INTERSECTION-NUMBER OPERATORS FOR CURVES ON DISCS II

STEPHEN P. HUMPHRIES

ABSTRACT. Let the braid group B_n act as (isotopy classes of) diffeomorphisms of an *n*-punctured disc D_n . Then there is an action of B_n on a polynomial algebra $R = \mathbb{C}[a_1, \ldots, a_N]$ and a way of representing simple closed curves on D_n as elements of R. Fix $k \in 2\mathbb{N}$. Using this approach we show that the image in Aut(R) of each Dehn twist τ about a simple closed γ in D_n satisfies a kind of characteristic equation when its action is restricted to the image in R of the set of curves γ having geometric intersection number k with γ .

AMS Classification: 57M50.

Key words: Intersection number, polynomial ring, braid group, simple closed curve.

§1. INTRODUCTION.

Let D_n be the disc with n punctures π_1, \ldots, π_n and let \mathcal{C}_m denote the set of isotopy classes of oriented simple closed curves on D_n which surround $m \ge 2$ of the punctures. Let $\mathcal{C} = \bigcup_{m=2}^n \mathcal{C}_m$. Then the braid group B_n acts as (isotopy classes of) diffeomorphisms of D_n [Bi, Ch.1]. In fact B_n acts transitively on \mathcal{C}_m for all $2 \le m \le n$. The group B_n has standard generators $\sigma_1, \ldots, \sigma_{n-1}$ and presentation

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \text{ for } i = 1, \dots, n-2$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \quad \text{for } |i-j| > 1.$$

Here the generator σ_i acts as a half-twist [Bi] on D_n interchanging π_i and π_{i+1} and has a representative diffeomorphism which is supported in a tubular neighbourhood of the arc a_i (see Figure 1). For $1 \leq i < j \leq n$ let γ_{ij} be a simple closed curve isotopic to the boundary of a tubular neighbourhood of $a_i \cup a_{i+1} \cup \cdots \cup a_{j-1}$. Given any $c, d \in \mathcal{C}$ we let $\iota(c, d)$ denote the geometric intersection-number of c and d. This is the minimum number of points of $c' \cap d'$, where c' and d' are any simple closed curves isotopic to c and d. Note that $\iota(c, d)$ is always even since D_n is planar.

Let R be a commutative ring with identity. In a previous paper [H2, §3] we have shown that by representing the free group $\pi_1(D_n)$ using transvections (see below) and looking at certain traces we obtain an injective map $\phi : \mathcal{C} \to R_n$, where

$$R_n = R[a_{12}, a_{13}, \dots, a_{1n}, a_{21}, a_{23}, \dots, a_{2n}, \dots, a_{n1}, \dots, a_{n n-1}]$$

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

STEPHEN P. HUMPHRIES

is a polynomial ring in commuting indeterminates a_{ij} , $1 \le i \ne j \le n$. It will be convenient for us to put $a_{ii} = 0$ for i = 1, ..., n. In this situation we obtain an action of B_n on the ring R_n i.e. we have a homomorphism

$$\psi_n: B_n \to Aut(R_n);$$

the kernel of ψ_n is the centre of B_n [H1]. We note that to each curve $\gamma \in \mathcal{C}_m$ there is a 1/m twist τ_{γ} whose *m*th power is the Dehn twist [Bi] about the curve γ . In particular for $1 \leq k < m \leq n$ we have

$$\tau_{\gamma_{km}} = \sigma_{m-1} \dots \sigma_{k+1} \sigma_k.$$

In general if $\gamma \in C_m$, then there is $\alpha \in B_n$ such that $\alpha(\gamma_{1m}) = \gamma$; in this situation we have $\tau_{\gamma} = \alpha \tau_{\gamma_{1m}} \alpha^{-1}$. In this paper we prove:

Theorem 1.1. Let $n, m, r \in \mathbb{Z}, n \geq m \geq 2, r \geq 0$. Then there exist polynomials $\mathfrak{B}_{mr}(x) \in R_n[x]$ such that for all $\gamma \in \mathcal{C}$ with $\iota(\gamma_{1m}, \gamma) = 2r$ we have

$$\mathfrak{B}_{mr}(\psi_n(\tau^m_{\gamma_{1m}}))\phi(\gamma) = 0.$$

Further, for $\gamma \in \mathcal{C}$ there is an integer 2r such that $\mathfrak{B}_{mr}(\psi_n(\tau^m_{\gamma_{1m}}))\phi(\gamma) = 0$ and the minimal such 2r is equal to $\iota(\gamma_{1m}, \gamma)$.

In part I of this paper [H4] we proved a slightly different version of this result, but only in the case m = 2. The polynomials obtained were different from those that we obtain in Theorem 1.1 for m = 2. The difference is best described by saying that the polynomials obtained in I for m = 2 are like the minimal polynomials for the action of $\tau^2_{\gamma_{12}}$, while those obtained in Theorem 1.1 are like the characteristic equation.

The polynomials \mathfrak{B}_{mr} can be determined algorithmically (see Examples 5.5). Since B_n acts transitively on $\mathcal{C}_m, m \leq n$ and $\gamma_{1m} \in \mathcal{C}_m$ Theorem 1.1 gives and algorithm for calculating the intersection numbers $\iota(\gamma, \gamma')$ for any simple closed curves γ, γ' . Existing algorithms for calculating intersection number include those of Reinhart [R], Zieschang [Z1, Z2], Chillingworth [C1, C2], Birman and Series [BS], Cohen and Lustig [CL] and Tan [T].

We now give some more information about these polynomials \mathfrak{B}_{mr} . For fixed $m \geq 2$ we let $\Pi_m = T_1 T_2 \dots T_m$ where the T_i are certain $m \times m$ matrices (transvections):

	1	0	• • •	0	• • •	0	0 \
	0	1		0		0	0
	÷	:	·	:		•	÷
$T_i =$	a_{i1}	a_{i2}		1		a_{im-1}	a_{im}
	:	:		÷	·	÷	÷
	0	0		0		1	0
	0	0		0		0	1/

where the non-zero off-diagonal entries occur in the *i*th row. Here a transvection [A] is a matrix $M = I_m + A$ where I_m is the $m \times m$ identity matrix, det(M) = 1 and $A^2 = 0$. In particular, conjugates of transvections are transvections.

Now in [H2, Theorem 2.8] we have shown that for all $2 \le m \le n$ the characteristic polynomial

$$\chi_m(x) = \sum_{i=0}^m c_{mi} x^i$$

of the matrix Π_m has coefficients c_{mi} which are invariant under the action of B_m . We note that the c_{mi} are polynomials of degree m for $1 \leq i < m$ [H2; Theorem 2.8]. If m < 6, then they generate the ring of invariants for the action of B_m on a certain subring of R_m [H3]. Note that we have $c_{mm} = 1$ and $c_{m0} = m$.

