part I of this paper [H4] we proved a slightly different version of this result, but only in the case $m=2$. The polynomials obtained were different from those that we obtain in Theorem 1.1 for $m=2$. The difference is best described by saying that the polynomials obtained in I for $m=2$ are like the minimal polynomials for the action of $\tau_{\gamma_{12}}^{2}$, while those obtained in Theorem 1.1 are like the characteristic equation.

The polynomials $\mathfrak{B}_{m r}$ can be determined algorithmically (see Examples 5.5). Since B_{n} acts transitively on $\mathcal{C}_{m}, m \leq n$ and $\gamma_{1 m} \in \mathcal{C}_{m}$ Theorem 1.1 gives and algorithm for calculating the intersection numbers $\iota\left(\gamma, \gamma^{\prime}\right)$ for any simple closed curves γ, γ^{\prime}. Existing algorithms for calculating intersection number include those of Reinhart [R], Zieschang [Z1, Z2], Chillingworth [C1, C2], Birman and Series [BS], Cohen and Lustig [CL] and Tan [T].

We now give some more information about these polynomials $\mathfrak{B}_{m r}$. For fixed $m \geq$ 2 we let $\Pi_{m}=T_{1} T_{2} \ldots T_{m}$ where the T_{i} are certain $m \times m$ matrices (transvections):

$$
T_{i}=\left(\begin{array}{ccccccc}
1 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ldots & \vdots & \vdots \\
a_{i 1} & a_{i 2} & \ldots & 1 & \ldots & a_{i m-1} & a_{i m} \\
\vdots & \vdots & \ldots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 1
\end{array}\right)
$$

where the non-zero off-diagonal entries occur in the i th row. Here a transvection $[\mathrm{A}]$ is a matrix $M=I_{m}+A$ where I_{m} is the $m \times m$ identity matrix, $\operatorname{det}(M)=1$ and $A^{2}=0$. In particular, conjugates of transvections are transvections.

Now in [H2, Theorem 2.8] we have shown that for all $2 \leq m \leq n$ the characteristic polynomial

$$
\chi_{m}(x)=\sum_{i=0}^{m} c_{m i} x^{i}
$$

of the matrix Π_{m} has coefficients $c_{m i}$ which are invariant under the action of B_{m}. We note that the $c_{m i}$ are polynomials of degree m for $1 \leq i<m[\mathrm{H} 2$; Theorem 2.8]. If $m<6$, then they generate the ring of invariants for the action of B_{m} on a certain subring of R_{m} [H3]. Note that we have $c_{m m}=1$ and $c_{m 0}=m$.

Theorem 1.2. Let $n \geq m \geq 2$ and $r \geq 0$. Then the coefficients of the polynomials $\mathfrak{B}_{m r}(x)$ are polynomials in $\mathbb{Q}\left[c_{m 1}, c_{m 2}, \ldots, c_{m-1 m}\right]$.

These polynomials have the property that $\mathfrak{B}_{m r}$ divides $\mathfrak{B}_{m s}$ whenever $r \leq s$. Also, if α is a root of $\mathfrak{B}_{m r}$ and β is a root of $\mathfrak{B}_{m s}$, then $\alpha \beta$ is a root of $\mathfrak{B}_{m(r+s)}$.

The representation of B_{n} in $\operatorname{Aut}\left(R_{n}\right)$ will be described in detail later, but should be thought of in the following way. Let $F_{n}=<x_{1}, \ldots, x_{n}>$ denote the free group of rank n, which we identify with the fundamental group of D_{n}. The Magnus expansion M of F_{n} [Ma, MKS] is defined as follows: Let \mathcal{P}_{n} be the algebra of formal power series in non-commutative variables X_{1}, \ldots, X_{n} over \mathbb{C}. Then M is the homomorphism $M: F_{n} \rightarrow \mathcal{P}_{n}$ given on generators by

$$
M\left(x_{i}\right)=1+X_{i}, \quad M\left(x_{i}^{-1}\right)=1-X_{i}+X_{i}^{2}-X_{i}^{3}+\ldots .
$$

Then M is injective, has connections with Fox's free differential calculus and is used to define interesting representations of the braid groups [Bi]. We obtain our representation of B_{n} in $\operatorname{Aut}\left(R_{n}\right)$ by looking at the situation where in \mathcal{P}_{n} we have the extra relations $X_{i}^{2}=0$ and $X_{i} X_{j}=X_{j} X_{i}$ for all $i, j=1, \ldots, n$. This is accomplished concretely by representing the free group F_{n} using transvections. The standard action of B_{n} on F_{n} [Bi] then gives rise to an action of B_{n} on R_{n} which is a homomorphic image of \mathcal{P}_{n}. This is all explained in more detail in $\S \S 2,4$. A quotient of this algebra was used by Milnor [Mi1, Mi2] to study links.

For $i, j, k, \ldots, r, s \in\{1,2, \ldots, n\}$ let $c_{i j k \ldots r s}$ denote the cycle $a_{i j} a_{j k} \ldots a_{r s} a_{s i} \in$ R_{n}. Then the cycles generate a subalgebra of R_{n} denoted Y_{n}. A cycle $c_{i j k \ldots r s}$ will be called simple if i, j, k, \ldots, r, s are all distinct. The ring Y_{n} is generated by the (finite number of) simple cycles. We also show

Theorem 1.3. For $m \geq 2$ and all $\alpha \in Y_{n}$ there is $r \in \mathbb{Z}$ such that

$$
\mathfrak{B}_{m r}\left(\psi_{n}\left(\tau_{\gamma_{1 m}}^{m}\right)\right)(\alpha)=0
$$

In what follows we will usually write $\mathfrak{B}_{m r}\left(\tau_{\gamma_{1 m}}^{m}\right)$ instead of $\mathfrak{B}_{m r}\left(\psi_{n}\left(\tau_{\gamma_{1 m}}^{m}\right)\right)$.

§2 Preliminary results on the action of B_{n} on R_{n}

In this section we construct the representation $\psi_{n}: B_{n} \rightarrow \operatorname{Aut}\left(R_{n}\right)$. In $\S 4$ we will give a more explicit description of the action.

Note that the action of B_{n} on D_{n} fixes the boundary of D_{n} and so there is an induced action of B_{n} on the fundamental group of D_{n} (where we choose a base point
p on the boundary of D_{n}). This fundamental group is the free group F_{n} of rank n. We choose a standard set of generators x_{1}, \ldots, x_{n} for F_{n}, where x_{i} is a simple closed curve enclosing the i th puncture π_{i} and such that $x_{1} x_{2} \ldots x_{n}$ is parallel to the boundary of D_{n}. See Figure 1.

Figure 1
In Figure 1 we have shown arcs a_{i} and the generators x_{i}. The action of B_{n} on the generators x_{i} is as follows: let $1 \leq j<n$; then

$$
\sigma_{j}\left(x_{i}\right)=x_{i} \quad \text { if } \quad i \neq j, j+1, \quad \sigma_{j}\left(x_{j}\right)=x_{j} x_{j+1} x_{j}^{-1}, \quad \sigma_{j}\left(x_{j+1}\right)=x_{j}
$$

We now find that a particularly convenient representation of the free group F_{n} is given by the transvections T_{i}. That $<T_{1}, \ldots, T_{n}>$ is a free group of rank n is shown in [H2]. This allows us to identify x_{i} and T_{i} for $i=1, \ldots, n$ and so to identify F_{n} and $<T_{1}, \ldots, T_{n}>$.

