Minimal blowup data for potential Navier-Stokes singularities in the half-space

Tuan Pham
Oregon State University

October 29, 2018

Cauchy problem of NSE

For $\Omega=\mathbb{R}^{3}$ or \mathbb{R}_{+}^{3}, consider
$(\mathrm{NSE})_{\Omega}:\left\{\begin{array}{rl}\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=f & x \in \Omega, t>0, \\ \operatorname{div} u=0 & x \in \Omega, t>0, \\ u(x, t)=0 & x \in \partial \Omega, t>0, \\ u(x, 0)=u_{0} & x \in \Omega .\end{array}\right.$

Cauchy problem of NSE

For $\Omega=\mathbb{R}^{3}$ or \mathbb{R}_{+}^{3}, consider
$(\mathrm{NSE})_{\Omega}:\left\{\begin{array}{rl}\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=f & x \in \Omega, t>0, \\ \operatorname{div} u=0 & x \in \Omega, t>0, \\ u(x, t)=0 & x \in \partial \Omega, t>0, \\ u(x, 0)=u_{0} & x \in \Omega .\end{array}\right.$

- Scaling symmetry :

$$
\begin{aligned}
u(x, t) & \rightarrow \lambda u\left(\lambda x, \lambda^{2} t\right) \\
p(x, t) & \rightarrow \lambda^{2} p\left(\lambda x, \lambda^{2} t\right) \\
f(x, t) & \rightarrow \lambda^{3} f\left(\lambda x, \lambda^{2} t\right) \\
u_{0}(x) & \rightarrow \lambda u_{0}(\lambda x)
\end{aligned}
$$

Cauchy problem of NSE

For $\Omega=\mathbb{R}^{3}$ or \mathbb{R}_{+}^{3}, consider
$(\mathrm{NSE})_{\Omega}:\left\{\begin{array}{rl}\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=f & x \in \Omega, t>0, \\ \operatorname{div} u=0 & x \in \Omega, t>0, \\ u(x, t)=0 & x \in \partial \Omega, t>0, \\ u(x, 0)=u_{0} & x \in \Omega .\end{array}\right.$

- Scaling symmetry :

$$
\begin{aligned}
u(x, t) & \rightarrow \lambda u\left(\lambda x, \lambda^{2} t\right) \\
p(x, t) & \rightarrow \lambda^{2} p\left(\lambda x, \lambda^{2} t\right) \\
f(x, t) & \rightarrow \lambda^{3} f\left(\lambda x, \lambda^{2} t\right) \\
u_{0}(x) & \rightarrow \lambda u_{0}(\lambda x)
\end{aligned}
$$

- Critical spaces : $u_{0} \in L^{3}, f \in L_{t, x}^{5 / 3}, u \in L_{t, x}^{5}, \ldots$

Mild Solutions

- Helmholtz decomposition: $g=v+\nabla \phi$

$$
\operatorname{div} v=0,\left.\quad v \cdot n\right|_{\partial \Omega}=0
$$

Mild Solutions

- Helmholtz decomposition: $g=v+\nabla \phi$

$$
\operatorname{div} v=0,\left.\quad v \cdot n\right|_{\partial \Omega}=0
$$

$$
\partial_{t} u-\underbrace{\mathbb{P} \Delta}_{\mathbb{A}} u=\mathbb{P} f-\mathbb{P}(u \cdot \nabla u)
$$

Mild solution: $u \in L_{t, x}^{5}, \quad u=U+F-\int_{0}^{t} e^{(t-s) \mathbb{A}} \mathbb{P}(u \cdot \nabla u) d s$

Mild Solutions

- Helmholtz decomposition: $g=v+\nabla \phi$

$$
\operatorname{div} v=0,\left.\quad v \cdot n\right|_{\partial \Omega}=0
$$

$$
\partial_{t} u-\underbrace{\mathbb{P} \Delta}_{\mathbb{A}} u=\mathbb{P} f-\mathbb{P}(u \cdot \nabla u)
$$

Mild solution: $u \in L_{t, x}^{5}, \quad u=U+F-\int_{0}^{t} e^{(t-s) \mathbb{A}} \mathbb{P}(u \cdot \nabla u) d s$

- Local in time, unique, regular.
- Characterization of finite-time blowup: $\lim _{T \rightarrow T_{*}}\|u\|_{L^{5}(\Omega \times(0, T))}=\infty$.
- Globally well-posed if $\left(u_{0}, f\right)$ is sufficiently small in critical spaces.