Theorem 1.2. Let $n \ge m \ge 2$ and $r \ge 0$. Then the coefficients of the polynomials $\mathfrak{B}_{mr}(x)$ are polynomials in $\mathbb{Q}[c_{m1}, c_{m2}, \ldots, c_{m-1m}]$.

These polynomials have the property that \mathfrak{B}_{mr} divides \mathfrak{B}_{ms} whenever $r \leq s$. Also, if α is a root of \mathfrak{B}_{mr} and β is a root of \mathfrak{B}_{ms} , then $\alpha\beta$ is a root of $\mathfrak{B}_{m(r+s)}$.

The representation of B_n in $Aut(R_n)$ will be described in detail later, but should be thought of in the following way. Let $F_n = \langle x_1, \ldots, x_n \rangle$ denote the free group of rank n, which we identify with the fundamental group of D_n . The Magnus expansion M of F_n [Ma, MKS] is defined as follows: Let \mathcal{P}_n be the algebra of formal power series in non-commutative variables X_1, \ldots, X_n over \mathbb{C} . Then M is the homomorphism $M: F_n \to \mathcal{P}_n$ given on generators by

$$M(x_i) = 1 + X_i, \quad M(x_i^{-1}) = 1 - X_i + X_i^2 - X_i^3 + \dots$$

Then M is injective, has connections with Fox's free differential calculus and is used to define interesting representations of the braid groups [Bi]. We obtain our representation of B_n in $Aut(R_n)$ by looking at the situation where in \mathcal{P}_n we have the extra relations $X_i^2 = 0$ and $X_i X_j = X_j X_i$ for all $i, j = 1, \ldots, n$. This is accomplished concretely by representing the free group F_n using transvections. The standard action of B_n on F_n [Bi] then gives rise to an action of B_n on R_n which is a homomorphic image of \mathcal{P}_n . This is all explained in more detail in §§2, 4. A quotient of this algebra was used by Milnor [Mi1, Mi2] to study links.

For $i, j, k, \ldots, r, s \in \{1, 2, \ldots, n\}$ let $c_{ijk\ldots rs}$ denote the cycle $a_{ij}a_{jk}\ldots a_{rs}a_{si} \in R_n$. Then the cycles generate a subalgebra of R_n denoted Y_n . A cycle $c_{ijk\ldots rs}$ will be called *simple* if i, j, k, \ldots, r, s are all distinct. The ring Y_n is generated by the (finite number of) simple cycles. We also show

Theorem 1.3. For $m \ge 2$ and all $\alpha \in Y_n$ there is $r \in \mathbb{Z}$ such that

$$\mathfrak{B}_{mr}(\psi_n(\tau^m_{\gamma_1 m}))(\alpha) = 0.$$

In what follows we will usually write $\mathfrak{B}_{mr}(\tau^m_{\gamma_{1m}})$ instead of $\mathfrak{B}_{mr}(\psi_n(\tau^m_{\gamma_{1m}}))$.

 $\S2$ Preliminary results on the action of B_n on R_n

In this section we construct the representation $\psi_n : B_n \to Aut(R_n)$. In §4 we will give a more explicit description of the action.

Note that the action of B_n on D_n fixes the boundary of D_n and so there is an induced action of B_n on the fundamental group of D_n (where we choose a base point

STEPHEN P. HUMPHRIES

p on the boundary of D_n). This fundamental group is the free group F_n of rank n. We choose a standard set of generators x_1, \ldots, x_n for F_n , where x_i is a simple closed curve enclosing the *i*th puncture π_i and such that $x_1x_2\ldots x_n$ is parallel to the boundary of D_n . See Figure 1.

Figure 1

In Figure 1 we have shown arcs a_i and the generators x_i . The action of B_n on the generators x_i is as follows: let $1 \le j < n$; then

$$\sigma_j(x_i) = x_i$$
 if $i \neq j, j+1, \quad \sigma_j(x_j) = x_j x_{j+1} x_j^{-1}, \quad \sigma_j(x_{j+1}) = x_j x_j^{-1}$

We now find that a particularly convenient representation of the free group F_n is given by the transvections T_i . That $\langle T_1, \ldots, T_n \rangle$ is a free group of rank n is shown in [H2]. This allows us to identify x_i and T_i for $i = 1, \ldots, n$ and so to identify F_n and $\langle T_1, \ldots, T_n \rangle$.

Now, from the above, B_n acts by automorphisms on F_n in such a way that for $\alpha \in B_n$ the matrix $\alpha(T_i)$ is a conjugate of some T_j , $1 \leq j \leq n$ i.e. $\alpha(T_i)$ is also a transvection. Further, if $c \in C$, then c represents a conjugacy class in F_n and so its *trace* is well-defined (the trace of the corresponding product of transvections in $F_n = \langle T_1, \ldots, T_n \rangle$). In fact one easily sees that $trace(c) \in Y_n$ [H1]. Then a map $\phi = \phi_n : C \to R_n$ is defined uniquely by

$$\phi_n(c) = trace(c) - n. \tag{2.1}$$

Thus ϕ_n can be thought of as being defined on certain conjugacy classes of elements of F_n (namely those representing simple closed curves). The map ϕ can be extended to all of F_n , by the requirement that for $s \in F_n$ we have $\phi(s) = trace(s) - n$. From [H1] (see also §4) we have

Lemma 2.1. If $w = T_{i_1}^{k_1} T_{i_2}^{k_2} \dots T_{i_r}^{k_r} \in T_1, \dots, T_n > where r > 1, k_u \neq 0, i_u \neq i_{u+1}$ for $u = 1, \dots, r-1$ and $i_r \neq i_1$, then $\phi(w)$ is a polynomial in Y_n of degree r with a unique monomial of highest degree.

Now for $m \ge n$ and $s \in F_n$ we may also consider s as an element of F_m under the natural inclusion of F_n in F_m . In this case we note that $\phi(s)$ has the same value whether we consider s as an element of F_n or F_m . Now for all i, j we have $trace(T_iT_j) = a_{ij}a_{ji} + n$ and in general if $A, B \in F_n$, then

$$trace(AT_iA^{-1}BT_jB^{-1}) = b_{ij}b_{ji} + n$$

where $b_{ij} \in R_n$ (see [H1] and §4). It is also easy to see that there is a natural choice so that

 $b_{ij} = a_{ij} + \text{terms of higher degree.}$

Now for $\alpha \in B_n$ the image $\alpha(T_i)$ is a conjugate AT_jA^{-1} for some $A \in F_n$ and $1 \leq j \leq n$. Here the action of α on the a_{ij} is defined by

$$trace(\alpha(T_i)\alpha(T_j)) = \alpha(a_{ij})\alpha(a_{ji}) + n,$$

(see §4 for more details) so that it has the following naturality property (with respect to the action of B_n on F_n): for all $w \in \langle T_1, \ldots, T_n \rangle$ we have

$$\phi(\alpha(w)) = \alpha(\phi(w)).$$

For example the action of σ_i is given by

$$\sigma_{i}(a_{i\,i+1}) = a_{i+1\,i}, \quad \sigma_{i}(a_{i+1\,i}) = a_{i\,i+1},
\sigma_{i}(a_{h\,i}) = a_{h\,i+1} + a_{hi}a_{i\,i+1}, \quad \sigma_{i}(a_{h\,i+1}) = a_{h\,i},
\sigma_{i}(a_{i\,h}) = a_{i+1\,h} - a_{i+1\,i}a_{ih}, \quad \sigma_{i}(a_{i+1\,h}) = a_{i\,h},$$
(2.2)

where $1 \le h \le n$ and $h \ne i, i+1$.