Now, from the above, B_{n} acts by automorphisms on F_{n} in such a way that for $\alpha \in B_{n}$ the matrix $\alpha\left(T_{i}\right)$ is a conjugate of some $T_{j}, 1 \leq j \leq n$ i.e. $\alpha\left(T_{i}\right)$ is also a transvection. Further, if $c \in \mathcal{C}$, then c represents a conjugacy class in F_{n} and so its trace is well-defined (the trace of the corresponding product of transvections in $\left.F_{n}=<T_{1}, \ldots, T_{n}>\right)$. In fact one easily sees that $\operatorname{trace}(c) \in Y_{n}[\mathrm{H} 1]$. Then a map $\phi=\phi_{n}: \mathcal{C} \rightarrow R_{n}$ is defined uniquely by

$$
\begin{equation*}
\phi_{n}(c)=\operatorname{trace}(c)-n \tag{2.1}
\end{equation*}
$$

Thus ϕ_{n} can be thought of as being defined on certain conjugacy classes of elements of F_{n} (namely those representing simple closed curves). The map ϕ can be extended to all of F_{n}, by the requirement that for $s \in F_{n}$ we have $\phi(s)=\operatorname{trace}(s)-n$. From [H1] (see also §4) we have
Lemma 2.1. If $w=T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} \ldots T_{i_{r}}^{k_{r}} \in<T_{1}, \ldots, T_{n}>$ where $r>1, k_{u} \neq 0, i_{u} \neq$ i_{u+1} for $u=1, \ldots, r-1$ and $i_{r} \neq i_{1}$, then $\phi(w)$ is a polynomial in Y_{n} of degree r with a unique monomial of highest degree.

Now for $m \geq n$ and $s \in F_{n}$ we may also consider s as an element of F_{m} under the natural inclusion of F_{n} in F_{m}. In this case we note that $\phi(s)$ has the same value whether we consider s as an element of F_{n} or F_{m}.

Now for all i, j we have $\operatorname{trace}\left(T_{i} T_{j}\right)=a_{i j} a_{j i}+n$ and in general if $A, B \in F_{n}$, then

$$
\operatorname{trace}\left(A T_{i} A^{-1} B T_{j} B^{-1}\right)=b_{i j} b_{j i}+n
$$

where $b_{i j} \in R_{n}$ (see $[\mathrm{H} 1]$ and $\S 4$). It is also easy to see that there is a natural choice so that

$$
b_{i j}=a_{i j}+\text { terms of higher degree. }
$$

Now for $\alpha \in B_{n}$ the image $\alpha\left(T_{i}\right)$ is a conjugate $A T_{j} A^{-1}$ for some $A \in F_{n}$ and $1 \leq j \leq n$. Here the action of α on the $a_{i j}$ is defined by

$$
\operatorname{trace}\left(\alpha\left(T_{i}\right) \alpha\left(T_{j}\right)\right)=\alpha\left(a_{i j}\right) \alpha\left(a_{j i}\right)+n
$$

(see $\S 4$ for more details) so that it has the following naturality property (with respect to the action of B_{n} on F_{n}): for all $w \in<T_{1}, \ldots, T_{n}>$ we have

$$
\phi(\alpha(w))=\alpha(\phi(w))
$$

For example the action of σ_{i} is given by

$$
\begin{align*}
& \sigma_{i}\left(a_{i+1}\right)=a_{i+1 i}, \quad \sigma_{i}\left(a_{i+1 i}\right)=a_{i i+1} \\
& \sigma_{i}\left(a_{h i}\right)=a_{h i+1}+a_{h i} a_{i i+1}, \quad \sigma_{i}\left(a_{h i+1}\right)=a_{h i} \tag{2.2}\\
& \sigma_{i}\left(a_{i h}\right)=a_{i+1 h}-a_{i+1 i} a_{i h}, \quad \sigma_{i}\left(a_{i+1 h}\right)=a_{i h}
\end{align*}
$$

where $1 \leq h \leq n$ and $h \neq i, i+1$.
It follows from [H1,Theorem 2.5 and Theorem 6.2] that the kernel of the action of B_{n} on R_{n} is the centre of B_{n} and that if B_{n} and R_{n} are thought of as sub-objects of B_{n+1} and R_{n+1} (respectively), then the action of B_{n} on R_{n+1} is faithful. The proof is essentially and application of Lemma 2.1. We note as in [H2] that there is a natural ring involution $*$ on R_{n} which commutes with the action of B_{n}, so that for $\alpha \in B_{n}$ we have

$$
\begin{equation*}
\alpha(w)^{*}=\alpha\left(w^{*}\right) \tag{2.3}
\end{equation*}
$$

for all $w \in R_{n}$. This involution is determined by its action on the generators $a_{i j}$ which is as follows:

$$
a_{i j}^{*}=-a_{j i} .
$$

This involution has the following property:

$$
\operatorname{trace}\left(A^{-1}\right)=\operatorname{trace}(A)^{*}
$$

for all $A \in F_{n}$. Thus for $c \in \mathcal{C}$ we have $\phi\left(c^{-1}\right)=\phi(c)^{*}$, where c^{-1} is the curve c with its orientation reversed. We also have $b_{j i}=-b_{i j}^{*}$, for $b_{i j}, b_{j i}$ as in (2.1).

$\S 3$ Preliminaries on symmetric functions

We will need the following results on symmetric functions; these results can all be found in $[\mathrm{M}]$.

Let a_{1}, \ldots, a_{n} be algebraically independent indeterminates. For $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ \mathbb{N}^{n} we let a^{α} denote the monomial

$$
a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{n}^{\alpha_{n}}
$$

Recall that a partition is a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ of non-negative integers such that $\lambda_{1} \geq \lambda_{2} \geq \ldots$ The number r is called the length of the partition and the weight of the partition λ is the sum $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{r}$. The polynomial

$$
m_{\lambda}\left(a_{1}, a_{2}, \ldots, a_{r}\right)=\sum a^{\alpha}
$$

where the sum is taken over all distinct permutations α of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$. The m_{λ} form a basis for the ring of symmetric polynomials in the variables a_{1}, \ldots, a_{r}.

The elementary symmetric functions e_{i} are defined as follows: for $r \geq 0$ let

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} a_{i_{1}} a_{i_{2}} \ldots a_{i_{r}}=m_{\left(1^{r}\right)} .
$$

For a partition λ we let

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \ldots e_{\lambda_{r}}
$$

Note that the degree of m_{λ} or e_{λ} is $|\lambda|$. The elementary symmetric functions satisfy:

$$
\prod_{i=1}^{r}\left(1-t a_{i}\right)=\sum_{i=0}^{r} e_{i}(-t)^{i}
$$

From [M, p.35] we get
Lemma 3.1. For all $r \geq 0$ we have:

$$
\begin{aligned}
\prod_{i, j=1}^{r}\left(1+a_{i} b_{j}\right) & =\sum_{\lambda} e_{\lambda}\left(a_{1}, \ldots, a_{r}\right) m_{\lambda}\left(b_{1}, \ldots, b_{r}\right) \\
& =\sum_{\lambda} m_{\lambda}\left(a_{1}, \ldots, a_{r}\right) e_{\lambda}\left(b_{1}, \ldots, b_{r}\right)
\end{aligned}
$$

Here the sum in the right hand side is over all partitions of weight at most r.
We note that since the μ_{λ} and the e_{λ} are both algebraically independent generators for the ring of symmetric polynomials, that it is possible to express the μ_{λ} as linear combinations of the e_{λ} with rational coefficients, and vice versa.