Weak Solutions

Suitable weak solution:

$$
\begin{gathered}
\text { Leray '34, Scheffer '77, } \\
\text { C-K-N '82, Lemarié-Rieusset '02 }
\end{gathered}\left\{\begin{array}{l}
\text { weak form, } \\
\text { local energy inequality, } \\
u(t) \rightarrow u_{0} \text { in } L_{\text {loc }}^{2} \text { as } t \downarrow 0 .
\end{array}\right.
$$

Weak Solutions

Suitable weak solution:

$$
\begin{gathered}
\text { Leray '34, Scheffer '77, } \\
\text { C-K-N '82, Lemarié-Rieusset '02 }
\end{gathered}\left\{\begin{array}{l}
\text { weak form, } \\
\text { local energy inequality, } \\
u(t) \rightarrow u_{0} \text { in } L_{\text {loc }}^{2} \text { as } t \downarrow 0 .
\end{array}\right.
$$

Sw-solution:

$\underset{(2017)}{\text { Seregin-Sverak }}\left\{\begin{array}{l}u=v+w \\ v \text { satisfies linear Stokes eq. with data }\left(u_{0}, f\right) \\ w \text { satisfies }\left\{\begin{array}{l}\partial_{t} w-\Delta w+\nabla \pi=-u \cdot \nabla u \text { weakly } \\ \text { energy inequality }\end{array}\right.\end{array}\right.$

Weak Solutions

Suitable weak solution:

Leray '34, Scheffer '77, C-K-N '82, Lemarié-Rieusset ‘02

$$
\left\{\begin{array}{l}
\text { weak form, } \\
\text { local energy inequality, } \\
u(t) \rightarrow u_{0} \text { in } L_{\text {loc }}^{2} \text { as } t \downarrow 0 .
\end{array}\right.
$$

Sw-solution:

$\underset{(2017)}{\text { Seregin-Sverak }}\left\{\begin{array}{l}u=v+w \\ v \text { satisfies linear Stokes eq. with data }\left(u_{0}, f\right) \\ w \text { satisfies }\left\{\begin{array}{l}\partial_{t} w-\Delta w+\nabla \pi=-u \cdot \nabla u \text { weakly } \\ \text { energy inequality }\end{array}\right.\end{array}\right.$

ε-regularity criterion (C-K-N '82, Lin '98, Seregin 2002)

There are two positive constants ε and C such that

$$
\frac{1}{r^{2}} \iint_{Q_{r}\left(x_{0}, t_{0}\right)}\left(|u|^{3}+|p|^{\frac{3}{2}}\right) d x d t \leq \varepsilon \quad \Longrightarrow \quad \sup _{Q_{r / 2}\left(x_{0}, t_{0}\right)}|u(x, t)| \leq \frac{C}{r}
$$

Minimal blowup data

$$
\rho_{\max }^{\Omega}=\sup \left\{\rho: T_{\max }\left(u_{0}, f\right)=\infty \text { if }\left\|\left(u_{0}, f\right)\right\|_{X \times Y}<\rho\right\} .
$$

Question

If $\rho_{\text {max }}^{\Omega}$ is finite, does there exist a data $\left(u_{0}, f\right) \in X \times Y$ with $\left\|\left(u_{0}, f\right)\right\|=\rho_{\text {max }}^{\Omega}$, such that the solution u of $(\mathrm{NSE})_{\Omega}$ blows up in finite time?