It follows from [H1,Theorem 2.5 and Theorem 6.2] that the kernel of the action of B_n on R_n is the centre of B_n and that if B_n and R_n are thought of as sub-objects of B_{n+1} and R_{n+1} (respectively), then the action of B_n on R_{n+1} is faithful. The proof is essentially and application of Lemma 2.1. We note as in [H2] that there is a natural ring involution * on R_n which commutes with the action of B_n , so that for $\alpha \in B_n$ we have

$$\alpha(w)^* = \alpha(w^*) \tag{2.3}$$

for all $w \in R_n$. This involution is determined by its action on the generators a_{ij} which is as follows:

$$a_{ij}^* = -a_{ji}.$$

This involution has the following property:

$$trace(A^{-1}) = trace(A)^*,$$

for all $A \in F_n$. Thus for $c \in C$ we have $\phi(c^{-1}) = \phi(c)^*$, where c^{-1} is the curve c with its orientation reversed. We also have $b_{ji} = -b_{ij}^*$, for b_{ij}, b_{ji} as in (2.1).

STEPHEN P. HUMPHRIES

§3 Preliminaries on symmetric functions

We will need the following results on symmetric functions; these results can all be found in [M].

Let a_1, \ldots, a_n be algebraically independent indeterminates. For $(\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ we let a^{α} denote the monomial

$$a_1^{\alpha_1}a_2^{\alpha_2}\ldots a_n^{\alpha_n}$$
.

Recall that a partition is a sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ of non-negative integers such that $\lambda_1 \ge \lambda_2 \ge \dots$. The number r is called the *length* of the partition and the *weight* of the partition λ is the sum $|\lambda| = \lambda_1 + \lambda_2 + \dots + \lambda_r$. The polynomial

$$m_{\lambda}(a_1, a_2, \dots, a_r) = \sum a^{\alpha},$$

where the sum is taken over all distinct permutations α of $\lambda = (\lambda_1, \ldots, \lambda_r)$. The m_{λ} form a basis for the ring of symmetric polynomials in the variables a_1, \ldots, a_r .

The elementary symmetric functions e_i are defined as follows: for $r \ge 0$ let

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} a_{i_1} a_{i_2} \dots a_{i_r} = m_{(1^r)}.$$

For a partition λ we let

$$e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \dots e_{\lambda_r}.$$

Note that the degree of m_{λ} or e_{λ} is $|\lambda|$. The elementary symmetric functions satisfy:

$$\prod_{i=1}^{r} (1 - ta_i) = \sum_{i=0}^{r} e_i (-t)^i$$

From [M, p.35] we get

Lemma 3.1. For all $r \ge 0$ we have:

$$\prod_{i,j=1}^{r} (1+a_i b_j) = \sum_{\lambda} e_{\lambda}(a_1, \dots, a_r) m_{\lambda}(b_1, \dots, b_r)$$
$$= \sum_{\lambda} m_{\lambda}(a_1, \dots, a_r) e_{\lambda}(b_1, \dots, b_r).$$

Here the sum in the right hand side is over all partitions of weight at most r. \Box

We note that since the μ_{λ} and the e_{λ} are both algebraically independent generators for the ring of symmetric polynomials, that it is possible to express the μ_{λ} as linear combinations of the e_{λ} with rational coefficients, and vice versa.

We have the following easy result:

Lemma 3.2. Suppose that p is a polynomial in $\mathbb{C}[a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_r]$ of degree m in a_1, a_2, \ldots, a_n . Suppose that p is invariant under the natural action of S_n on a_1, a_2, \ldots, a_n . Then p is a polynomial in $\mathbb{C}[e_\lambda(a_1, a_2, \ldots, a_n), b_1, b_2, \ldots, b_r]$ where the degree of each of the $e_\lambda(a_1, a_2, \ldots, a_n)$ that we need is at most m. \Box

$\S4$ Action of B_n on R_n continued

In this section we describe in greater detail the action of B_n on R_n as outlined in §2 so as to be able to give explicit formulae for the action of $\tau^m_{\gamma_{1m}}$. In general [A] a transvection in $SL_n(Q)$ (for a commutative ring Q with identity) can be defined as a pair $T = (\phi, d)$ where $d \in Q^n$ and ϕ is an element of the dual space of Q^n satisfying $\phi(d) = 0$. The action is given by

$$T(x) = x + \phi(x)d$$
 for all $x \in Q^n$.

Then we have [H1, Lemma 2.1]

Lemma 4.1. Let $T = (\phi, d)$ and $U = (\psi, e)$ be two transvections. Then for all $\lambda \in \mathbb{Z}$ we have

$$U^{\lambda}TU^{-\lambda} = (\phi - \lambda\phi(e)\psi, U^{\lambda}(d)). \quad \Box$$

Let $\{T_1 = (\phi_1, d_1), \ldots, T_n = (\phi_n, d_n)\}$ be a fixed set of transvections in $SL_n(R_n)$ where $\phi_i(d_j) = a_{ij}$ for all $1 \le i \ne j \le n$. For any set of transvections $T = \{T_1 = (\phi_1, e_1), \ldots, T_n = (\phi_n, e_n)\}$ we let M(T) denote the $n \times n$ matrix $(\phi_i(e_j))$ and we call M(T) the *M*-matrix of the set of transvections T.