We have the following easy result:
Lemma 3.2. Suppose that p is a polynomial in $\mathbb{C}\left[a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{r}\right]$ of degree m in $a_{1}, a_{2}, \ldots, a_{n}$. Suppose that p is invariant under the natural action of S_{n} on $a_{1}, a_{2}, \ldots, a_{n}$. Then p is a polynomial in $\mathbb{C}\left[e_{\lambda}\left(a_{1}, a_{2}, \ldots, a_{n}\right), b_{1}, b_{2}, \ldots, b_{r}\right]$ where the degree of each of the $e_{\lambda}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ that we need is at most m.

$\S 4$ Action of B_{n} on R_{n} Continued

In this section we describe in greater detail the action of B_{n} on R_{n} as outlined in $\S 2$ so as to be able to give explicit formulae for the action of $\tau_{\gamma_{1 m}}^{m}$. In general $[\mathrm{A}]$ a transvection in $S L_{n}(Q)$ (for a commutative ring Q with identity) can be defined as a pair $T=(\phi, d)$ where $d \in Q^{n}$ and ϕ is an element of the dual space of Q^{n} satisfying $\phi(d)=0$. The action is given by

$$
T(x)=x+\phi(x) d \quad \text { for all } \quad x \in Q^{n} .
$$

Then we have [H1, Lemma 2.1]
Lemma 4.1. Let $T=(\phi, d)$ and $U=(\psi, e)$ be two transvections. Then for all $\lambda \in \mathbb{Z}$ we have

$$
U^{\lambda} T U^{-\lambda}=\left(\phi-\lambda \phi(e) \psi, U^{\lambda}(d)\right)
$$

Let $\left\{T_{1}=\left(\phi_{1}, d_{1}\right), \ldots, T_{n}=\left(\phi_{n}, d_{n}\right)\right\}$ be a fixed set of transvections in $S L_{n}\left(R_{n}\right)$ where $\phi_{i}\left(d_{j}\right)=a_{i j}$ for all $1 \leq i \neq j \leq n$. For any set of transvections $T=\left\{T_{1}=\right.$ $\left.\left(\phi_{1}, e_{1}\right), \ldots, T_{n}=\left(\phi_{n}, e_{n}\right)\right\}$ we let $M(T)$ denote the $n \times n$ matrix $\left(\phi_{i}\left(e_{j}\right)\right)$ and we call $M(T)$ the M-matrix of the set of transvections T.

Any monomial that can be written in the form $a_{j_{1} j_{2}} a_{j_{2} j_{3}} \ldots a_{j_{r-1} j_{r}}$ will be called a $j_{1} j_{r}$-word. Note that by (2.2) if $\alpha \in B_{n}$ and $1 \leq i \neq j \leq n$, then $\alpha\left(a_{i j}\right)$ is a sum of $r s$-words, where $\alpha\left(T_{i}\right)$ is a conjugate of T_{r} and $\alpha\left(T_{j}\right)$ is a conjugate of T_{s}. Let $\alpha \in B_{n}$ where $\alpha\left(T_{i}\right)=w_{i} T_{j} w_{i}^{-1}$ in freely reduced form for $i=1, \ldots, n$ and where $w_{i}=w_{i}\left(T_{1}, \ldots, T_{n}\right)$. Then for $i=1, \ldots, n$ we have $w_{i} T_{i} w_{i}^{-1}=\left(\psi_{i}, f_{i}\right)$ for some ψ_{i}, f_{i} determined by Lemma 4.1, which shows that

$$
\psi_{i}=q_{1} \phi_{1}+\cdots+q_{n} \phi_{n} \quad \text { and } \quad f_{i}=p_{1} d_{1}+\cdots+p_{n} d_{n}
$$

where $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n} \in R_{n}$. We define the action of B_{n} on R_{n} by

$$
\alpha\left(a_{i j}\right)=\psi_{i}\left(f_{j}\right)
$$

This agrees with the previous definition. Thus the M-matrix $M\left(\alpha\left(T_{1}\right), \ldots, \alpha\left(T_{n}\right)\right)$ is $\alpha(M(T))$.

From Lemma 2.3 of [H1] we have:
Lemma 4.2. Let $1 \leq i, j \leq n, \alpha \in B_{n}$ where $\alpha\left(T_{i}\right)=C_{1} T_{k} C_{1}^{-1}, \alpha\left(T_{j}\right)=C_{2} T_{p} C_{2}^{-1}$, with $C_{1}, C_{2} \in<T_{1}, \ldots, T_{n}>$ and let $C=C_{1}^{-1} C_{2}=T_{j_{1}}^{q_{1}} \ldots T_{j_{r}}^{q_{r}}$ be freely reduced with $j_{r} \neq p, j_{1} \neq k, q_{s} \neq 0$ for $s=1, \ldots, r$ and $j_{s} \neq j_{s+1}$, for $s=1, \ldots, r-1$. Then

$$
\alpha\left(a_{i j}\right)=\sum_{h=1}^{n} A_{h} a_{h p}
$$

where A_{h} is equal to the sum of all the products of the form

$$
q_{r_{1}} q_{r_{2}} \ldots q_{r_{m}} a_{k j_{r_{1}}} a_{j_{r_{1}} j_{r_{2}}} \ldots a_{j_{r_{m-1}} j_{r_{m}}}
$$

where $1 \leq r_{1}<r_{2}<\cdots<r_{m} \leq r$ and $j_{r_{m}}=h$. If $p \neq j_{r}$, then the summand of $\alpha\left(a_{i j}\right)$ of highest degree is unique and is equal to

$$
\pm q_{1} q_{2} \ldots q_{r} a_{k j_{1}} a_{j_{1} j_{2}} \ldots a_{j_{r-1} j_{r}} a_{j_{r} p}
$$

For example if $\alpha\left(T_{1}\right)=T_{3} T_{2}^{-1} T_{1} T_{2} T_{3}^{-1}$ and $\alpha\left(T_{2}\right)=T_{2}^{-1} T_{3} T_{2}$, then we would have $C=T_{2} T_{3}^{-1} T_{2}^{-1}$ and

$$
\alpha\left(a_{12}\right)=a_{13}+a_{13} a_{32} a_{23}+a_{12} a_{23} a_{32} a_{23}
$$

For each $m \geq 2$ we let $\tau_{m}=\tau_{\gamma_{1 m}}=\sigma_{m-1} \ldots \sigma_{2} \sigma_{1}$, the $1 / m$ twist about the curve $\gamma_{1, m}$. Then we have:
Lemma 4.3. (i) For all $1 \leq i \leq m$ we have

$$
\tau_{m}^{m}\left(x_{i}\right)=\left(x_{1} x_{2} \ldots x_{m}\right) x_{i}\left(x_{1} x_{2} \ldots x_{m}\right)^{-1}
$$

(ii) For all $1 \leq i \neq j \leq m$ we have $\tau_{m}^{m}\left(a_{i j}\right)=a_{i j}$;
(iii) For $1 \leq i \leq m<r \leq n$ we have

$$
\tau_{m}^{m}\left(a_{r i}\right)=a_{r i}+\sum_{s=1}^{m} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq m} a_{r j_{1}} a_{j_{1} j_{2}} a_{j_{2} j_{3}} \ldots a_{j_{s-1} j_{s}} a_{j_{s} i} .
$$

(iv) For $1 \leq i \leq m<r \leq n$ we have

$$
\tau_{m}^{m}\left(a_{i r}\right)=a_{i r}+\sum_{s=1}^{m} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq m}(-1)^{s} a_{i j_{s}} a_{j_{s} j_{s-1}} \ldots a_{j_{3} j_{2}} a_{j_{2} j_{1}} a_{j_{1} r}
$$

(v) For all $m<u \neq v \leq n$ we have $\tau_{m}\left(a_{u v}\right)=a_{u v}$.

