A global regularity criterion for the Navier-Stokes equations based on approximate solutions

Tuan Pham
Oregon State University

April 15, 2019

NSE, classical solutions

(NSE) : $\left\{\begin{array}{rll}\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } & \mathbb{R}^{3} \times(0, \infty), \\ \operatorname{div} u=0 & \text { in } & \mathbb{R}^{3} \times(0, \infty), \\ u(\cdot, 0)=u_{0} & \text { in } & \mathbb{R}^{3} .\end{array}\right.$

NSE, classical solutions

(NSE) : $\left\{\begin{array}{rll}\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } & \mathbb{R}^{3} \times(0, \infty), \\ \operatorname{div} u=0 & \text { in } & \mathbb{R}^{3} \times(0, \infty), \\ u(\cdot, 0)=u_{0} & \text { in } & \mathbb{R}^{3} .\end{array}\right.$
Mild solutions (\sim classical sols):
Perturbation methods:

- Leray (1934): $u_{0} \in L^{q}, q>3$
- Kato (1984): $u_{0} \in L^{3}$
\checkmark Local existence, uniqueness, smoothness
? Global existence

$$
\left\|u_{0}\right\|_{L^{\infty}}=M
$$

Weak Solutions

Energy methods:

- Leray-Hopf (1934, '51): $u_{0} \in L^{2}$

$$
\int_{\mathbb{R}^{3}} \frac{|u(x, t)|^{2}}{2} d x+\int_{0}^{t} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x d s \leq \int_{\mathbb{R}^{3}} \frac{\left|u_{0}(x)\right|^{2}}{2} d x
$$

Weak Solutions

Energy methods:

- Leray-Hopf (1934, '51): $u_{0} \in L^{2}$

$$
\int_{\mathbb{R}^{3}} \frac{|u(x, t)|^{2}}{2} d x+\int_{0}^{t} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x d s \leq \int_{\mathbb{R}^{3}} \frac{\left|u_{0}(x)\right|^{2}}{2} d x
$$

- Local energy solutions (Scheffer '77, C-K-N '82, Lemarié-Rieusset $2002, \ldots): u_{0} \in L_{\text {uloc }}^{2}$

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \phi d x d t \leq \int_{0}^{\infty} \int_{\mathbb{R}^{3}}\left[\frac{|u|^{2}}{2}\left(\partial_{t} \phi+\Delta \phi\right)+\left(\frac{|u|^{2}}{2}+p\right) u \nabla \phi\right] d x d t
$$

Weak Solutions

Energy methods:

- Leray-Hopf (1934, '51): $u_{0} \in L^{2}$

$$
\int_{\mathbb{R}^{3}} \frac{|u(x, t)|^{2}}{2} d x+\int_{0}^{t} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x d s \leq \int_{\mathbb{R}^{3}} \frac{\left|u_{0}(x)\right|^{2}}{2} d x
$$

- Local energy solutions (Scheffer '77, C-K-N '82, Lemarié-Rieusset $2002, \ldots$): $u_{0} \in L_{\text {uloc }}^{2}$

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \phi d x d t \leq \int_{0}^{\infty} \int_{\mathbb{R}^{3}}\left[\frac{|u|^{2}}{2}\left(\partial_{t} \phi+\Delta \phi\right)+\left(\frac{|u|^{2}}{2}+p\right) u \nabla \phi\right] d x d t
$$

- Sw-solutions (Seregin-Sverak 2017): $u_{0} \in L^{3}$

Weak Solutions

Energy methods:

- Leray-Hopf (1934, '51): $u_{0} \in L^{2}$

$$
\int_{\mathbb{R}^{3}} \frac{|u(x, t)|^{2}}{2} d x+\int_{0}^{t} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x d s \leq \int_{\mathbb{R}^{3}} \frac{\left|u_{0}(x)\right|^{2}}{2} d x
$$

- Local energy solutions (Scheffer '77, C-K-N '82, Lemarié-Rieusset $2002, \ldots$): $u_{0} \in L_{\text {uloc }}^{2}$

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \phi d x d t \leq \int_{0}^{\infty} \int_{\mathbb{R}^{3}}\left[\frac{|u|^{2}}{2}\left(\partial_{t} \phi+\Delta \phi\right)+\left(\frac{|u|^{2}}{2}+p\right) u \nabla \phi\right] d x d t
$$

- Sw-solutions (Seregin-Sverak 2017): $u_{0} \in L^{3}$
\checkmark Global existence
? Uniqueness, smoothness

Motivating questions

- $\varepsilon \ldots$ mesh size (resolution)
- $u_{\varepsilon} \ldots$ approximate solution
- u...exact classical solution
- $\left|u_{\varepsilon}\right| \leq M \quad \forall x, t$
- What can we say about u ?