Any monomial that can be written in the form $a_{j_1j_2}a_{j_2j_3}\ldots a_{j_{r-1}j_r}$ will be called a j_1j_r -word. Note that by (2.2) if $\alpha \in B_n$ and $1 \leq i \neq j \leq n$, then $\alpha(a_{ij})$ is a sum of *rs*-words, where $\alpha(T_i)$ is a conjugate of T_r and $\alpha(T_j)$ is a conjugate of T_s . Let $\alpha \in B_n$ where $\alpha(T_i) = w_i T_j w_i^{-1}$ in freely reduced form for i = 1, ..., n and where $w_i = w_i(T_1, \ldots, T_n)$. Then for $i = 1, \ldots, n$ we have $w_i T_i w_i^{-1} = (\psi_i, f_i)$ for some ψ_i, f_i determined by Lemma 4.1, which shows that

$$\psi_i = q_1\phi_1 + \dots + q_n\phi_n \quad \text{and} \quad f_i = p_1d_1 + \dots + p_nd_n,$$

where $p_1, \ldots, p_n, q_1, \ldots, q_n \in R_n$. We define the action of B_n on R_n by

$$\alpha(a_{ij}) = \psi_i(f_j).$$

This agrees with the previous definition. Thus the *M*-matrix $M(\alpha(T_1), \ldots, \alpha(T_n))$ is $\alpha(M(T))$.

From Lemma 2.3 of [H1] we have:

Lemma 4.2. Let $1 \le i, j \le n, \alpha \in B_n$ where $\alpha(T_i) = C_1 T_k C_1^{-1}, \alpha(T_j) = C_2 T_p C_2^{-1}$, with $C_1, C_2 \in \langle T_1, \ldots, T_n \rangle$ and let $C = C_1^{-1} C_2 = T_{j_1}^{q_1} \ldots T_{j_r}^{q_r}$ be freely reduced with $j_r \ne p, \ j_1 \ne k, q_s \ne 0$ for $s = 1, \ldots, r$ and $j_s \ne j_{s+1}$, for $s = 1, \ldots, r-1$. Then

$$\alpha(a_{ij}) = \sum_{h=1}^{n} A_h a_{hp}$$

where A_h is equal to the sum of all the products of the form

$$q_{r_1}q_{r_2}\ldots q_{r_m}a_{kj_{r_1}}a_{j_{r_1}j_{r_2}}\ldots a_{j_{r_m-1}j_{r_m}}$$

where $1 \leq r_1 < r_2 < \cdots < r_m \leq r$ and $j_{r_m} = h$. If $p \neq j_r$, then the summand of $\alpha(a_{ij})$ of highest degree is unique and is equal to

$$\pm q_1 q_2 \dots q_r a_{kj_1} a_{j_1 j_2} \dots a_{j_{r-1} j_r} a_{j_r p}. \quad \Box$$

For example if $\alpha(T_1) = T_3 T_2^{-1} T_1 T_2 T_3^{-1}$ and $\alpha(T_2) = T_2^{-1} T_3 T_2$, then we would have $C = T_2 T_3^{-1} T_2^{-1}$ and

$$\alpha(a_{12}) = a_{13} + a_{13}a_{32}a_{23} + a_{12}a_{23}a_{32}a_{23}.$$

For each $m \ge 2$ we let $\tau_m = \tau_{\gamma_{1m}} = \sigma_{m-1} \dots \sigma_2 \sigma_1$, the 1/m twist about the curve $\gamma_{1,m}$. Then we have:

Lemma 4.3. (i) For all $1 \le i \le m$ we have

$$\tau_m^m(x_i) = (x_1 x_2 \dots x_m) x_i (x_1 x_2 \dots x_m)^{-1};$$

(ii) For all $1 \leq i \neq j \leq m$ we have $\tau_m^m(a_{ij}) = a_{ij}$; (iii) For $1 \leq i \leq m < r \leq n$ we have

$$\tau_m^m(a_{ri}) = a_{ri} + \sum_{s=1}^m \sum_{1 \le j_1 < j_2 < \dots < j_s \le m} a_{rj_1} a_{j_1 j_2} a_{j_2 j_3} \dots a_{j_{s-1} j_s} a_{j_s i_s}$$

(iv) For $1 \leq i \leq m < r \leq n$ we have

$$\tau_m^m(a_{ir}) = a_{ir} + \sum_{s=1}^m \sum_{1 \le j_1 < j_2 < \dots < j_s \le m} (-1)^s a_{ij_s} a_{j_s j_{s-1}} \dots a_{j_3 j_2} a_{j_2 j_1} a_{j_1 r}$$

(v) For all $m < u \neq v \leq n$ we have $\tau_m(a_{uv}) = a_{uv}$.

Proof. (i) follows from the action of B_n given in §2. The rest all follow from (i) and Lemma 4.2. \Box

For y > m let v_y be the vector $(a_{y1}, a_{y2}, \ldots, a_{ym})$. Let $w_y = (a_{1y}, a_{2y}, \ldots, a_{my}) = -v_y^*$. Then we have :

Lemma 4.4. For all $2 \le m \le n$ there is a $m \times m$ matrix $M_m \in SL(m, R_m)$ such that

$$\tau_m^{hm}(v_y) = v_y M_m^h,$$

for all $h \in \mathbb{Z}$ and all $n \geq y > m$. In fact $M_m = T_1 T_2 \dots T_m$. We also have $\tau_m^{hm}(w_y) = w_y (M_m^*)^h$ for all $h \in \mathbb{Z}$.

Proof. Fix such a y. Consider the matrix $\Pi_m = T_1 T_2 \dots T_m$. Its (i, k) entry is

$$\sum_{s=0}^{m} \sum_{i \le j_1 < j_2 < \dots < j_s \le m} a_{ij_1} a_{j_1 j_2} \dots a_{j_{s-1} j_s} a_{j_s k}.$$

But by Lemma 4.3 this is exactly equal to the coefficient of a_{yi} in $\tau_m^m(a_{yk})$, as required for h = 1. But the entries of Π_m are invariant under the action of τ_m^m since these entries are in R_m (use Lemma 4.3 again). So we see that $\tau_m^{hm}(v_y) = v_y M_m^h$, for all $h \in \mathbb{Z}$.

Now $v_y^* = -w_y$ and if we apply the automorphism * to the equation $\tau_m^{hm}(v_y) = v_y M_m^h$, and use (2.3), then we obtain $w_y (M_m^*)^h = \tau_m^{hm}(w_y)$ as required. \Box

Lemma 4.5. The matrix $\Pi_n = T_1 T_2 \dots T_n$ has n distinct roots.