Proof. (i) follows from the action of B_{n} given in $\S 2$. The rest all follow from (i) and Lemma 4.2.

For $y>m$ let v_{y} be the vector $\left(a_{y 1}, a_{y 2}, \ldots, a_{y m}\right)$. Let $w_{y}=\left(a_{1 y}, a_{2 y}, \ldots, a_{m y}\right)=$ $-v_{y}^{*}$. Then we have :
Lemma 4.4. For all $2 \leq m \leq n$ there is a $m \times m$ matrix $M_{m} \in S L\left(m, R_{m}\right)$ such that

$$
\tau_{m}^{h m}\left(v_{y}\right)=v_{y} M_{m}^{h}
$$

for all $h \in \mathbb{Z}$ and all $n \geq y>m$. In fact $M_{m}=T_{1} T_{2} \ldots T_{m}$.
We also have $\tau_{m}^{h m}\left(w_{y}\right)=w_{y}\left(M_{m}^{*}\right)^{h}$ for all $h \in \mathbb{Z}$.
Proof. Fix such a y. Consider the matrix $\Pi_{m}=T_{1} T_{2} \ldots T_{m}$. Its (i, k) entry is

$$
\sum_{s=0}^{m} \sum_{i \leq j_{1}<j_{2}<\cdots<j_{s} \leq m} a_{i j_{1}} a_{j_{1} j_{2}} \ldots a_{j_{s-1} j_{s}} a_{j_{s} k}
$$

But by Lemma 4.3 this is exactly equal to the coefficient of $a_{y i}$ in $\tau_{m}^{m}\left(a_{y k}\right)$, as required for $h=1$. But the entries of Π_{m} are invariant under the action of τ_{m}^{m} since these entries are in R_{m} (use Lemma 4.3 again). So we see that $\tau_{m}^{h m}\left(v_{y}\right)=v_{y} M_{m}^{h}$, for all $h \in \mathbb{Z}$.

Now $v_{y}^{*}=-w_{y}$ and if we apply the automorphism * to the equation $\tau_{m}^{h m}\left(v_{y}\right)=$ $v_{y} M_{m}^{h}$, and use (2.3), then we obtain $w_{y}\left(M_{m}^{*}\right)^{h}=\tau_{m}^{h m}\left(w_{y}\right)$ as required.

Lemma 4.5. The matrix $\Pi_{n}=T_{1} T_{2} \ldots T_{n}$ has n distinct roots.
Proof. Let T_{i}^{\prime} be the $n \times n$ matrix T_{i} with all the indeterminates $a_{i j}$ replaced by an indeterminate b_{i}. We prove by induction that there are positive real numbers b_{i} such that for all $m \geq 2$ the matrix $T_{1}^{\prime} T_{2}^{\prime} \ldots T_{m}^{\prime}$ has $n-m$ eigenvalues equal to 1 , the rest being distinct and not equal to 1 . The case $m=2$ is easy (take $b_{1}=b_{2}=1$). Now assume that $T_{1}^{\prime} T_{2}^{\prime} \ldots T_{m}^{\prime}, 2 \leq m<n$ satisfies the inductive hypothesis for some positive real choice of b_{1}, \ldots, b_{m}. Consider $P=T_{1}^{\prime} T_{2}^{\prime} \ldots T_{m}^{\prime} T_{m+1}^{\prime}$. Since $b_{1}, \ldots, b_{m}>0$, the matrix $T_{1}^{\prime} T_{2}^{\prime} \ldots T_{m}^{\prime}$ has all strictly positive entries in its first m rows. Thus the trace of P is a non-constant function of b_{m+1}. Thus the characteristic polynomial of P is a function which depends continuously and non-constantly on b_{m+1}. When $b_{m+1}=0$, this polynomial has m distinct roots not equal to 1 , and so we can choose b_{m+1} small enough so that P has $m+1$ distinct eigenvalues not equal to 1 . (In fact if one takes $b_{1}=1$ and $b_{i}=1 /(i-1)$ for $n \geq i \geq 2$, then the eigenvalues are $\frac{n-2}{n-1}, \frac{n-3}{n-2}, \ldots, \frac{2}{1}$ together with the two positive real and distinct roots of the quadratic $\left.z^{2}-(2 n-1) z+n-1\right)$.
Lemma 4.6. Suppose that the matrix $T_{1} T_{2} \ldots T_{n}$ has characteristic polynomial $\chi_{n}(x)$. Then the matrix $\left(T_{1} T_{2} \ldots T_{n}\right)^{*}$ has characteristic polynomial

$$
\chi_{n}(x)^{*}=(-x)^{n} \chi(1 / x) .
$$

The eigenvalues of $\left(T_{1} T_{2} \ldots T_{n}\right)^{*}$ are the inverses of the eigenvalues of $T_{1} T_{2} \ldots T_{n}$. Proof. The first claim is an immediate consequence of [H2; Corollary 2.7], which says that the same result is true for all matrices in $\left\langle T_{1}, \ldots, T_{n}\right\rangle$. The second claim follows from the first.

Now suppose that μ is a monomial in R_{n}. Then we can write $\mu=\mu_{1} \mu_{2} \mu_{3} \mu_{4}$ where each μ_{i} is a monomial with

$$
\begin{gather*}
\mu_{1} \in R_{m}, \quad \mu_{2} \in R\left[a_{i k} \mid 1 \leq i \leq m<k\right], \quad \mu_{3} \in R\left[a_{k i} \mid 1 \leq i \leq m<k\right] \\
\text { and } \mu_{4} \in R\left[a_{i k} \mid m<i, k \leq n\right] . \tag{4.1}
\end{gather*}
$$

Now τ_{m}^{m} fixes μ_{1} and μ_{4} and its action on the generators $a_{i k}$ occurring in μ_{2} and μ_{3} is given by Lemma 4.3. Further, we note that if $\mu \in Y_{n}$, then μ_{2} and μ_{3} have the same degrees.

§5 Kronecker products

We now wish to recall some elementary facts about Kronecker products of matrices. The basic reference is [HJ, §4.2]. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix and $B=\left(b_{i j}\right)$ be an $m \times m$ matrix. Then the Kronecker (or tensor) product $A \otimes B$ is the $n m \times n m$ block matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} B & a_{n 2} B & \ldots & a_{n n} B
\end{array}\right)
$$

This can be interpreted as follows: Suppose that A and B are the matrices of linear transformations $\alpha: V \rightarrow V$ and $\beta: W \rightarrow W$ acting on vector spaces V and W with respect to bases u_{i} and v_{i} (respectively). Then the action of $\alpha \otimes \beta$ on $V \otimes W$ with respect to the basis $u_{i} \otimes v_{j}$ is given by $A \otimes B$.

