On the blowup, nonuniqueness, and stochastic explosion of PDE

Tuan Pham
Oregon State University
January 10, 2020

Diffusion equation - Probabilistic representation

In $\mathbb{R}^{d} \times(0, \infty)$, consider the initial-value problem

$$
\left\{\begin{aligned}
\partial_{t} u-\frac{1}{2} \Delta u & =0 \\
u(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

Classical solution:

$$
u(x, t)=\int_{\mathbb{R}^{d}} \underbrace{\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{|y-x|^{2}}{2 t}\right)}_{\Phi(y-x, t)} u_{0}(y) d y
$$

Diffusion equation - Probabilistic representation

In $\mathbb{R}^{d} \times(0, \infty)$, consider the initial-value problem

$$
\left\{\begin{aligned}
\partial_{t} u-\frac{1}{2} \Delta u & =0 \\
u(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

Classical solution:

$$
u(x, t)=\int_{\mathbb{R}^{d}} \underbrace{\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{|y-x|^{2}}{2 t}\right)}_{\Phi(y-x, t)} u_{0}(y) d y
$$

Observe: $\Phi(\cdot-x, t)$ is the p.d.f of an $\mathcal{N}\left(x, t l_{d}\right)$-random variable in \mathbb{R}^{d}, e.g. Brownian motion B_{t}^{x}.

$$
u(x, t)=\mathbb{E}\left[u_{0}\left(B_{t}^{x}\right)\right] .
$$

Diffusion equation - Probabilistic representation

"Stochastic characteristic curves"

Reaction-Diffusion equation - Probabilistic representation

$$
\left\{\begin{aligned}
\partial_{t} u-\frac{1}{2} \Delta u & =-K(x) u, \\
u(x, 0) & =u_{0}(x) .
\end{aligned}\right.
$$

Feynman-Kac formula (1940s):

$$
u(x, t)=\mathbb{E}\left[u_{0}\left(B_{t}^{x}\right) \exp \left(-\int_{0}^{t} K\left(B_{s}^{x}\right) d s\right)\right] .
$$

The problem can be formulated and generalized (with drift term ∇u and forcing f) by Itô calculus (1950s).

KPP-Fisher equation

In $\mathbb{R} \times(0, \infty)$, consider the equation (Kolmogorov-Petrovskii-Piskunov (KPP), Fisher, 1937):

$$
\left\{\begin{aligned}
u_{t}-\frac{1}{2} u_{x x} & =u^{2}-u \\
u(x, 0) & =u_{0}(x)
\end{aligned}\right.
$$

With $\Psi=e^{-t} \Phi$,

$$
u(x, t)=\int_{\mathbb{R}} \Psi(x-y, t) u_{0}(y) d y+\int_{0}^{t} \int_{\mathbb{R}} \Psi(x-y, s) u^{2}(y, t-s) d y d s
$$

Noting that Ψ is a p.d.f on $\mathbb{R} \times(0, \infty)$, McKean (1975) gave a probabilistic description of this equation by branching process.

KPP-Fisher equation

$T \sim \operatorname{Exp}(1):$ holding time (the clock).

$$
u(x, t)=\mathbb{E}\left[u_{0}\left(B_{t}^{x}\right) \mathbb{1}_{T>t}\right]+\mathbb{E}\left[u^{2}\left(B_{T}^{x}, t-T\right) \mathbb{1}_{T \leq t}\right]
$$

In other words, $u(x, t)=\mathbb{E}[\mathbf{X}(x, t)]$ where

$$
\mathbf{X}(x, t)= \begin{cases}u_{0}\left(B_{t}^{\times}\right) & \text {if } T>t \\ \mathbf{X}^{(1)}\left(B_{T}^{\times}, t-T\right) \mathbf{X}^{(2)}\left(B_{T}^{\times}, t-T\right) & \text { if } T \leq t\end{cases}
$$

Here $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are i.i.d copies of \mathbf{X} and are independent of T.