Motivating questions

- $\varepsilon \ldots$ mesh size (resolution)
- $u_{\varepsilon} \ldots$ approximate solution
- u...exact classical solution
- $\left|u_{\varepsilon}\right| \leq M \quad \forall x, t$
- What can we say about u ?

Theorem (Buyang Li 2014)

If $\varepsilon \lesssim \exp \left(-\left(\left\|u_{0}\right\|_{H_{0}^{1} \cap H^{2}}+1\right)^{\alpha} M^{\alpha}\right)$ then u exists globally and $|u| \leq 2 M$.
α... large number (~ 225)

Heuristics

For $u_{0} \in L^{2} \cap L^{\infty}$ and $\left\|u_{0}\right\|_{L^{\infty}}=M$,

Motivating questions

- Is there a scale-invariant relation of $\varepsilon, M,\left\|u_{0}\right\|_{L^{2}}$? Scaling symmetry:

$$
\begin{aligned}
u(x, t) & \rightarrow u_{\lambda}(x, t)=\lambda u\left(\lambda x, \lambda^{2} t\right) \\
p(x, t) & \rightarrow p_{\lambda}(x, t)=\lambda^{2} p\left(\lambda x, \lambda^{2} t\right) \\
u_{0}(x) & \rightarrow u_{\lambda 0}(x)=\lambda u_{0}(\lambda x)
\end{aligned}
$$

Motivating questions

- Is there a scale-invariant relation of $\varepsilon, M,\left\|u_{0}\right\|_{L^{2}}$?

Scaling symmetry:

$$
\begin{aligned}
u(x, t) & \rightarrow u_{\lambda}(x, t)=\lambda u\left(\lambda x, \lambda^{2} t\right) \\
p(x, t) & \rightarrow p_{\lambda}(x, t)=\lambda^{2} p\left(\lambda x, \lambda^{2} t\right) \\
u_{0}(x) & \rightarrow u_{\lambda 0}(x)=\lambda u_{0}(\lambda x)
\end{aligned}
$$

Dimensions (C-K-N 1982):
$[$ Length $]=[x]=1$,
$[$ Time $]=[t]=2$,
$[$ Velocity $]=[u]=-1$,
[Pressure $]=[p]=-2$,
$[$ Energy $]=\left[\left\|u_{0}\right\|_{L^{2}}^{2}\right]=1$,
$[\varepsilon]=1,[M]=-1, \ldots$

Motivating questions - Main result in global picture

- For fixed M and u_{0}, how large can ε be ?

Motivating questions - Main result in global picture

- For fixed M and u_{0}, how large can ε be ? Not very reasonable:

$$
\varepsilon \lesssim M^{-\alpha}\left\|u_{0}\right\|_{L^{2}}^{\beta} \quad \text { where } \quad \alpha+\frac{\beta}{2}=1
$$

Somewhat more reasonable:

$$
\varepsilon \lesssim M^{-1}
$$

Motivating questions - Main result in global picture

- For fixed M and u_{0}, how large can ε be ?

Not very reasonable:

$$
\varepsilon \lesssim M^{-\alpha}\left\|u_{0}\right\|_{L^{2}}^{\beta} \quad \text { where } \quad \alpha+\frac{\beta}{2}=1
$$

Somewhat more reasonable:

$$
\varepsilon \lesssim M^{-1}
$$

Theorem (P. - Sverák 2019)

Let $f_{\varepsilon}=f_{\varepsilon}(x, t)$ be a function such that $\left\|F f_{\varepsilon}\right\|_{L^{\infty}} \lesssim \varepsilon M^{2}$. Suppose the approximate Navier-Stokes system (NSE) $)_{\varepsilon}$ has a solution on ($0, T$) with $\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right)} \leq M$. Then there exists absolute constants $\delta_{1}, \delta_{2}>0$ such that if

$$
\varepsilon \leq \frac{\delta_{1}}{M} \exp \left(-\delta_{2} T M^{2}\right)
$$

then (NSE) has a mild solution on $(0, T)$ with $\|u\|_{L^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right)} \leq 2 M$.