Lemma 5.1. [HJ; p. 245] If the eigenvalues of A are a_{1}, \ldots, a_{n} and the eigenvalues of B are b_{1}, \ldots, b_{m} (both counting multiplicities), then the eigenvalues of $A \otimes B$ are $a_{i} b_{j}$ for all $i=1, \ldots, n, j=1, \ldots, m$ (counting multiplicities).

We apply this to the situation where $y>m$ is fixed and τ_{m}^{m} is acting on the subring $R\left[a_{i y}, a_{y j} \mid 1 \leq i, j \leq m\right]$ of R_{n}. Then by Lemma $4.3 \tau_{m}^{m}$ fixes each element of R_{m} and there are matrices M_{m}, M_{m}^{*} such that $\tau_{m}^{m}\left(v_{y}\right)=v_{y} M_{m}$ and $\tau_{m}^{m}\left(w_{y}\right)=$ $w_{y} M_{m}^{*}$. But then, by the above remarks, the action of τ_{m}^{m} on products like $a_{i y} a_{y j}$ is completely determined by the Kronecker product $N_{m}=M_{m} \otimes M_{m}^{*}$. In fact, since the matrix M_{m} does not depend on y the Kronecker product N_{m} also determines the action of τ_{m}^{m} on products like $a_{i y} a_{z j}$ for all $n \leq y, z>m$. Thus we have

Lemma 5.2. Let $\chi_{N}(t)$ denote the characteristic polynomial of N_{m}. If we have a monomial $\mu=\mu_{1} \mu_{2} \mu_{3} \mu_{4} \in Y_{n}$ as in (4.1), where μ_{2} and μ_{3} have degree 1 , then

$$
\chi_{N}\left(\tau_{m}^{m}\right)(\mu)=0
$$

Proof. If $\mu=\mu_{1} \mu_{2} \mu_{3} \mu_{4}$, then τ_{m}^{m} fixes each of μ_{1} and μ_{4}; thus $\chi_{N}\left(\tau_{m}^{m}\right)(\mu)=$ $\mu_{1} \mu_{4} \chi_{N}\left(\tau_{m}^{m}\right)\left(\mu_{2} \mu_{3}\right)$, the latter being 0 by the above discussion.

Now the action of τ_{m}^{m} on an arbitrary monomial in Y_{n} is given by
Proposition 5.3. The action of τ_{m}^{m} on any monomial $\mu=\mu_{1} \mu_{2} \mu_{3} \mu_{4} \in Y_{n}$ where μ_{2} and μ_{3} have degree r is determined by the r-fold Kronecker product $N_{m}^{\otimes r}$. If $\chi_{N \otimes r}(t)$ denotes the characteristic polynomial of $N_{m}^{\otimes r}$, then

$$
\chi_{N \otimes r}\left(\tau_{m}^{m}\right)(\mu)=0
$$

Corollary 5.4. If $\alpha \in Y_{n}$, then there is $r \in \mathbb{Z}$ such that

$$
\chi_{N \otimes r}\left(\tau_{m}^{m}\right)(\alpha)=0
$$

This proves Theorem 1.3, since we can let

$$
\mathfrak{B}_{m 0}(x)=x-1 \quad \text { and } \quad \mathfrak{B}_{m r}(x)=\chi_{N \otimes r}(x) \quad \text { for } \quad r \geq 1 .
$$

We note that $\iota\left(\gamma_{1 m}, \gamma\right)=0$ if and only if $\tau_{m}^{m}(\gamma)=\gamma$ if and only if $\mathfrak{B}_{m 0}\left(\tau_{m}^{m}\right)(\phi(\gamma))=$ 0.

Now by Lemma 4.6 the eigenvalues of Π_{m} and Π_{m}^{*} are inverses of each other. Thus by Lemma 5.1 the matrix $N_{m}=M_{m} \otimes M_{m}^{*}$ has 1 as an eigen-value with multiplicity at least $m \geq 2$. Thus also from Lemma 5.1 we see that any root of $\chi_{N \otimes r}$ is also a root of $\chi_{N \otimes s}$ whenever $0 \leq r<s$. It also easily follows that if α is a root of $\chi_{N{ }^{\otimes r}}$ and β is a root of $\chi_{N^{\otimes s}}$, then $\alpha \beta$ is a root of $\chi_{N \otimes r+s}$. This is the proof of the second part of Theorem 1.2.

Examples 5.5. (i) If $m=2$, then we let $I=-2-a_{12} a_{21}$ so that $x^{2}+I x+1$ is the characteristic polynomial of M_{2}. It has roots $a, 1 / a$ say, since $\operatorname{det}\left(M_{2}\right)=1$. Then by Lemma $4.6 M_{2}^{*}$ also has roots $a, 1 / a$ and so $\chi_{N}(x)$ has roots $1,1, a^{2}, 1 / a^{2}$ (by Lemma 5.1). The roots of $\chi_{N \otimes r}(x)$ are thus all of the 4^{r} products $a_{1} a_{2} \ldots a_{r}$ for all possible $a_{i}=1,1, a^{2}, 1 / a^{2}$. To find $\chi_{N \otimes r}(x)$ one multiplies out

$$
\prod_{a_{1}, \ldots, a_{r}=1,1, a^{2}, 1 / a^{2}}\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{r}\right)
$$

and finds that this is a polynomial in x and I.
To be more specific we let $s_{0}(x)=x-1$ and for $i \geq 1$ we let

$$
s_{i}=\left(x-a^{2 i}\right)\left(x-1 / a^{2 i}\right)
$$

Thus for example, we have

$$
\begin{aligned}
& s_{1}(x)=x^{2}+\left(2-I^{2}\right) x+1 \\
& s_{2}(x)=x^{2}+\left(-2+4 I^{2}-I^{4}\right) x+1 \\
& s_{3}(x)=x^{2}+\left(2-9 I^{2}+6 I^{4}-I^{6}\right) x+1 \\
& s_{4}(x)=x^{2}+\left(-2+16 I^{2}-20 I^{4}+8 I^{6}-I^{8}\right) x+1
\end{aligned}
$$

The s_{i} are quadratic polynomials in x related to the polynomials \mathfrak{A}_{i} defined in [H4]. We have

$$
\mathfrak{B}_{20}(x)=s_{0}(x), \quad \mathfrak{B}_{21}(x)=s_{0}(x)^{2} s_{1}(x)
$$

By the above we see that $\mathfrak{B}_{2 m+1}(x)=\chi_{N \otimes m+1}(x)$ will factor into a product of the form

$$
\mathfrak{B}_{2 m}(x)^{2} C_{m 1}(x) C_{m 2}(x)
$$

where $C_{m 1}(x)$ (respectively $\left.C_{2 m}(x)\right)$ is obtained from $\mathfrak{B}_{2 m}(x)$ by replacing each root α of $\mathfrak{B}_{2 m}(x)$ by αa^{2} (respectively α / a^{2}). Thus each $\mathfrak{B}_{2 m}(x)$ is a product of powers of the $s_{i}(x)$. This has the effect of replacing $s_{0}(x)$ by $s_{1}(x), s_{1}(x)$ by $s_{0}(x)^{2} s_{2}(x)$, $s_{2}(x)$ by $s_{1}(x) s_{3}(x), s_{3}(x)$ by $s_{2}(x) s_{4}(x)$ etc. We obtain

$$
\begin{aligned}
& \mathfrak{B}_{21}(x)=s_{0}(x)^{2} s_{1}(x) \\
& \mathfrak{B}_{22}(x)=s_{0}(x)^{6} s_{1}(x)^{4} s_{2}(x) \\
& \mathfrak{B}_{23}(x)=s_{0}(x)^{20} s_{1}(x)^{15} s_{2}(x)^{6} s_{3}(x) ; \quad \text { etc. }
\end{aligned}
$$