Proof. Let T'_i be the $n \times n$ matrix T_i with all the indeterminates a_{ij} replaced by an indeterminate b_i . We prove by induction that there are positive real numbers b_i such that for all $m \ge 2$ the matrix $T'_1T'_2 \ldots T'_m$ has n-m eigenvalues equal to 1, the rest being distinct and not equal to 1. The case m = 2 is easy (take $b_1 = b_2 = 1$). Now assume that $T'_1T'_2 \ldots T'_m, 2 \le m < n$ satisfies the inductive hypothesis for some positive real choice of b_1, \ldots, b_m . Consider $P = T'_1T'_2 \ldots T'_mT'_{m+1}$. Since $b_1, \ldots, b_m > 0$, the matrix $T'_1T'_2 \ldots T'_m$ has all strictly positive entries in its first m rows. Thus the trace of P is a non-constant function of b_{m+1} . Thus the characteristic polynomial of P is a function which depends continuously and non-constantly on b_{m+1} . When $b_{m+1} = 0$, this polynomial has m distinct roots not equal to 1, and so we can choose b_{m+1} small enough so that P has m+1 distinct eigenvalues not equal to 1. (In fact if one takes $b_1 = 1$ and $b_i = 1/(i-1)$ for $n \ge i \ge 2$, then the eigenvalues are $\frac{n-2}{n-1}, \frac{n-3}{n-2}, \ldots, \frac{2}{1}$ together with the two positive real and distinct roots of the quadratic $z^2 - (2n-1)z + n - 1$). □

Lemma 4.6. Suppose that the matrix $T_1T_2...T_n$ has characteristic polynomial $\chi_n(x)$. Then the matrix $(T_1T_2...T_n)^*$ has characteristic polynomial

$$\chi_n(x)^* = (-x)^n \chi(1/x).$$

The eigenvalues of $(T_1T_2...T_n)^*$ are the inverses of the eigenvalues of $T_1T_2...T_n$.

Proof. The first claim is an immediate consequence of [H2; Corollary 2.7], which says that the same result is true for all matrices in $\langle T_1, \ldots, T_n \rangle$. The second claim follows from the first. \Box

Now suppose that μ is a monomial in R_n . Then we can write $\mu = \mu_1 \mu_2 \mu_3 \mu_4$ where each μ_i is a monomial with

$$\mu_1 \in R_m, \ \mu_2 \in R[a_{ik} | 1 \le i \le m < k], \ \mu_3 \in R[a_{ki} | 1 \le i \le m < k]$$

and
$$\mu_4 \in R[a_{ik} | m < i, k \le n].$$
(4.1)

Now τ_m^m fixes μ_1 and μ_4 and its action on the generators a_{ik} occurring in μ_2 and μ_3 is given by Lemma 4.3. Further, we note that if $\mu \in Y_n$, then μ_2 and μ_3 have the same degrees.

§5 KRONECKER PRODUCTS

We now wish to recall some elementary facts about Kronecker products of matrices. The basic reference is [HJ, §4.2]. Let $A = (a_{ij})$ be an $n \times n$ matrix and $B = (b_{ij})$ be an $m \times m$ matrix. Then the *Kronecker* (or *tensor*) product $A \otimes B$ is the $nm \times nm$ block matrix

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \dots & a_{nn}B \end{pmatrix}.$$

This can be interpreted as follows: Suppose that A and B are the matrices of linear transformations $\alpha : V \to V$ and $\beta : W \to W$ acting on vector spaces V and W with respect to bases u_i and v_i (respectively). Then the action of $\alpha \otimes \beta$ on $V \otimes W$ with respect to the basis $u_i \otimes v_i$ is given by $A \otimes B$.

Lemma 5.1. [HJ; p. 245] If the eigenvalues of A are a_1, \ldots, a_n and the eigenvalues of B are b_1, \ldots, b_m (both counting multiplicities), then the eigenvalues of $A \otimes B$ are $a_i b_j$ for all $i = 1, \ldots, n, j = 1, \ldots, m$ (counting multiplicities).

We apply this to the situation where y > m is fixed and τ_m^m is acting on the subring $R[a_{iy}, a_{yj}|1 \le i, j \le m]$ of R_n . Then by Lemma 4.3 τ_m^m fixes each element of R_m and there are matrices M_m, M_m^* such that $\tau_m^m(v_y) = v_y M_m$ and $\tau_m^m(w_y) = w_y M_m^*$. But then, by the above remarks, the action of τ_m^m on products like $a_{iy}a_{yj}$ is completely determined by the Kronecker product $N_m = M_m \otimes M_m^*$. In fact, since the matrix M_m does not depend on y the Kronecker product N_m also determines the action of τ_m^m on products like $a_{iy}a_{zj}$ for all $n \le y, z > m$. Thus we have

Lemma 5.2. Let $\chi_N(t)$ denote the characteristic polynomial of N_m . If we have a monomial $\mu = \mu_1 \mu_2 \mu_3 \mu_4 \in Y_n$ as in (4.1), where μ_2 and μ_3 have degree 1, then

$$\chi_N(\tau_m^m)(\mu) = 0.$$

Proof. If $\mu = \mu_1 \mu_2 \mu_3 \mu_4$, then τ_m^m fixes each of μ_1 and μ_4 ; thus $\chi_N(\tau_m^m)(\mu) = \mu_1 \mu_4 \chi_N(\tau_m^m)(\mu_2 \mu_3)$, the latter being 0 by the above discussion. \Box

Now the action of τ_m^m on an arbitrary monomial in Y_n is given by

Proposition 5.3. The action of τ_m^m on any monomial $\mu = \mu_1 \mu_2 \mu_3 \mu_4 \in Y_n$ where μ_2 and μ_3 have degree r is determined by the r-fold Kronecker product $N_m^{\otimes r}$. If $\chi_{N^{\otimes r}}(t)$ denotes the characteristic polynomial of $N_m^{\otimes r}$, then

$$\chi_{N^{\otimes r}}(\tau_m^m)(\mu) = 0. \quad \Box$$

Corollary 5.4. If $\alpha \in Y_n$, then there is $r \in \mathbb{Z}$ such that

$$\chi_{N^{\otimes r}}(\tau_m^m)(\alpha) = 0. \quad \Box$$

This proves Theorem 1.3, since we can let

$$\mathfrak{B}_{m0}(x) = x - 1$$
 and $\mathfrak{B}_{mr}(x) = \chi_{N\otimes r}(x)$ for $r \ge 1$.

We note that $\iota(\gamma_{1m}, \gamma) = 0$ if and only if $\tau_m^m(\gamma) = \gamma$ if and only if $\mathfrak{B}_{m0}(\tau_m^m)(\phi(\gamma)) = 0$.

Now by Lemma 4.6 the eigenvalues of Π_m and Π_m^* are inverses of each other. Thus by Lemma 5.1 the matrix $N_m = M_m \otimes M_m^*$ has 1 as an eigen-value with multiplicity at least $m \ge 2$. Thus also from Lemma 5.1 we see that any root of $\chi_{N^{\otimes r}}$ is also a root of $\chi_{N^{\otimes s}}$ whenever $0 \le r < s$. It also easily follows that if α is a root of $\chi_{N^{\otimes r}}$ and β is a root of $\chi_{N^{\otimes s}}$, then $\alpha\beta$ is a root of $\chi_{N^{\otimes r+s}}$. This is the proof of the second part of Theorem 1.2. **Examples 5.5.** (i) If m = 2, then we let $I = -2 - a_{12}a_{21}$ so that $x^2 + Ix + 1$ is the characteristic polynomial of M_2 . It has roots a, 1/a say, since $det(M_2) = 1$. Then by Lemma 4.6 M_2^* also has roots a, 1/a and so $\chi_N(x)$ has roots $1, 1, a^2, 1/a^2$ (by Lemma 5.1). The roots of $\chi_{N\otimes r}(x)$ are thus all of the 4^r products $a_1a_2...a_r$ for all possible $a_i = 1, 1, a^2, 1/a^2$. To find $\chi_{N\otimes r}(x)$ one multiplies out

$$\prod_{a_1,\dots,a_r=1,1,a^2,1/a^2} (x-a_1)(x-a_2)\dots(x-a_r)$$

and finds that this is a polynomial in x and I.