KPP-Fisher equation - Branching process

Diffusion-reaction equation - Fourier domain - Ex. 1

The heat operator $\partial_{t}-\Delta$ naturally induces a clock in the Fourier domain. For example,

$$
u_{t}-u_{x x}=b u, \quad u(x, 0)=u_{0}(x)
$$

In Fourier domain,

$$
\hat{u}(\xi, t)=e^{-t \xi^{2}} \hat{u}_{0}(\xi)+\int_{0}^{t} e^{-s \xi^{2}} b \hat{u}(\xi, t-s) d s .
$$

Put $\chi=\xi^{2} \hat{u}$. Then

$$
\chi(\xi, t)=e^{-t \xi^{2}} \chi_{0}(\xi)+\int_{0}^{t} \underbrace{\xi^{2} e^{-s \xi^{2}}}_{\text {p.d.f }} \frac{b}{\xi^{2}} \chi(\xi, t-s) d s
$$

Diffusion-reaction equation - Fourier domain - Ex. 1

$$
\chi(\xi, t)=\mathbb{E}[\mathbf{X}(\xi, t)]
$$

where

$$
\mathbf{X}(\xi, t)=\left\{\begin{array}{rll}
\chi_{0}(\xi) & \text { if } & T>t, \\
\frac{b}{\xi^{2}} \mathbf{X}(\xi, t-T) & \text { if } & T \leq t .
\end{array}\right.
$$

$$
\mathbf{X}(\xi, t)=\left(\frac{b}{\xi^{2}}\right)^{N_{t}} \chi 0(\xi), \quad N_{t}=\inf \left\{n: T_{0}+T_{1}+\ldots+T_{n}>t\right\}
$$

Diffusion-reaction equation - Fourier domain - Ex. 2

$$
\begin{gathered}
u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x) \\
\hat{u}(\xi, t)=\hat{u}_{0}(\xi) e^{-t \xi^{2}}+\frac{c}{2} \int_{0}^{t} \xi^{2} e^{-s \xi^{2}}\left(\frac{\hat{u}(\xi-1, t-s)}{\xi^{2}}+\frac{\hat{u}(\xi+1, t-s)}{\xi^{2}}\right) d s
\end{gathered}
$$

Diffusion-reaction equation - Fourier domain - Ex. 2

$$
\begin{aligned}
& u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x) . \\
& \hat{u}(\xi, t)=\hat{u}_{0}(\xi) e^{-t \xi^{2}}+\frac{c}{2} \int_{0}^{t} \xi^{2} e^{-s \xi^{2}}\left(\frac{\hat{u}(\xi-1, t-s)}{\xi^{2}}+\frac{\hat{u}(\xi+1, t-s)}{\xi^{2}}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{X}(\xi, t)=\left\{\begin{array}{rll}
\chi_{0}(\xi) & \text { if } T>t, \\
\frac{c}{\xi^{2}} \mathbf{X}(W, t-T) & \text { if } T \leq t .
\end{array}\right. \\
& \mathbb{P}_{\xi}(W=\xi-1)=\mathbb{P}_{\xi}(W=\xi+1)=1 / 2 .
\end{aligned}
$$

Diffusion-reaction equation - Fourier domain - Ex. 3

$$
u_{t}-\frac{1}{2} u_{x x}=u^{2}-u, \quad u(x, 0)=u_{0}(x)
$$

Fourier domain:

$$
\begin{aligned}
& \hat{u}_{t}+\underbrace{\left(1+\frac{1}{2}|\xi|^{2}\right)}_{\lambda(\xi)} \hat{u}=\widehat{u^{2}} . \\
& \hat{u}(\xi, t)=e^{-\lambda(\xi) t} \hat{u}_{0}+c \int_{0}^{t} e^{-\lambda(\xi) s} \hat{u}(\eta, t-s) \hat{u}(\xi-\eta, t-s) d \eta d s
\end{aligned}
$$

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
\operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{aligned}
& \partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 \text { in } \\
& \mathbb{R}^{d} \times(0, \infty), \\
& \operatorname{div} u=0 \text { in } \mathbb{R}^{d} \times(0, \infty), \\
& u(\cdot, 0)=u_{0} \text { in } \mathbb{R}^{d} .
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

In Fourier domain:
$\hat{u}(\xi, t)=e^{-|\xi|^{2} t} \hat{u}_{0}(\xi)+c_{0} \int_{0}^{t} e^{-|\xi|^{2} s}|\xi| \int_{\mathbb{R}^{d}} \hat{u}(\eta, t-s) \odot_{\xi} \hat{u}(\xi-\eta, t-s) d \eta d s$
where $a \odot_{\xi} b=-i\left(e_{\xi} \cdot b\right)\left(\pi_{\xi^{\perp}} a\right)$.