Approximate Navier-Stokes systems

where

$$
(\mathrm{NSE})_{\varepsilon}:\left\{\begin{array}{r}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=\operatorname{div} f_{\varepsilon} \\
\operatorname{div} u=0 \\
u(\cdot, 0)=u_{0}
\end{array}\right.
$$

Approximate Navier-Stokes systems

where

$$
(\mathrm{NSE})_{\varepsilon}:\left\{\begin{array}{r}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=\operatorname{div} f_{\varepsilon} \\
\operatorname{div} u=0 \\
u(\cdot, 0)=u_{0}
\end{array}\right.
$$

Exact solution:

$$
u=U+B(u, u)
$$

Approximate solution:

$$
\begin{aligned}
u_{\varepsilon} & =U+F f_{\varepsilon}+B\left(u_{\varepsilon}, u_{\varepsilon}\right) \\
F f_{\varepsilon}(x, t) & =\int_{0}^{t} \Gamma(t-s) * \mathbb{P} \operatorname{div} f_{\varepsilon}(s) d s
\end{aligned}
$$

Examples of approximate NSE

- Leray's mollified NSE:

$$
\partial_{t} u-\Delta u+\left(u * \eta_{\varepsilon}\right) \cdot \nabla u+\nabla p=0
$$

$\eta_{\varepsilon} \ldots$. standard mollifiers in \mathbb{R}^{3}
$f_{\varepsilon}=\left(u * \eta_{\varepsilon}-u\right) \otimes u$

Examples of approximate NSE

- Leray's mollified NSE:

$$
\partial_{t} u-\Delta u+\left(u * \eta_{\varepsilon}\right) \cdot \nabla u+\nabla p=0
$$

$\eta_{\varepsilon} \ldots$. standard mollifiers in \mathbb{R}^{3}

$$
f_{\varepsilon}=\left(u * \eta_{\varepsilon}-u\right) \otimes u
$$

- Galerkin-type approximate NSE:

$$
\partial_{t} u-\Delta u+P_{\varepsilon}(u \cdot \nabla u)+\nabla p=0
$$

$P_{\varepsilon} \ldots$. low-pass Fourier filter with threshold ε^{-1}

$$
f_{\varepsilon}=\left(I d-P_{\varepsilon}\right)(u \otimes u)
$$

Global picture - Sketch of proof

$$
v=u-u_{\varepsilon}, \quad v(t)=\Gamma(t) * v(0)+F f_{\varepsilon}(t)+B\left(v, u_{\varepsilon}\right)+B\left(u_{\varepsilon}, v\right)+B(v, v)
$$

Global picture - Sketch of proof

$$
v=u-u_{\varepsilon}, \quad v(t)=\Gamma(t) * v(0)+F f_{\varepsilon}(t)+B\left(v, u_{\varepsilon}\right)+B\left(u_{\varepsilon}, v\right)+B(v, v)
$$

Bilinear form:

$$
\|B\|_{L^{\infty} \times L^{\infty}\left(\mathbb{R}^{3} \times(0, t)\right)} \lesssim \sqrt{t}
$$

Global picture - Sketch of proof

$$
v=u-u_{\varepsilon}, \quad v(t)=\Gamma(t) * v(0)+F f_{\varepsilon}(t)+B\left(v, u_{\varepsilon}\right)+B\left(u_{\varepsilon}, v\right)+B(v, v)
$$

Bilinear form:

$$
\|B\|_{L^{\infty} \times L^{\infty}\left(\mathbb{R}^{3} \times(0, t)\right)} \lesssim \sqrt{t}
$$

Put: $\varphi(t)=\sup _{0<s<t}\|v(t)\|_{L^{\infty}}$. Then

$$
\begin{gathered}
\varphi(\tau) \leq \varphi(0)+\alpha+\beta \varphi(\tau)+\gamma \varphi(\tau)^{2} \\
\tau=\frac{\theta}{M^{2}}, \quad \beta \sim \theta \\
\alpha \sim \varepsilon M^{2}, \quad \gamma \sim \frac{\theta}{M}
\end{gathered}
$$

Global picture - Sketch of proof

$$
v=u-u_{\varepsilon}, \quad v(t)=\Gamma(t) * v(0)+F f_{\varepsilon}(t)+B\left(v, u_{\varepsilon}\right)+B\left(u_{\varepsilon}, v\right)+B(v, v)
$$

Bilinear form:

$$
\|B\|_{L^{\infty} \times L^{\infty}\left(\mathbb{R}^{3} \times(0, t)\right)} \lesssim \sqrt{t}
$$