To be more specific we let $s_0(x) = x - 1$ and for $i \ge 1$ we let

$$s_i = (x - a^{2i})(x - 1/a^{2i}).$$

Thus for example, we have

$$s_1(x) = x^2 + (2 - I^2)x + 1;$$

$$s_2(x) = x^2 + (-2 + 4I^2 - I^4)x + 1;$$

$$s_3(x) = x^2 + (2 - 9I^2 + 6I^4 - I^6)x + 1;$$

$$s_4(x) = x^2 + (-2 + 16I^2 - 20I^4 + 8I^6 - I^8)x + 1.$$

The s_i are quadratic polynomials in x related to the polynomials \mathfrak{A}_i defined in [H4]. We have

$$\mathfrak{B}_{20}(x) = s_0(x), \quad \mathfrak{B}_{21}(x) = s_0(x)^2 s_1(x).$$

By the above we see that $\mathfrak{B}_{2m+1}(x) = \chi_{N^{\otimes m+1}}(x)$ will factor into a product of the form

$$\mathfrak{B}_{2m}(x)^2 C_{m1}(x) C_{m2}(x)$$

where $C_{m1}(x)$ (respectively $C_{2m}(x)$) is obtained from $\mathfrak{B}_{2m}(x)$ by replacing each root α of $\mathfrak{B}_{2m}(x)$ by αa^2 (respectively α/a^2). Thus each $\mathfrak{B}_{2m}(x)$ is a product of powers of the $s_i(x)$. This has the effect of replacing $s_0(x)$ by $s_1(x)$, $s_1(x)$ by $s_0(x)^2 s_2(x)$, $s_2(x)$ by $s_1(x)s_3(x)$, $s_3(x)$ by $s_2(x)s_4(x)$ etc. We obtain

$$\begin{aligned} \mathfrak{B}_{21}(x) &= s_0(x)^2 s_1(x); \\ \mathfrak{B}_{22}(x) &= s_0(x)^6 s_1(x)^4 s_2(x); \\ \mathfrak{B}_{23}(x) &= s_0(x)^{20} s_1(x)^{15} s_2(x)^6 s_3(x); \ etc. \end{aligned}$$

Using the fact that $\mathfrak{B}_{2m+1}(x) = \mathfrak{B}_{2m}(x)^2 C_{m1}(x) C_{m2}(x)$ for C_{1m}, C_{2m} as described above one easily sees that the general result is

$$\mathfrak{B}_{2n}(x) = \prod_{i=0}^{n} s_i^{\binom{2n}{n-i}}.$$

(ii) For the case m = 3 we see that if M_3 has roots a, b, c (which are distinct by Lemma 4.5), then abc = 1 since $det(M_3) = 1$. Further, M_3^* has roots 1/a, 1/b, 1/c

and so $N_3 = M_3 \otimes M_3^*$ has roots $1, 1, 1, \frac{a}{b}, \frac{a}{c}, \frac{b}{a}, \frac{b}{c}, \frac{c}{a}, \frac{c}{b}$ (by Lemma 5.1). This allows one to find that

$$\begin{split} \mathfrak{B}_{31}(x) &= (x-1)^3 [x^6 + (3-p_1p_2)(x+x^5) + (6-5p_1p_2+p_1^3+p_2^3)(x^2+x^4) \\ &\quad + (7+2p_1^3-6p_1p_2-p_1^2p_2^2+2p_2^3)x^3+1]; \\ \mathfrak{B}_{32}(x) &= (x-1)^{15} [x^3 + (3p_1p_2-p_2^3-3)x^2 + (p_1^3-3p_1p_2+3)x-1]^2 \times \\ [x^3 + (-p_1^3+3p_1p_2-3)x^2 + (-3p_1p_2+p_2^3+3)x-1]^2 \times \\ [x^6 + (3-p_1p_2)(x+x^5) + (6-5p_1p_2+p_1^3+p_2^3)(x^2+x^4) \\ &\quad + (7+2p_1^3-6p_1p_2-p_1^2p_2^2+2p_2^3)x^3+1]^8 \times \\ [x^6 + (2p_1^3-p_1^2p_2^2-4p_1p_2+2p_2^3+3)(x+x^5) \\ &\quad + (p_1^6-6p_1^4p_2+2p_1^3+19p_1^2p_2^2-6p_1p_2^4-20p_1p_2+p_2^6+2p_2^3+6)(x^2+x^4) \\ &\quad + (-2p_1^6+4p_1^5p_2^2-p_1^4p_2^4+4p_1^4p_2-16p_1^3p_2^3-4p_1^3+4p_1^2p_2^5+26p_1^2p_2^2+4p_1p_2^4 \\ &\quad - 24p_1p_2-2p_2^6-4p_2^3+7)x^3+1]. \end{split}$$

where $p_1 = a_{12}a_{21} + a_{13}a_{31} + a_{23}a_{32} - a_{13}a_{32}a_{21}$ and $p_2 = -p_1^*$. As in the case m = 2 one can find a (more complicated) recursion for the polynomials $\mathfrak{B}_{3n}(x)$.

