Blowup solutions of a Navier-Stokes-like equation - A probabilistic perspective

Tuan Pham
Oregon State University

February 19, 2020

NSE in 3D

$$
(\mathrm{NSE}):\left\{\begin{aligned}
& \partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=f \text { in } \\
& \operatorname{R} \mathbb{R}^{3} \times(0, \infty), \\
& \operatorname{div} u=0 \text { in } \\
& u(\cdot, 0)=\mathbb{R}^{3} \times(0, \infty), \text { in } \mathbb{R}^{3} .
\end{aligned}\right.
$$

Translation symmetry :

$$
u(x, t) \quad \rightarrow u\left(x-x_{0}, t\right)
$$

Scaling symmetry :

$$
\begin{aligned}
u(x, t) & \rightarrow u_{\lambda}(x, t)=\lambda u\left(\lambda x, \lambda^{2} t\right) \\
p(x, t) & \rightarrow p_{\lambda}(x, t)=\lambda^{2} p\left(\lambda x, \lambda^{2} t\right) \\
u_{0}(x) & \rightarrow u_{\lambda 0}(x)=\lambda u_{0}(\lambda x) \\
f(x, t) & \rightarrow f_{\lambda}(x, t)=\lambda^{3} f\left(\lambda x, \lambda^{2} t\right)
\end{aligned}
$$

Main results

$$
(\operatorname{cNSE}):\left\{\begin{aligned}
& \partial_{t} u-\Delta u=\sqrt{-\Delta}\left(u^{2}\right) \\
& \text { in } \mathbb{R}^{3} \times(0, \infty), \\
& u(\cdot, 0)=\frac{2 \gamma}{1+|x|^{2}}
\end{aligned} \text { in } \mathbb{R}^{3}\right. \text {, }
$$

Dascaliuc, Orum, Pham (2019)

- For any $\gamma \in \mathbb{R},(c N S E)$ has a solution in $L^{5}\left(\mathbb{R}^{3} \times(0, T)\right)$ for some $0<T \leq \infty$.
- If $0 \leq \gamma<1$ then (cNSE) has a unique solution in $L^{5}\left(\mathbb{R}^{3} \times(0, \infty)\right)$.
- If $\gamma=1$ then $u(x, t)=u_{0}(x)$ is the unique solution in $L^{5}\left(\mathbb{R}^{3} \times(0, T)\right)$ for every $T<\infty$.
- If $\gamma>\frac{9}{2} e^{8 / 3} \approx 64.76$ then the solution blows up in finite time.

Diffusion equation - Probabilistic representation

In $\mathbb{R}^{d} \times(0, \infty)$, consider the initial-value problem

$$
\left\{\begin{aligned}
\partial_{t} u-\frac{1}{2} \Delta u & =0 \\
u(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

Classical solution:

$$
u(x, t)=\int_{\mathbb{R}^{d}} \underbrace{\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{|y-x|^{2}}{2 t}\right)}_{\Phi(y-x, t)} u_{0}(y) d y
$$

Diffusion equation - Probabilistic representation

In $\mathbb{R}^{d} \times(0, \infty)$, consider the initial-value problem

$$
\left\{\begin{aligned}
\partial_{t} u-\frac{1}{2} \Delta u & =0 \\
u(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

Classical solution:

$$
u(x, t)=\int_{\mathbb{R}^{d}} \underbrace{\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{|y-x|^{2}}{2 t}\right)}_{\Phi(y-x, t)} u_{0}(y) d y
$$

Observe: $\Phi(\cdot-x, t)$ is the p.d.f of an $\mathcal{N}\left(x, t l_{d}\right)$-random variable in \mathbb{R}^{d}, e.g. Brownian motion B_{t}^{x}.

$$
u(x, t)=\mathbb{E}\left[u_{0}\left(B_{t}^{x}\right)\right] .
$$

Diffusion equation - Probabilistic representation

Reaction-Diffusion equation - Probabilistic representation

$$
\left\{\begin{aligned}
\partial_{t} u-\frac{1}{2} \Delta u & =-K(x) u, \\
u(x, 0) & =u_{0}(x) .
\end{aligned}\right.
$$

Feynman-Kac formula (1940s):

$$
u(x, t)=\mathbb{E}\left[u_{0}\left(B_{t}^{x}\right) \exp \left(-\int_{0}^{t} K\left(B_{s}^{x}\right) d s\right)\right] .
$$

The problem can be formulated and generalized (with drift term ∇u and forcing f) by Itô calculus (1950s).