Fourier-transformed Navier-Stokes equations (FNS)

Normalization to (FNS): LJS 1997, Bhattacharya et al 2003.

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

where $\chi=c_{0} \hat{u} / h$ and $H(\eta \mid \xi)=\frac{h(\eta) h(\xi-\eta)}{|\xi| h(\xi)}$.
$h:$ majorizing kernel, i.e. $h * h=|\xi| h$.

Cascade structure of FNS

Define a stochastic multiplicative functional recursively as
$\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left\{\begin{array}{lll}\chi_{0}(\xi) & \text { if } & T_{0}>t, \\ \mathbf{X}_{\mathrm{FNS}}^{(1)}\left(W_{1}, t-T_{0}\right) \odot_{\xi} \mathbf{X}_{\mathrm{FNS}}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } \quad T_{0} \leq t .\end{array}\right.$

An example of $\mathbf{X}_{\text {FNS }}$

Consider the following event:

On this event,

$$
\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left(\chi_{0}\left(W_{11}\right) \odot_{W_{1}} \chi_{0}\left(W_{12}\right)\right) \odot_{\xi} \chi_{0}\left(W_{2}\right)
$$

Three ingredients: clocks, branching process, product.
Cascade structure $=$ clocks + branching process.

Stochastic cascade solutions - Two issues

We referred to solutions given by the expectation of a multiplicative stochastic functional \mathbf{X} as stochastic cascade solutions.

Cascade structure $=$ clocks + branching process.
There are two potential issues with this construction:

- Stochastic explosion: the branching process may never stop, making X not well-defined.
- Existence of the expectation: it may happen that $\mathbb{E}|\mathbf{X}|=\infty$.

Stochastic cascade solutions - Two issues

We referred to solutions given by the expectation of a multiplicative stochastic functional \mathbf{X} as stochastic cascade solutions.

Cascade structure $=$ clocks + branching process.
There are two potential issues with this construction:

- Stochastic explosion: the branching process may never stop, making X not well-defined.
- Existence of the expectation: it may happen that $\mathbb{E}|\mathbf{X}|=\infty$.

Existence of expectation \longleftrightarrow smallness of initial condition.
Stochastic explosion: (1) Can it happen? (2) Any connection with non-uniqueness?

Explosion

$$
S_{n}=\min _{|\nu|=n} \sum_{j=0}^{n} T_{\nu \mid j}, \quad S=\lim _{n \rightarrow \infty} S_{n}=\sup _{n \in \mathbb{N}} S_{n}
$$

Explosion event: $\{S<\infty\}$.
Non-explosion event : $\{S=\infty\}$.

Examples of non-explosion

$$
u_{t}-u_{x x}=u^{2}-u, \quad u(x, 0)=u_{0}(x) .
$$

Examples of non-explosion

$$
u_{t}-u_{x x}=b u, \quad u(x, 0)=u_{0}(x)
$$

Example of non-explosion

$$
u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x)
$$

$$
\mathbb{P}_{\xi}(W=\xi-1)=\mathbb{P}_{\xi}(W=\xi+1)=1 / 2
$$

Example of non-explosion

$$
\begin{gathered}
u_{t}-u_{x x}=(\cos x) u, \quad u(x, 0)=u_{0}(x) . \\
\xi=\cdots \cdots T_{0} \sim E_{x p}\left(\xi^{2}\right) \\
\mathbb{P}_{\xi}(W=\xi-1)=\mathbb{P}_{\xi}(W=\xi+1)=1 / 2 . \\
\left.\sum_{n=1}^{\infty} T_{\nu \mid n}=\sum_{n=1}^{\infty} \frac{\bar{T}_{\nu \mid n}}{W_{\nu|n|^{2}}} \geq \sum_{k=1}^{\infty} \frac{\bar{T}_{\nu k}}{\xi^{2}}=\frac{1}{\xi^{2}} \sum_{k=1}^{\infty} \bar{T}_{\nu_{k}}=\infty \quad \text { a.s. }(\xi+1)^{2}\right)
\end{gathered}
$$

Explosion

Branching process may never stop, potentially making $\mathbf{X}_{\text {FNS }}$ not well-defined.