Using the fact that $\mathfrak{B}_{2 m+1}(x)=\mathfrak{B}_{2 m}(x)^{2} C_{m 1}(x) C_{m 2}(x)$ for $C_{1 m}, C_{2 m}$ as described above one easily sees that the general result is

$$
\mathfrak{B}_{2 n}(x)=\prod_{i=0}^{n} s_{i}^{\binom{2 n}{n-i}}
$$

(ii) For the case $m=3$ we see that if M_{3} has roots a, b, c (which are distinct by Lemma 4.5), then $a b c=1$ since $\operatorname{det}\left(M_{3}\right)=1$. Further, M_{3}^{*} has roots $1 / a, 1 / b, 1 / c$
and so $N_{3}=M_{3} \otimes M_{3}^{*}$ has roots $1,1,1, \frac{a}{b}, \frac{a}{c}, \frac{b}{a}, \frac{b}{c}, \frac{c}{a}, \frac{c}{b}$ (by Lemma 5.1). This allows one to find that

$$
\begin{gathered}
\mathfrak{B}_{31}(x)=(x-1)^{3}\left[x^{6}+\left(3-p_{1} p_{2}\right)\left(x+x^{5}\right)+\left(6-5 p_{1} p_{2}+p_{1}^{3}+p_{2}^{3}\right)\left(x^{2}+x^{4}\right)\right. \\
\left.\quad+\left(7+2 p_{1}^{3}-6 p_{1} p_{2}-p_{1}^{2} p_{2}^{2}+2 p_{2}^{3}\right) x^{3}+1\right] \\
\begin{array}{c}
\mathfrak{B}_{32}(x)=(x-1)^{15}\left[x^{3}+\left(3 p_{1} p_{2}-p_{2}^{3}-3\right) x^{2}+\left(p_{1}^{3}-3 p_{1} p_{2}+3\right) x-1\right]^{2} \times \\
{\left[x^{3}+\left(-p_{1}^{3}+3 p_{1} p_{2}-3\right) x^{2}+\left(-3 p_{1} p_{2}+p_{2}^{3}+3\right) x-1\right]^{2} \times} \\
{\left[x^{6}+\left(3-p_{1} p_{2}\right)\left(x+x^{5}\right)+\left(6-5 p_{1} p_{2}+p_{1}^{3}+p_{2}^{3}\right)\left(x^{2}+x^{4}\right)\right.} \\
\\
\left.\quad+\left(7+2 p_{1}^{3}-6 p_{1} p_{2}-p_{1}^{2} p_{2}^{2}+2 p_{2}^{3}\right) x^{3}+1\right]^{8} \times \\
{\left[x^{6}+\left(2 p_{1}^{3}-p_{1}^{2} p_{2}^{2}-4 p_{1} p_{2}+2 p_{2}^{3}+3\right)\left(x+x^{5}\right)\right.} \\
+\left(p_{1}^{6}-6 p_{1}^{4} p_{2}+2 p_{1}^{3}+19 p_{1}^{2} p_{2}^{2}-6 p_{1} p_{2}^{4}-20 p_{1} p_{2}+p_{2}^{6}+2 p_{2}^{3}+6\right)\left(x^{2}+x^{4}\right) \\
+\left(-2 p_{1}^{6}+4 p_{1}^{5} p_{2}^{2}-p_{1}^{4} p_{2}^{4}+4 p_{1}^{4} p_{2}-16 p_{1}^{3} p_{2}^{3}-4 p_{1}^{3}+4 p_{1}^{2} p_{2}^{5}+26 p_{1}^{2} p_{2}^{2}+4 p_{1} p_{2}^{4}\right. \\
\\
\\
\left.\left.\quad 24 p_{1} p_{2}-2 p_{2}^{6}-4 p_{2}^{3}+7\right) x^{3}+1\right] .
\end{array}
\end{gathered}
$$

where $p_{1}=a_{12} a_{21}+a_{13} a_{31}+a_{23} a_{32}-a_{13} a_{32} a_{21}$ and $p_{2}=-p_{1}^{*}$. As in the case $m=2$ one can find a (more complicated) recursion for the polynomials $\mathfrak{B}_{3 n}(x)$.
(iii) For $m=4$ similar reasoning allows one to find that

$$
\begin{aligned}
\mathfrak{B}_{41}(x)= & (x-1)^{4}\left[\left(1+x^{12}\right)+\left(x+x^{11}\right)\left(-p_{2} p_{3}+4\right)\right. \\
& +\left(x^{2}+x^{10}\right)\left(-2 p_{1}^{2}+p_{1} p_{2}^{2}+p_{1} p_{3}^{2}-4 p_{2} p_{3}+10\right) \\
& +\left(x^{3}+x^{9}\right)\left(-p_{1}^{2} p_{2} p_{3}-8 p_{1}^{2}+7 p_{1} p_{2}^{2}+7 p_{1} p_{3}^{2}-p_{2}^{4}-13 p_{2} p_{3}-p_{3}^{4}+20\right) \\
& +\left(x^{4}+x^{8}\right)\left(p_{1}^{4}-8 p_{1}^{2} p_{2} p_{3}-16 p_{1}^{2}+p_{1} p_{2}^{3} p_{3}+18 p_{1} p_{2}^{2}\right. \\
& \left.\quad+p_{1} p_{2} p_{3}^{3}+18 p_{1} p_{3}^{2}-3 p_{2}^{4}-p_{2}^{2} p_{3}^{2}-24 p_{2} p_{3}-3 p_{3}^{4}+31\right) \\
& +\left(x^{5}+x^{7}\right)\left(4 p_{1}^{4}-p_{1}^{3} p_{2}^{2}-p_{1}^{3} p_{3}^{2}-19 p_{1}^{2} p_{2} p_{3}-24 p_{1}^{2}+5 p_{1} p_{2}^{3} p_{3}+29 p_{1} p_{2}^{2}\right. \\
& \left.\quad+5 p_{1} p_{2} p_{3}^{3}+29 p_{1} p_{3}^{2}-6 p_{2}^{4}-p_{2}^{3} p_{3}^{3}-2 p_{2}^{2} p_{3}^{2}-34 p_{2} p_{3}-6 p_{3}^{4}+40\right) \\
& +x^{6}\left(6 p_{1}^{4}-2 p_{1}^{3} p_{2}^{2}-2 p_{1}^{3} p_{3}^{2}+p_{1}^{2} p_{2}^{2} p_{3}^{2}-24 p_{1}^{2} p_{2} p_{3}-28 p_{1}^{2}+6 p_{1} p_{2}^{3} p_{3}\right. \\
& \left.\left.+34 p_{1} p_{2}^{2}+6 p_{1} p_{2} p_{3}^{3}+34 p_{1} p_{3}^{2}-7 p_{2}^{4}-2 p_{2}^{3} p_{3}^{3}-40 p_{2} p_{3}-7 p_{3}^{4}+44\right)\right] .
\end{aligned}
$$