KPP-Fisher equation

In $\mathbb{R} \times(0, \infty)$, consider the equation (Kolmogorov-Petrovskii-Piskunov (KPP), Fisher, 1937):

$$
\left\{\begin{aligned}
u_{t}-\frac{1}{2} u_{x x} & =u^{2}-u \\
u(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

With $\Psi=e^{-t} \Phi$,

$$
u(x, t)=\int_{\mathbb{R}} \Psi(x-y, t) u_{0}(y) d y+\int_{0}^{t} \int_{\mathbb{R}} \Psi(x-y, s) u^{2}(y, t-s) d y d s
$$

Noting that Ψ is a p.d.f on $\mathbb{R} \times(0, \infty)$, McKean (1975) gave a probabilistic description of this equation by branching process.

KPP-Fisher equation

$T \sim \operatorname{Exp}(1):$ holding time (the clock).

$$
u(x, t)=\mathbb{E}\left[u_{0}\left(B_{t}^{x}\right) \mathbb{1}_{T>t}\right]+\mathbb{E}\left[u^{2}\left(B_{T}^{x}, t-T\right) \mathbb{1}_{T \leq t}\right]
$$

In other words, $u(x, t)=\mathbb{E}[\mathbf{X}(x, t)]$ where

$$
\mathbf{X}(x, t)= \begin{cases}u_{0}\left(B_{t}^{\times}\right) & \text {if } T>t \\ \mathbf{X}^{(1)}\left(B_{T}^{\times}, t-T\right) \mathbf{X}^{(2)}\left(B_{T}^{\times}, t-T\right) & \text { if } T \leq t\end{cases}
$$

Here $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are i.i.d copies of \mathbf{X} and are independent of T.

KPP-Fisher equation - Branching process

Diffusion-reaction equation - Fourier domain - Ex. 1

The heat operator $\partial_{t}-\Delta$ naturally induces a clock in the Fourier domain. For example,

$$
u_{t}-u_{x x}=b u, \quad u(x, 0)=u_{0}(x)
$$

In Fourier domain,

$$
\hat{u}(\xi, t)=e^{-t \xi^{2}} \hat{u}_{0}(\xi)+\int_{0}^{t} e^{-s \xi^{2}} b \hat{u}(\xi, t-s) d s
$$

Put $\chi=\xi^{2} \hat{u}$. Then

$$
\chi(\xi, t)=e^{-t \xi^{2}} \chi_{0}(\xi)+\int_{0}^{t} \underbrace{\xi^{2} e^{-s \xi^{2}}}_{\text {p.d.f }} \frac{b}{\xi^{2}} \chi(\xi, t-s) d s
$$

Diffusion-reaction equation - Fourier domain - Ex. 1

$$
\chi(\xi, t)=\mathbb{E}[\mathbf{X}(\xi, t)]
$$

where

$$
\mathbf{X}(\xi, t)=\left\{\begin{array}{rll}
\chi_{0}(\xi) & \text { if } & T>t, \\
\frac{b}{\xi^{2}} \mathbf{X}(\xi, t-T) & \text { if } & T \leq t .
\end{array}\right.
$$

$$
\mathbf{X}(\xi, t)=\left(\frac{b}{\xi^{2}}\right)^{N_{t}} \chi 0(\xi), \quad N_{t}=\inf \left\{n: T_{0}+T_{1}+\ldots+T_{n}>t\right\}
$$