(iii) For m = 4 similar reasoning allows one to find that

$$\begin{aligned} \mathfrak{B}_{41}(x) =& (x-1)^4 [(1+x^{12})+(x+x^{11})(-p_2p_3+4) \\ &+(x^2+x^{10})(-2p_1^2+p_1p_2^2+p_1p_3^2-4p_2p_3+10) \\ &+(x^3+x^9)(-p_1^2p_2p_3-8p_1^2+7p_1p_2^2+7p_1p_3^2-p_2^4-13p_2p_3-p_3^4+20) \\ &+(x^4+x^8)(p_1^4-8p_1^2p_2p_3-16p_1^2+p_1p_2^3p_3+18p_1p_2^2) \\ &+p_1p_2p_3^3+18p_1p_3^2-3p_2^4-p_2^2p_3^2-24p_2p_3-3p_3^4+31) \\ &+(x^5+x^7)(4p_1^4-p_1^3p_2^2-p_1^3p_3^2-19p_1^2p_2p_3-24p_1^2+5p_1p_2^3p_3+29p_1p_2^2) \\ &+5p_1p_2p_3^3+29p_1p_3^2-6p_2^4-p_2^3p_3^3-2p_2^2p_3^2-34p_2p_3-6p_3^4+40) \\ &+x^6(6p_1^4-2p_1^3p_2^2-2p_1^3p_3^2+p_1^2p_2^2p_3^2-24p_1^2p_2p_3-28p_1^2+6p_1p_2^3p_3) \\ &+34p_1p_2^2+6p_1p_2p_3^3+34p_1p_3^2-7p_2^4-2p_2^3p_3^3-40p_2p_3-7p_3^4+44)]. \end{aligned}$$

Here

$$\begin{split} p_3 &= -a_{21}a_{14}a_{43}a_{32} + a_{13}a_{32}a_{21} + a_{21}a_{14}a_{42} + a_{31}a_{14}a_{43} + a_{32}a_{24}a_{43} - a_{12}a_{21} \\ &\quad -a_{13}a_{31} - a_{23}a_{32} - a_{14}a_{41} - a_{24}a_{42} - a_{34}a_{43} - 4, \\ p_1 &= a_{23}a_{32}a_{14}a_{41} - a_{13}a_{32}a_{24}a_{41} - a_{23}a_{31}a_{14}a_{42} + a_{13}a_{31}a_{24}a_{42} \\ &\quad -a_{13}a_{34}a_{42}a_{21} - a_{12}a_{24}a_{43}a_{31} + a_{12}a_{21}a_{34}a_{43} + a_{12}a_{23}a_{31} - a_{13}a_{21}a_{32} \\ &\quad +a_{12}a_{24}a_{41} + a_{13}a_{34}a_{41} - a_{21}a_{14}a_{42} + a_{23}a_{34}a_{42} - a_{31}a_{14}a_{43} \\ &\quad -a_{32}a_{24}a_{43} + 2a_{12}a_{21} + 2a_{13}a_{31} + 2a_{23}a_{32} + 2a_{14}a_{41} + 2a_{24}a_{42} + 2a_{34}a_{43} + 6, \\ p_2 &= p_3^*. \end{split}$$

These examples, together with other calculations made in the preparation of this paper, were accomplished using MAGMA [MA].

As we are seeing in these examples, the coefficients of $\mathfrak{B}_{mr}(x)$ are polynomials in the coefficients of $\chi_{M_m}(x)$, as stated in Theorem 1.2. That this is the case in general follows from Lemma 3.2 and Lemma 5.2 applied to $N_m = M_m \otimes M_m^*$.

§6 Geometric intersection numbers of curves on a disc

Let $\gamma, \gamma' \in \mathcal{C}$. We wish to find the geometric intersection number $\iota(\gamma, \gamma')$. Since B_n acts transitively on each \mathcal{C}_m we may without loss assume that $\gamma' = \gamma_{1m}$ for some $m \geq 2$. For $i = 1, \ldots, n$ let b_i denote a vertical arc in D_n meeting the arc a_i exactly once, meeting no other $a_j, j \neq i$, and with its endpoints on the boundary of D_n . Then $D_n \setminus b_i$ has two components, one containing the arcs a_1, \ldots, a_{i-1} and part of a_i . This component we will think of as the disc D_m , so that γ_{1m} is the boundary curve of $D_m \subset D_n$.

Let μ denote the monomial of greatest degree in $\phi_n(\gamma)$ and write $\mu = \mu_1 \mu_2 \mu_3 \mu_4$ as we have done in (4.1). Write $\mu = \mu(\gamma), \mu_i = \mu_i(\gamma)$. We note that $\phi(\gamma) \in Y_n$ and so $deg(\mu_2) = deg(\mu_3)$. Then we have

Proposition 6.1. For $\gamma \in C$ we have

$$\iota(\gamma_{1m},\gamma) = degree(\mu_2(\gamma)\mu_3(\gamma)) = 2degree(\mu_2(\gamma)).$$

Proof. We may assume that γ meets γ_{1m} in $\iota(\gamma_{1m}, \gamma)$ points. Then, since γ_{1m} is the boundary curve of $D_m \subset D_n$, we see that γ meets b_m in exactly $\iota(\gamma_{1,m}, \gamma)$ points. Now let $w \in \langle T_1, \ldots, T_n \rangle$ be a cyclically reduced word representing γ . Then we can write

 $w = w_1 y_1 w_2 y_2 \dots w_k y_k$ where $w_i \in T_1, \dots, T_m >, y_i \in T_{m+1}, \dots, T_n >$.

Here we may assume that w_i and y_i are all non-trivial. Now using Lemma 4.2 we see that $\phi(\gamma) = trace(w) - n$ is a sum of monomials of the form

$$\pm m_1 a_{i_1 j_1} m'_1 a_{j'_1 i'_1} m_2 a_{i_2 j_2} m'_2 a_{j'_2 i'_2} \dots m_h a_{i_h j_h} m'_h a_{j'_h i'_h},$$

where each m_i is a monomial in R_m , each monomial m'_i is in $R[a_{uv}|m < u, v \le n]$ and $1 \le i_r, i'_r \le m < j_r, j'_r \le n$ for all $1 \le r \le h \le k$. We note that $\iota(\gamma_{1m}, \gamma) = 2k$ since for every adjacent pair of words $w_1y_1, y_1w_2, \ldots, w_ky_k, y_kw_1$ in w the curve γ must cross the arc b_m and conversely, each crossing must correspond to one of these pairs of adjacent words in w. This proves the result. \Box

Thus if $\iota(\gamma_{1m}, \gamma) = 2k$, then by the proposition 5.3 we see that $\mathfrak{B}_{mk}(\tau_m^m)(\phi(\gamma)) = 0$. This proves the first part of Theorem 1.1.

Now the above argument never used the fact that γ was simple closed curve, so what we have proved is

Proposition 6.2. Let γ be any closed curve on the disc D_n and let

$$w = T_{i_1}^{\pm 1} T_{i_2}^{\pm 1} \dots T_{i_k}^{\pm 1} \in < T_1, \dots, T_n >$$

be any cyclically reduced word representing γ . Then the geometric intersection number $\iota(\gamma_{1m}, \gamma)$ is equal to the number of $j \leq k$ such that $i_j \leq m$ and $i_{j+1} > m$ or $i_j > m$ and $i_{j+1} \leq m$ (indices taken mod k). Further, if $2r = \iota(\gamma_{1m}, \gamma)$, then $\mathfrak{B}_{mr}(\tau_m^m)(\phi(\gamma)) = 0$. \Box

In order to conclude the proof of Theorem 1.1 it will suffice to prove

Proposition 6.3. For all $m \ge 2$ and $r \ge 1$ we have

$$\mathfrak{B}_{mr}(\tau_m^m)((a_{1\,m+1}a_{m+1\,1})^{r+1}) \neq 0.$$

Proof. One checks the following facts about degrees using Lemma 4.3: (i) $deg(\tau_m^{km}(a_{1\,m+1})) = km + 1;$ (ii) $deg(\tau_m^{km}(a_{1\,m+1}a_{m+1\,1})) = 2(km + 1);$ (iii) $\mathfrak{B}_{mr}(x)$ has degree m^{2r} in the variable x;(iv) $deg((\tau_m^m)^{m^{2r}}(a_{1\,m+1}a_{m+1\,1})) = 2(m^{2r}m + 1).$ We also have (v) The coefficient of $x^{m^{2r}-k}$ in $\mathfrak{B}_{mr}(x)$ is a polynomial in the a_{ij} of degree no greater than 2rmk.