Here

$$
\begin{aligned}
p_{3}= & -a_{21} a_{14} a_{43} a_{32}+a_{13} a_{32} a_{21}+a_{21} a_{14} a_{42}+a_{31} a_{14} a_{43}+a_{32} a_{24} a_{43}-a_{12} a_{21} \\
& \quad-a_{13} a_{31}-a_{23} a_{32}-a_{14} a_{41}-a_{24} a_{42}-a_{34} a_{43}-4, \\
p_{1}= & a_{23} a_{32} a_{14} a_{41}-a_{13} a_{32} a_{24} a_{41}-a_{23} a_{31} a_{14} a_{42}+a_{13} a_{31} a_{24} a_{42} \\
& -a_{13} a_{34} a_{42} a_{21}-a_{12} a_{24} a_{43} a_{31}+a_{12} a_{21} a_{34} a_{43}+a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32} \\
\quad & \quad+a_{12} a_{24} a_{41}+a_{13} a_{34} a_{41}-a_{21} a_{14} a_{42}+a_{23} a_{34} a_{42}-a_{31} a_{14} a_{43} \\
- & a_{32} a_{24} a_{43}+2 a_{12} a_{21}+2 a_{13} a_{31}+2 a_{23} a_{32}+2 a_{14} a_{41}+2 a_{24} a_{42}+2 a_{34} a_{43}+6, \\
p_{2}= & p_{3}^{*} .
\end{aligned}
$$

These examples, together with other calculations made in the preparation of this paper, were accomplished using MAGMA [MA].

As we are seeing in these examples, the coefficients of $\mathfrak{B}_{m r}(x)$ are polynomials in the coefficients of $\chi_{M_{m}}(x)$, as stated in Theorem 1.2. That this is the case in general follows from Lemma 3.2 and Lemma 5.2 applied to $N_{m}=M_{m} \otimes M_{m}^{*}$.

§6 Geometric intersection numbers of curves on a disc

Let $\gamma, \gamma^{\prime} \in \mathcal{C}$. We wish to find the geometric intersection number $\iota\left(\gamma, \gamma^{\prime}\right)$. Since B_{n} acts transitively on each \mathcal{C}_{m} we may without loss assume that $\gamma^{\prime}=\gamma_{1 m}$ for some $m \geq 2$. For $i=1, \ldots, n$ let b_{i} denote a vertical arc in D_{n} meeting the arc a_{i} exactly once, meeting no other $a_{j}, j \neq i$, and with its endpoints on the boundary of D_{n}. Then $D_{n} \backslash b_{i}$ has two components, one containing the $\operatorname{arcs} a_{1}, \ldots, a_{i-1}$ and part of a_{i}. This component we will think of as the disc D_{m}, so that $\gamma_{1 m}$ is the boundary curve of $D_{m} \subset D_{n}$.

Let μ denote the monomial of greatest degree in $\phi_{n}(\gamma)$ and write $\mu=\mu_{1} \mu_{2} \mu_{3} \mu_{4}$ as we have done in (4.1). Write $\mu=\mu(\gamma), \mu_{i}=\mu_{i}(\gamma)$. We note that $\phi(\gamma) \in Y_{n}$ and so $\operatorname{deg}\left(\mu_{2}\right)=\operatorname{deg}\left(\mu_{3}\right)$. Then we have
Proposition 6.1. For $\gamma \in \mathcal{C}$ we have

$$
\iota\left(\gamma_{1 m}, \gamma\right)=\operatorname{degree}\left(\mu_{2}(\gamma) \mu_{3}(\gamma)\right)=2 \operatorname{degree}\left(\mu_{2}(\gamma)\right)
$$

Proof. We may assume that γ meets $\gamma_{1 m}$ in $\iota\left(\gamma_{1 m}, \gamma\right)$ points. Then, since $\gamma_{1 m}$ is the boundary curve of $D_{m} \subset D_{n}$, we see that γ meets b_{m} in exactly $\iota\left(\gamma_{1, m}, \gamma\right)$ points. Now let $w \in<T_{1}, \ldots, T_{n}>$ be a cyclically reduced word representing γ. Then we can write

$$
w=w_{1} y_{1} w_{2} y_{2} \ldots w_{k} y_{k} \quad \text { where } \quad w_{i} \in<T_{1}, \ldots, T_{m}>, \quad y_{i} \in<T_{m+1}, \ldots, T_{n}>
$$

Here we may assume that w_{i} and y_{i} are all non-trivial. Now using Lemma 4.2 we see that $\phi(\gamma)=\operatorname{trace}(w)-n$ is a sum of monomials of the form

$$
\pm m_{1} a_{i_{1} j_{1}} m_{1}^{\prime} a_{j_{1}^{\prime} i_{1}^{\prime}}^{\prime} m_{2} a_{i_{2} j_{2}} m_{2}^{\prime} a_{j_{2}^{\prime} i_{2}^{\prime}} \ldots m_{h} a_{i_{h} j_{h}} m_{h}^{\prime} a_{j_{h}^{\prime} i_{h}^{\prime}}
$$

where each m_{i} is a monomial in R_{m}, each monomial m_{i}^{\prime} is in $R\left[a_{u v} \mid m<u, v \leq n\right]$ and $1 \leq i_{r}, i_{r}^{\prime} \leq m<j_{r}, j_{r}^{\prime} \leq n$ for all $1 \leq r \leq h \leq k$. We note that $\iota\left(\gamma_{1 m}, \gamma\right)=2 k$ since for every adjacent pair of words $w_{1} y_{1}, y_{1} w_{2}, \ldots, w_{k} y_{k}, y_{k} w_{1}$ in w the curve γ must cross the arc b_{m} and conversely, each crossing must correspond to one of these pairs of adjacent words in w. This proves the result.

Thus if $\iota\left(\gamma_{1 m}, \gamma\right)=2 k$, then by the proposition 5.3 we see that $\mathfrak{B}_{m k}\left(\tau_{m}^{m}\right)(\phi(\gamma))=$ 0 . This proves the first part of Theorem 1.1.

Now the above argument never used the fact that γ was simple closed curve, so what we have proved is
Proposition 6.2. Let γ be any closed curve on the disc D_{n} and let

$$
w=T_{i_{1}}^{ \pm 1} T_{i_{2}}^{ \pm 1} \ldots T_{i_{k}}^{ \pm 1} \in<T_{1}, \ldots, T_{n}>
$$

be any cyclically reduced word representing γ. Then the geometric intersection number $\iota\left(\gamma_{1 m}, \gamma\right)$ is equal to the number of $j \leq k$ such that $i_{j} \leq m$ and $i_{j+1}>m$ or $i_{j}>m$ and $i_{j+1} \leq m$ (indices taken mod k). Further, if $2 r=\iota\left(\gamma_{1 m}, \gamma\right)$, then $\mathfrak{B}_{m r}\left(\tau_{m}^{m}\right)(\phi(\gamma))=0$.

In order to conclude the proof of Theorem 1.1 it will suffice to prove

Proposition 6.3. For all $m \geq 2$ and $r \geq 1$ we have

$$
\mathfrak{B}_{m r}\left(\tau_{m}^{m}\right)\left(\left(a_{1 m+1} a_{m+11}\right)^{r+1}\right) \neq 0
$$

Proof. One checks the following facts about degrees using Lemma 4.3:
(i) $\operatorname{deg}\left(\tau_{m}^{k m}\left(a_{1 m+1}\right)\right)=k m+1$;
(ii) $\operatorname{deg}\left(\tau_{m}^{k m}\left(a_{1 m+1} a_{m+11}\right)\right)=2(k m+1)$;
(iii) $\mathfrak{B}_{m r}(x)$ has degree $m^{2 r}$ in the variable x;
(iv) $\operatorname{deg}\left(\left(\tau_{m}^{m}\right)^{m^{2 r}}\left(a_{1 m+1} a_{m+11}\right)\right)=2\left(m^{2 r} m+1\right)$.