Diffusion-reaction equation - Fourier domain - Ex. 2

$$
\begin{gathered}
u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x) \\
\hat{u}(\xi, t)=\hat{u}_{0}(\xi) e^{-t \xi^{2}}+\frac{c}{2} \int_{0}^{t} \xi^{2} e^{-s \xi^{2}}\left(\frac{\hat{u}(\xi-1, t-s)}{\xi^{2}}+\frac{\hat{u}(\xi+1, t-s)}{\xi^{2}}\right) d s
\end{gathered}
$$

Diffusion-reaction equation - Fourier domain - Ex. 2

$$
\begin{aligned}
& u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x) . \\
& \hat{u}(\xi, t)=\hat{u}_{0}(\xi) e^{-t \xi^{2}}+\frac{c}{2} \int_{0}^{t} \xi^{2} e^{-s \xi^{2}}\left(\frac{\hat{u}(\xi-1, t-s)}{\xi^{2}}+\frac{\hat{u}(\xi+1, t-s)}{\xi^{2}}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{X}(\xi, t)=\left\{\begin{array}{rll}
\chi_{0}(\xi) & \text { if } & T>t, \\
\frac{c}{\xi^{2}} \mathbf{X}(W, t-T) & \text { if } & T \leq t .
\end{array}\right. \\
& \mathbb{P}_{\xi}(W=\xi-1)=\mathbb{P}_{\xi}(W=\xi+1)=1 / 2 .
\end{aligned}
$$

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
\operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{aligned}
& \partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 \text { in } \\
& \mathbb{R}^{d} \times(0, \infty), \\
& \operatorname{div} u=0 \text { in } \mathbb{R}^{d} \times(0, \infty), \\
& u(\cdot, 0)=u_{0} \text { in } \mathbb{R}^{d} .
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

In Fourier domain:
$\hat{u}(\xi, t)=e^{-|\xi|^{2} t} \hat{u}_{0}(\xi)+c_{0} \int_{0}^{t} e^{-|\xi|^{2} s}|\xi| \int_{\mathbb{R}^{d}} \hat{u}(\eta, t-s) \odot_{\xi} \hat{u}(\xi-\eta, t-s) d \eta d s$
where $a \odot_{\xi} b=-i\left(e_{\xi} \cdot b\right)\left(\pi_{\xi^{\perp}} a\right)$.

Fourier-transformed Navier-Stokes equations (FNS)

Normalization to (FNS): LJS 1997, Bhattacharya et al 2003.

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

where $\chi=c_{0} \hat{u} / h$ and $H(\eta \mid \xi)=\frac{h(\eta) h(\xi-\eta)}{|\xi| h(\xi)}$.
$h:$ majorizing kernel, i.e. $h * h=|\xi| h$.

Cascade structure of FNS

Define a stochastic multiplicative functional recursively as
$\mathbf{X}_{\mathrm{FNS}}(\xi, t)= \begin{cases}\chi_{0}(\xi) & \text { if } T_{0}>t, \\ \mathbf{X}_{\mathrm{FNS}}^{(1)}\left(W_{1}, t-T_{0}\right) \odot_{\xi} \mathbf{X}_{\mathrm{FNS}}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } T_{0} \leq t .\end{cases}$

An example of $\mathbf{X}_{\text {FNS }}$

Consider the following event:

On this event,

$$
\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left(\chi_{0}\left(W_{11}\right) \odot_{W_{1}} \chi_{0}\left(W_{12}\right)\right) \odot_{\xi} \chi_{0}\left(W_{2}\right)
$$

Three ingredients: clocks, branching process, product.
Cascade structure $=$ clocks + branching process.

Stochastic explosion

$$
S_{n}=\min _{|\nu|=n} \sum_{j=0}^{n} T_{\nu \mid j}, \quad S=\lim _{n \rightarrow \infty} S_{n}=\sup _{n \in \mathbb{N}} S_{n}
$$

Explosion event: $\{S<\infty\}$.
Non-explosion event : $\{S=\infty\}$.