To see this last fact we note as in §5 that if a_i are the eigenvalues of $M_m = T_1 \dots T_m$, and if a'_i are the eigenvalues of M^* , then $a_i a'_j$ are the eigenvalues of $N_m = M_m \otimes M_m^*$ and $a_{i_1} a'_{j_1} a_{i_2} a'_{j_2} \dots a_{i_k} a'_{j_k}$ are the eigenvalues of $N_m^{\otimes k}$. Thus the coefficient of $x^{m^{2r}-k}$ in $\mathfrak{B}_{mr}(x)$ is the sum of all terms of the form $a_{i_1}a'_{j_1}a_{i_2}a'_{j_2}\dots a_{i_k}a'_{j_k}$. Such a sum is clearly invariant under the action of $S_m \times S_m$ and so is a polynomial in the coefficients of the characteristic polynomial of M and M^* (use Lemma 3.2). This polynomial has degree 2k (use Lemma 3.2 again) as a polynomial in these coefficients and so has degree 2mk as a polynomial in the a_{ij} (since, as noted in §1, the coefficients of the characteristic polynomial of M have degree m in R_n). This proves statement (v).

Continuing with the proof of Proposition 6.3 we see that if c_k is the coefficient of $x^{m^{2r}-k}$ in $\mathfrak{B}_{mr}(x)$, then

$$deg(c_k(\tau_m^m)^{m^{2r}-k}((a_{1\,m+1}a_{m+1\,1})^{r+1})) \le 2mrk + (r+1)(2((m^{2r}-k)m+1))$$

for all $k \ge 0$ and where we have equality for k = 0. It follows that

$$deg((\tau_m^m)^{m^{2r}}((a_{1\,m+1}a_{m+1\,1})^{r+1})) - deg(c_k(\tau_m^m)^{m^{2r}-k}((a_{1\,m+1}a_{m+1\,1})^{r+1})) \ge 2mk.$$

This proves Proposition 6.3 and concludes the proof of Theorem 1.1. \Box

Remark 6.4. Suppose that γ is a multicurve on D_n i.e. γ is the disjoint union of simple closed curves on D_n . Then the orbit of γ under the action of B_n contains a curve of the form $\gamma_{i_1j_1} \cup \gamma_{i_2j_2} \cup \cdots \cup \gamma_{i_sj_s}$ where $i_k < j_k$ for all k and the intervals $[i_k, j_k]$ satisfy

$$[i_u, j_u] \cap [i_v, j_v] = \emptyset$$
 or $[i_u, j_u] \subset [i_v, j_v]$ or $[i_v, j_v] \subset [i_u, j_u]$

Thus we can, without loss, assume that γ is the above multicurve.

Now if $\gamma' \in \mathcal{C}$, then we let $r_k = \iota(\gamma_{i_k j_k}, \gamma')$. From Theorem 1.1 it follows that

$$[\mathfrak{B}_{j_1-i_1+1\,r_1}(\tau_{\gamma_{i_1j_1}}) + \dots + B_{j_s-i_s+1\,r_s}(\tau_{\gamma_{i_sj_s}})](\phi(\gamma)) = 0.$$

References

- [A] Artin E., *Geometric Algebra*, New York: Interscience, 1957.
- [Bi] Birman J., Braids, Links and Mapping class Groups, Ann. Math. Studies 82 (1974).
- [BS] Birman, J. S.; Series, C., An algorithm for simple curves on surfaces., J. London Math. Soc. (2) **29** (1984 no. 2,), 331–342.
- [C1] Chillingworth, D. R. J., Simple closed curves on surfaces., Bull. London Math. Soc. 1 (1969), 310–314..
- [C2] _____, An algorithm for families of disjoint simple closed curves on surfaces., Bull. London Math. Soc. 3 (1971), 23–26.
- [CL] Cohen, M. Lustig, M., Paths of geodesics and geometric intersection numbers. I., Combinatorial group theory and topology, Princeton Univ. Press., 1984, pp. 479–500 Ann. of Math. Stud. 111.
- [HJ] Horn R.A. Johnson C.R., Topics in Matrix Analysis, Cambridge Univ. Press, 1991.
- [H1] Humphries S. P., An Approach to Automorphisms of Free Groups and Braids via Transvections, Math. Zeit. 209 (1992), 131-152.
- [H2] _____, A new characterisation of Braid Groups and rings of invariants for symmetric automorphism groups, Math. Zeit. **224** (1997), 255-287.
- [H3] _____, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications **95** (1999), 173-205.
- [H4] _____, Intersection-number operators for curves on discs and Chebyshev polynomials, preprint (1998).
- [M] MacDonald I. G., Symmetric functions and Hall polynomials., Oxford Univ. Press, 1979.
- [MA] Bosma W., Cannon J., MAGMA (University of Sydney), 1994.
- [Ma] Magnus W., Rings of Fricke Characters and Automorphism groups of Free groups, Math. Zeit. 170 (1980), 91-103.
- [Mi1] Milnor, J., Isotopy of links. Algebraic geometry and topology., A symposium in honor of S. Lefschetz, Princeton University Press, 1957, pp. 280–306..
- [Mi2] _____, Link groups., Ann. of Math. 59, (1954), 177–195.
- [MKS] Magnus W., Karrass A., Solitar D., Combinatorial Group Theory, Dover, 1976.
- [R] Reinhart, B. L., Algorithms for Jordan curves on compact surfaces., Ann. of Math. (2) 75 (1962), 209–222.
- [T] Tan, S. P., Self-intersections of curves on surfaces., Geom. Dedicata 62 (1996 no. 2,), 209–225.
- [Z1] Zieschang, H., Algorithmen f
 ür einfache Kurven auf F
 ächen., Math. Scand. 17 (1965), 17–40.
- [Z2] _____, Algorithmen für einfache Kurven auf Flächen. II., Math. Scand. 25 (1969), 49–58.