Put: $\varphi(t)=\sup _{0<s<t}\|v(t)\|_{L^{\infty}}$. Then

$$
\begin{gathered}
\varphi(\tau) \leq \varphi(0)+\alpha+\beta \varphi(\tau)+\gamma \varphi(\tau)^{2} \\
\tau=\frac{\theta}{M^{2}}, \quad \beta \sim \theta \\
\alpha \sim \varepsilon M^{2}, \quad \gamma \sim \frac{\theta}{M}
\end{gathered}
$$

Lemma: If $\beta<\frac{1}{2}$ and $\varphi(0)+\alpha<\frac{1}{16 \gamma}$ then $\varphi(\tau)<4(\varphi(0)+\alpha)$.

Global picture - Sketch of proof

Growth of $\varphi=\varphi(t)$:

$$
K \sim \frac{T}{\tau} \sim T M^{2}
$$

Global picture - Sketch of proof

Growth of $\varphi=\varphi(t)$:

$$
K \sim \frac{T}{\tau} \sim T M^{2}
$$

Condition for the process to work:

$$
4^{K} \alpha \lesssim \frac{1}{16 \gamma} \quad \Leftrightarrow \quad 4^{T M^{2}} \varepsilon M \lesssim \frac{1}{16}
$$

Main result in local picture

Theorem (P. - Sverák 2019)

Let $f_{\varepsilon}=f_{\varepsilon}(x, t)$ be a function such that

$$
\left\|f_{\varepsilon}\right\|_{L^{q}\left(Q_{R, \rho}\left(z_{0}\right)\right)} \lesssim \varepsilon^{\sigma_{1}} R^{\sigma_{2}} \rho^{\sigma_{3}} M^{\sigma_{4}} \quad \forall R, \rho>0, z_{0} \in \mathbb{R}^{3} \times \mathbb{R}
$$

for some constants $\sigma_{i} \geq 0, \sigma_{1}>0, q>5$ satisfying

$$
\sigma_{1}+\sigma_{2}+2 \sigma_{3}-\sigma_{4}=-2+\frac{5}{q}
$$

Suppose (NSE) $)_{\varepsilon}$ has a solution with $\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right)} \leq M$. Then there exist constants $\delta_{1}, \delta_{2}>0$ depending on σ_{1} such that if

$$
\varepsilon \leq \frac{\delta_{1}}{M} \exp \left(-\delta_{2} T M^{2}\right)
$$

then (NSE) has a mild solution on $(0, T)$ with $\|u\|_{L^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right)} \lesssim M$.

Local picture - Sketch of proof

$v=u-u_{\varepsilon}$ is local energy solution to generalized NSE:

$$
\partial_{t} v-\Delta v+\operatorname{div}\left(u_{\varepsilon} \otimes v+v \otimes u_{\varepsilon}+v \otimes v\right)+\nabla \pi=\operatorname{div} f_{\varepsilon}
$$

Local picture - Sketch of proof

$v=u-u_{\varepsilon}$ is local energy solution to generalized NSE:

$$
\partial_{t} v-\Delta v+\operatorname{div}\left(u_{\varepsilon} \otimes v+v \otimes u_{\varepsilon}+v \otimes v\right)+\nabla \pi=\operatorname{div} f_{\varepsilon}
$$

Regularity criterion (~ C-K-N 1982, ~ Jia-Sverák 2012)

There exists $\delta, C>0$ only depending on m and q such that if

$$
\frac{1}{R^{2}} \int_{Q_{R}\left(z_{0}\right)}\left(|v|^{3}+|\pi|^{\frac{3}{2}}\right) d z+R^{m-5} \int_{Q_{R}\left(z_{0}\right)}|a|^{m} d z+R^{2 q-5} \int_{Q_{R}\left(z_{0}\right)}|f|^{q} d z<\delta
$$

then $|v| \leq C R^{-1}$ on $Q_{R / 2}\left(z_{0}\right)$.

Local picture - Sketch of proof

$$
e_{R}(t)=\sup _{s \in(0, t), y \in \mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}} \frac{|v(x, s)|^{2}}{2} \phi_{R, y} d x+\int_{0}^{s} \int_{\mathbb{R}^{3}}|\nabla v(x, \tau)|^{2} \phi_{R, y} d x d \tau\right)
$$

Local picture - Sketch of proof

Based on scaling, choose

$$
R=\kappa M^{-1}, \quad \tau=\theta R^{2}
$$

where $\theta, \kappa>0$ are small absolute constants.