Examples of non-explosion

$$
u_{t}-u_{x x}=u^{2}-u, \quad u(x, 0)=u_{0}(x) .
$$

Examples of non-explosion

$$
u_{t}-u_{x x}=b u, \quad u(x, 0)=u_{0}(x)
$$

Examples of non-explosion

$$
u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x)
$$

$$
\mathbb{P}_{\xi}(W=\xi-1)=\mathbb{P}_{\xi}(W=\xi+1)=1 / 2
$$

Examples of non-explosion

$$
\begin{gathered}
u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x) . \\
\vdots \\
\mathbb{P}_{\xi}(W=\xi-1)=\mathbb{P}_{\xi}(W=\xi+1)=1 / 2 . \\
\sum_{n=1}^{\infty} T_{\nu \mid n}=\sum_{n=1}^{\infty} \frac{\bar{T}_{\nu \mid n}}{\left|W_{\nu \mid n}\right|^{2}} \geq \sum_{k=1}^{\infty} \frac{\bar{T}_{\nu_{k}}}{\xi^{2}}=\frac{1}{\xi^{2}} \sum_{k=1}^{\infty} \bar{T}_{\nu_{k}}=\infty \quad \text { a.s. }
\end{gathered}
$$

Cheap Navier-Stokes equation

$$
(\mathrm{cNSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u & =\sqrt{-\Delta}\left(u^{2}\right) & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0) & =\gamma \breve{h} / c_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

With $\chi=c_{0} \hat{u} / h$, we have

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \gamma \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s \\
& =\mathbb{E}[\mathbf{X}(\xi, t)]
\end{aligned}
$$

where

$$
\mathbf{X}(\xi, t)= \begin{cases}\gamma & \text { if } T_{0}>t \\ \mathbf{X}^{(1)}\left(W_{1}, t-T_{0}\right) \mathbf{X}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } \quad T_{0} \leq t\end{cases}
$$

Stochastic explosion

Branching process may never stop, potentially making $\mathbf{X}_{\text {FNS }}$ not well-defined.

- Property of cascade structure, not of product.
- Depending on the majorizing kernel h.
- 3D self-similar cascade $h_{\text {dilog }}(\xi)=C|\xi|^{-2}$: stochastic explosion a.s.
(Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\mathrm{b}}(\xi)=C|\xi|^{-1} e^{-|\xi|}$: non-explosive a.s. (Orum, Pham 2019)

Cascade solutions

When stochastic explosion happens, how can we define a stochastic cascade solution and is it unique?

Cascade solutions

When stochastic explosion happens, how can we define a stochastic cascade solution and is it unique? Introducing a ground state $\mathbf{X}_{0}=\mathbf{X}_{0}(\xi, t)$:

$$
\mathbf{X}_{n}(\xi, t)=\left\{\begin{array}{lll}
\gamma & \text { if } \quad T_{0}>t \\
\mathbf{X}_{n-1}^{(1)}\left(W_{1}, t-T_{0}\right) \mathbf{X}_{n-1}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } \quad T_{0} \leq t
\end{array}\right.
$$

Cascade solutions

When stochastic explosion happens, how can we define a stochastic cascade solution and is it unique? Introducing a ground state $\mathbf{X}_{0}=\mathbf{X}_{0}(\xi, t)$:

$$
\mathbf{X}_{n}(\xi, t)=\left\{\begin{array}{lll}
\gamma & \text { if } \quad T_{0}>t \\
\mathbf{X}_{n-1}^{(1)}\left(W_{1}, t-T_{0}\right) \mathbf{X}_{n-1}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } \quad T_{0} \leq t
\end{array}\right.
$$

- If $\gamma=1$ and $\mathbf{X}_{0}=1$ then $\mathbf{X}_{n}=1$ for all n. Thus, $\chi=\lim \mathbb{E} \mathbf{X}_{n}=1$.
- If $\gamma=1$ and $\mathbf{X}_{0}=0$ then $\chi=\lim \mathbb{E} \mathbf{X}_{n}=\mathbb{P}\left(S_{\xi}>t\right)$.