We also have
(v) The coefficient of $x^{m^{2 r}-k}$ in $\mathfrak{B}_{m r}(x)$ is a polynomial in the $a_{i j}$ of degree no greater than $2 r m k$.

To see this last fact we note as in $\S 5$ that if a_{i} are the eigenvalues of $M_{m}=$ $T_{1} \ldots T_{m}$, and if a_{i}^{\prime} are the eigenvalues of M^{*}, then $a_{i} a_{j}^{\prime}$ are the eigenvalues of $N_{m}=$ $M_{m} \otimes M_{m}^{*}$ and $a_{i_{1}} a_{j_{1}}^{\prime} a_{i_{2}} a_{j_{2}}^{\prime} \ldots a_{i_{k}} a_{j_{k}}^{\prime}$ are the eigenvalues of $N_{m}^{\otimes k}$. Thus the coefficient of $x^{m^{2 r}-k}$ in $\mathfrak{B}_{m r}(x)$ is the sum of all terms of the form $a_{i_{1}} a_{j_{1}}^{\prime} a_{i_{2}} a_{j_{2}}^{\prime} \ldots a_{i_{k}} a_{j_{k}}^{\prime}$. Such a sum is clearly invariant under the action of $S_{m} \times S_{m}$ and so is a polynomial in the coefficients of the characteristic polynomial of M and M^{*} (use Lemma 3.2). This polynomial has degree $2 k$ (use Lemma 3.2 again) as a polynomial in these coefficients and so has degree $2 m k$ as a polynomial in the $a_{i j}$ (since, as noted in $\S 1$, the coefficients of the characteristic polynomial of M have degree m in R_{n}). This proves statement (v).

Continuing with the proof of Proposition 6.3 we see that if c_{k} is the coefficient of $x^{m^{2 r}-k}$ in $\mathfrak{B}_{m r}(x)$, then

$$
\operatorname{deg}\left(c_{k}\left(\tau_{m}^{m}\right)^{m^{2 r}-k}\left(\left(a_{1 m+1} a_{m+11}\right)^{r+1}\right)\right) \leq 2 m r k+(r+1)\left(2\left(\left(m^{2 r}-k\right) m+1\right)\right)
$$

for all $k \geq 0$ and where we have equality for $k=0$. It follows that

$$
\operatorname{deg}\left(\left(\tau_{m}^{m}\right)^{m^{2 r}}\left(\left(a_{1 m+1} a_{m+11}\right)^{r+1}\right)\right)-\operatorname{deg}\left(c_{k}\left(\tau_{m}^{m}\right)^{m^{2 r}-k}\left(\left(a_{1 m+1} a_{m+11}\right)^{r+1}\right)\right) \geq 2 m k
$$

This proves Proposition 6.3 and concludes the proof of Theorem 1.1.
Remark 6.4. Suppose that γ is a multicurve on D_{n} i.e. γ is the disjoint union of simple closed curves on D_{n}. Then the orbit of γ under the action of B_{n} contains a curve of the form $\gamma_{i_{1} j_{1}} \cup \gamma_{i_{2} j_{2}} \cup \cdots \cup \gamma_{i_{s} j_{s}}$ where $i_{k}<j_{k}$ for all k and the intervals [$\left.i_{k}, j_{k}\right]$ satisfy

$$
\left[i_{u}, j_{u}\right] \cap\left[i_{v}, j_{v}\right]=\emptyset \quad \text { or } \quad\left[i_{u}, j_{u}\right] \subset\left[i_{v}, j_{v}\right] \quad \text { or } \quad\left[i_{v}, j_{v}\right] \subset\left[i_{u}, j_{u}\right] .
$$

Thus we can, without loss, assume that γ is the above multicurve.
Now if $\gamma^{\prime} \in \mathcal{C}$, then we let $r_{k}=\iota\left(\gamma_{i_{k} j_{k}}, \gamma^{\prime}\right)$. From Theorem 1.1 it follows that

$$
\left[\mathfrak{B}_{j_{1}-i_{1}+1 r_{1}}\left(\tau_{\gamma_{i_{1} j_{1}}}\right)+\cdots+B_{j_{s}-i_{s}+1 r_{s}}\left(\tau_{\gamma_{i_{s} j_{s}}}\right)\right](\phi(\gamma))=0 .
$$

References

[A] Artin E., Geometric Algebra, New York: Interscience, 1957.
[Bi] Birman J., Braids, Links and Mapping class Groups, Ann. Math. Studies 82 (1974).
[BS] Birman, J. S.; Series, C., An algorithm for simple curves on surfaces., J. London Math. Soc. (2) 29 (1984 no. 2,), 331-342.
[C1] Chillingworth, D. R. J., Simple closed curves on surfaces., Bull. London Math. Soc. 1 (1969), 310-314..
[C2] , An algorithm for families of disjoint simple closed curves on surfaces., Bull. London Math. Soc. 3 (1971), 23-26.
[CL] Cohen, M. Lustig, M., Paths of geodesics and geometric intersection numbers. I., Combinatorial group theory and topology, Princeton Univ. Press., 1984, pp. 479-500 Ann. of Math. Stud. 111.
[HJ] Horn R.A. Johnson C.R., Topics in Matrix Analysis, Cambridge Univ. Press, 1991.
[H1] Humphries S. P., An Approach to Automorphisms of Free Groups and Braids via Transvections, Math. Zeit. 209 (1992), 131-152.
[H2] , A new characterisation of Braid Groups and rings of invariants for symmetric automorphism groups, Math. Zeit. 224 (1997), 255-287.
[H3] , Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications 95 (1999), 173-205.
[H4] , Intersection-number operators for curves on discs and Chebyshev polynomials, preprint (1998).
[M] MacDonald I. G., Symmetric functions and Hall polynomials., Oxford Univ. Press, 1979.
[MA] Bosma W., Cannon J., MAGMA (University of Sydney), 1994.
[Ma] Magnus W., Rings of Fricke Characters and Automorphism groups of Free groups, Math. Zeit. 170 (1980), 91-103.
[Mi1] Milnor, J., Isotopy of links. Algebraic geometry and topology., A symposium in honor of S. Lefschetz,, Princeton University Press,, 1957, pp. 280-306..
[Mi2] —, Link groups., Ann. of Math. 59, (1954), 177-195.
[MKS] Magnus W., Karrass A., Solitar D., Combinatorial Group Theory, Dover, 1976.
[R] Reinhart, B. L., Algorithms for Jordan curves on compact surfaces., Ann. of Math. (2) 75 (1962), 209-222.
[T] Tan, S. P., Self-intersections of curves on surfaces., Geom. Dedicata 62 (1996 no. 2,), 209-225.
[Z1] Zieschang, H., Algorithmen für einfache Kurven auf Fächen., Math. Scand. 17 (1965), 17-40.
[Z2] , Algorithmen für einfache Kurven auf Flächen. II., Math. Scand. 25 (1969), 49-58.