Local picture - Sketch of proof

Based on scaling, choose

$$
R=\kappa M^{-1}, \quad \tau=\theta R^{2}
$$

where $\theta, \kappa>0$ are small absolute constants.
Local energy estimate:

$$
e(\tau) \leq e(0)+\alpha e(\tau)^{1 / 2}+\beta e(\tau)+\gamma e(\tau)^{3 / 2}
$$

where

$$
\alpha=\varepsilon^{\sigma_{1}} M^{\sigma_{1}-1 / 2}, \quad \beta=\theta^{1 / 5}, \quad \gamma=M^{1 / 2} \kappa^{-1 / 2}
$$

Local picture - Sketch of proof

Based on scaling, choose

$$
R=\kappa M^{-1}, \quad \tau=\theta R^{2}
$$

where $\theta, \kappa>0$ are small absolute constants.
Local energy estimate:

$$
e(\tau) \leq e(0)+\alpha e(\tau)^{1 / 2}+\beta e(\tau)+\gamma e(\tau)^{3 / 2}
$$

where

$$
\alpha=\varepsilon^{\sigma_{1}} M^{\sigma_{1}-1 / 2}, \quad \beta=\theta^{1 / 5}, \quad \gamma=M^{1 / 2} \kappa^{-1 / 2}
$$

Lemma: If $\beta<1 / 2$ and $\alpha \gamma<1 / 64$ then

- If $e(0)=0$ then $e(\tau)<16 \alpha^{2}$.
- If $0<e(0)<1 /\left(256 \gamma^{2}\right)$ then $e(\tau)<\max \left\{4 e(0), 64 \alpha^{2}\right\}$.

Local picture - Sketch of proof

Growth of local energy $e=e(t)$:

$$
K \sim \frac{T}{\tau} \sim T M^{2}
$$

Local picture - Sketch of proof

Growth of local energy $e=e(t)$:

$$
K \sim \frac{T}{\tau} \sim T M^{2}
$$

Condition for the process to work:

$$
16^{K} \alpha^{2} \lesssim \frac{1}{256 \gamma^{2}} \quad \Leftrightarrow \quad 16^{T M^{2}}(\varepsilon M)^{2 \sigma_{1}} \lesssim \frac{1}{256}
$$

Local picture - Sketch of proof

By Sobolev embeddings,

$$
\begin{gathered}
\frac{1}{R^{2}} \int_{Q_{R}\left(z_{0}\right)}|v|^{3} d z \lesssim\left(\frac{e(\tau)}{R}\right)^{3 / 2} \lesssim(\varepsilon M)^{3 \sigma_{1}} \\
\frac{1}{R^{2}} \int_{Q_{R}\left(z_{0}\right)}|\pi|^{\frac{3}{2}} d z \lesssim(\varepsilon M)^{3 \sigma_{1} / 2}+\left(\frac{e(\tau)}{R}\right)^{3 / 2} \lesssim(\varepsilon M)^{3 \sigma_{1} / 2}
\end{gathered}
$$

Both quantities are small.

Local picture - Sketch of proof

By Sobolev embeddings,

$$
\begin{gathered}
\frac{1}{R^{2}} \int_{Q_{R}\left(z_{0}\right)}|v|^{3} d z \lesssim\left(\frac{e(\tau)}{R}\right)^{3 / 2} \lesssim(\varepsilon M)^{3 \sigma_{1}} \\
\frac{1}{R^{2}} \int_{Q_{R}\left(z_{0}\right)}|\pi|^{\frac{3}{2}} d z \lesssim(\varepsilon M)^{3 \sigma_{1} / 2}+\left(\frac{e(\tau)}{R}\right)^{3 / 2} \lesssim(\varepsilon M)^{3 \sigma_{1} / 2}
\end{gathered}
$$

Both quantities are small.
v is regular on each subinterval!

Conclusion - Open problems

$$
\begin{aligned}
& \mathbf{u}_{\varepsilon} \approx \mathbf{u} \text { if } \varepsilon \leq \varepsilon_{T_{0}, M} \\
& |\mathbf{u}| \leq \mathbf{2 M} \quad \vdots \quad|u| \leq 2 M \\
& \checkmark \varepsilon \lesssim M^{-1} \exp \left(-\left\|u_{0}\right\|_{L^{2}}^{4} M^{2}\right) \\
& \text { ? } \varepsilon \lesssim M^{-1}
\end{aligned}
$$

Thank You!