$$
\chi(\xi, t)=\sum_{n=1}^{\infty} \gamma^{n} p_{n}(\xi, t)
$$

$$
p_{n}(\xi, t)=\mathbb{P}\left(S_{\xi}>t, \text { exactly } n \text { branches cross }\right)
$$

Cheap NSE in 3D

Bessel majorizing kernel: $h=h_{\mathrm{b}}(\xi)=\frac{1}{2 \pi} \frac{e^{-|\xi|}}{|\xi|}$.

$$
(\mathrm{cNSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u & =\sqrt{-\Delta}\left(u^{2}\right) & \text { in } \mathbb{R}^{3} \times(0, \infty), \\
u(\cdot, 0) & =\frac{2 \gamma}{1+|x|^{2}} & \text { in } \mathbb{R}^{3}
\end{aligned}\right.
$$

Dascaliuc, Orum, Pham (2019)

If $0 \leq \gamma<1$ then (cNSE) has a unique solution in $L^{5}\left(\mathbb{R}^{3} \times(0, \infty)\right)$. If $\gamma>\frac{9}{2} e^{8 / 3} \approx 64.76$ then the solution blows up in finite time.

Cheap NSE in 3D when $\gamma<1$

$p_{n}(\xi, t)=\mathbb{P}\left(S_{\xi}>t\right.$, exactly n branches cross $)$.
By conditioning on the first time of branching, we get
$p_{n}(\xi, t)=\int_{0}^{t}|\xi|^{2} e^{-s|\xi|^{2}} \int_{\mathbb{R}^{3}} \sum_{k=1}^{n-1} p_{k}(\eta, t-s) p_{n-k}(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s$
By induction, one can prove

$$
p_{n}(\xi, t) \leq \theta \lambda^{n-1} C_{n} e^{-|\xi| \sqrt{t}}
$$

where

- $\theta=e^{1 / 4}, \lambda=2 e^{3 / 4}$,
- $\left(C_{n}\right)$ is the Catalan sequence

$$
\left\{\begin{array}{l}
C_{1}=1 \\
C_{n}=\sum_{k=1}^{n-1} C_{k} C_{n-k}
\end{array}\right.
$$

Cheap NSE in 3D when $\gamma<1$

For any $0<\kappa<1$,

$$
p_{n}(\xi, t) \leq\left(\theta \lambda^{n-1} C_{n} e^{-|\xi| \sqrt{t}}\right)^{\kappa} \lesssim(4 \lambda)^{\kappa n} e^{-\kappa|\xi| \sqrt{t}} .
$$

If $\gamma<1$, choose κ small such that $4^{\kappa} \lambda^{\kappa} \gamma<1$.

$$
\chi(\xi, t)=\mathbb{P}\left(S_{\xi}>t\right)=\sum_{n=1}^{\infty} \gamma^{n} p_{n}(\xi, t) \lesssim \sum_{n=1}^{\infty}(\underbrace{4^{\kappa} \lambda^{\kappa} \gamma}_{<1})^{n} e^{-\kappa|\xi| \sqrt{t}}
$$

Cheap NSE in 3D when γ is large

$$
\begin{gathered}
q_{n}(t)=\inf _{1 / 3 \leq|\xi| \leq 1} p_{n}(\xi, t) \\
q_{n}(t) \geq \alpha \int_{0}^{t} e^{-(t-s)} \sum_{k=1}^{n} q_{k}(s) q_{n-k}(s) d s
\end{gathered}
$$

By induction,

$$
p_{n}(\xi, t) \geq q_{n}(t) \geq \alpha^{n-1} t^{n-1} e^{-n t}
$$

For large γ and for some t,

$$
\chi(\xi, t)=\sum_{n=1}^{\infty} \gamma^{n} p_{n}(\xi, t) \gtrsim \sum_{n=1}^{\infty}(\underbrace{\gamma \alpha t e^{-t}}_{>1})^{n}=\infty .
$$

Thank You!