- Property of cascade structure, not of product.
- Depending on the majorizing kernel h.
- 3D self-similar cascade $h_{\text {dilog }}(\xi)=C|\xi|^{-2}$: stochastic explosion a.s.
(Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\mathrm{b}}(\xi)=C|\xi|^{-1} e^{-|\xi|}$: non-explosive a.s. (Orum, Pham 2019)

Stochastic explosion of NSE

Explosion happens a.s. for the self-similar cascade, how can we define a stochastic cascade solution and is it unique?

Stochastic explosion of NSE

Explosion happens a.s. for the self-similar cascade, how can we define a stochastic cascade solution and is it unique?
Introducing a ground state:

$$
\begin{aligned}
& \mathbf{X}_{0}(\xi, t) \equiv 0, \\
& \mathbf{X}_{n}(\xi, t)= \begin{cases}\chi_{0}(\xi) & \text { if } T_{0}>t \\
\mathbf{X}_{n-1}^{(1)}\left(W_{1}, t-T_{0}\right) \odot_{\xi} \mathbf{X}_{n-1}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } T_{0} \leq t\end{cases}
\end{aligned}
$$

Stochastic explosion of NSE

Explosion happens a.s. for the self-similar cascade, how can we define a stochastic cascade solution and is it unique?
Introducing a ground state:

$$
\begin{aligned}
& \mathbf{X}_{0}(\xi, t) \equiv 0, \\
& \mathbf{X}_{n}(\xi, t)= \begin{cases}\chi_{0}(\xi) & \text { if } T_{0}>t \\
\mathbf{X}_{n-1}^{(1)}\left(W_{1}, t-T_{0}\right) \odot_{\xi} \mathbf{X}_{n-1}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } T_{0} \leq t\end{cases}
\end{aligned}
$$

Ignore the product and regard \mathbf{X}_{n} as a scalar:

$$
\begin{aligned}
& \mathbf{X}_{0}(\xi, t) \equiv 0 \\
& \mathbf{X}_{n}(\xi, t)= \begin{cases}\chi_{0}(\xi) & \text { if } T_{0}>t \\
\mathbf{X}_{n-1}^{(1)}\left(W_{1}, t-T_{0}\right) \mathbf{X}_{n-1}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } \quad T_{0} \leq t\end{cases}
\end{aligned}
$$

Nonuniqueness (of cheap NSE)

- For $\chi_{0} \equiv 1$ and $\mathbf{X}_{0} \equiv 1$ then $\mathbf{X}_{n}=1$ for all n. Thus, $\chi=\lim \mathbb{E} \mathbf{X}_{n}=1$.
- For $\chi_{0} \equiv 1$ and $\mathbf{X}_{0} \equiv 0$ then $\chi=\lim \mathbb{E} \mathbf{X}_{n}=\mathbb{P}\left(S_{\xi}>t\right)$. where S_{ξ} is the shortest branch of the tree rooted at ξ.
- Both of functions χ above solve the equation

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

- In physical domain: $\partial_{t} u-\Delta u=\sqrt{-\Delta}\left(u^{2}\right)$ and $u(x, 0)=c /|x|$, called the cheap NSE (Montgomery-Smith 2002).

Another toy model: α-Riccati equation

$$
\begin{gathered}
u^{\prime}+u=u^{2}(\alpha t), \quad u(0)=u_{0} \\
\mathbf{X}(t)=\left\{\begin{aligned}
u_{0} & \text { if } T>t \\
\mathbf{X}^{(1)}(\alpha(t-T)) \mathbf{X}^{(2)}(\alpha(t-T)) & \text { if } T \leq t
\end{aligned}\right.
\end{gathered}
$$

$$
\mathbb{E} S \leq \mathbb{E}\left(T_{0}+\frac{T_{1}}{\alpha}+\frac{T_{11}}{\alpha^{2}}+\frac{T_{111}}{\alpha^{3}}+\cdots\right)=\frac{\alpha}{\alpha-1}<\infty
$$

Thank You!