Minimal blowup data

$$
\rho_{\max }^{\Omega}=\sup \left\{\rho: T_{\max }\left(u_{0}, f\right)=\infty \text { if }\left\|\left(u_{0}, f\right)\right\|_{X \times Y}<\rho\right\} .
$$

Question

If $\rho_{\text {max }}^{\Omega}$ is finite, does there exist a data $\left(u_{0}, f\right) \in X \times Y$ with $\left\|\left(u_{0}, f\right)\right\|=\rho_{\max }^{\Omega}$, such that the solution u of $(\mathrm{NSE})_{\Omega}$ blows up in finite time?

Affirmation for $\Omega=\mathbb{R}^{3}, f \equiv 0$ and $u_{0} \in X$

- $X=\dot{H}^{1 / 2}$: Rusin-Sverak 2011.
- $X=L^{3}$: Jia-Sverak 2013, Gallagher-Koch-Planchon 2013.
- $X=\dot{B}_{p, q}^{-1+3 / p}$
$(3<p, q<\infty):$ G-K-P 2016.

Main Results

Assume $u_{0}=0$.

$$
Y_{q}=\left\{f: \quad t^{q^{*}} f \in L_{t, x}^{q}\right\}, \quad \frac{5}{2}<q<3, \quad q^{*}=\frac{3}{2}-\frac{5}{2 q}
$$

Main Results

Assume $u_{0}=0$.

$$
Y_{q}=\left\{f: \quad t^{q^{*}} f \in L_{t, x}^{q}\right\}, \quad \frac{5}{2}<q<3, \quad q^{*}=\frac{3}{2}-\frac{5}{2 q}
$$

Theorem 1

For $\Omega=\mathbb{R}^{3}$ and $Y=Y_{q}$, minimal blowup data exists, provided that a blowup data exists.

Main Results

Assume $u_{0}=0$.

$$
Y_{q}=\left\{f: \quad t^{q^{*}} f \in L_{t, x}^{q}\right\}, \quad \frac{5}{2}<q<3, \quad q^{*}=\frac{3}{2}-\frac{5}{2 q}
$$

Theorem 1

For $\Omega=\mathbb{R}^{3}$ and $Y=Y_{q}$, minimal blowup data exists, provided that a blowup data exists.

Theorem 2

(a) $\rho_{\max }^{+} \leq \rho_{\max }$,
(b) If $\rho_{\max }^{+}<\rho_{\max }$ then there exists a minimal blowup data for $\Omega=\mathbb{R}_{+}^{3}$.

Theorem 1: Sketch of proof

- Step 1 : Blowup happens only if there occurs a singular point.

$$
\|u\|_{Q_{r}\left(x_{0}, T_{\max)}\right.}=\infty \quad \forall r>0 .
$$

This is an application of ε-regularity criterion!

Theorem 1: Sketch of proof

- Step 1 : Blowup happens only if there occurs a singular point.

$$
\|u\|_{Q_{r}\left(x_{0}, T_{\max)}\right.}=\infty \quad \forall r>0 .
$$

This is an application of ε-regularity criterion!

- Step 2 : Set up minimizing sequence.

$$
\left\|f^{k}\right\| \downarrow \rho_{\max }
$$

$\left(u^{k}, p^{k}\right)$ is mild solution with data f^{k}, singular at $\left(x^{k}, t^{k}\right)$.

Theorem 1: Sketch of proof

- Step 3 : Normalize $\left(x^{k}, t^{k}\right)$ to $(0,1)$ by translation/scaling symmetry.

$$
\begin{aligned}
u^{k}(x, t) & \rightarrow \quad \lambda_{k} u^{k}\left(\frac{x-x^{k}}{\lambda_{k}}, \frac{t}{\lambda_{k}^{2}}\right), \quad \lambda_{k}=\sqrt{t^{k}} \\
\ldots &
\end{aligned}
$$

Theorem 1: Sketch of proof

- Step 3 : Normalize $\left(x^{k}, t^{k}\right)$ to $(0,1)$ by translation/scaling symmetry.

$$
u^{k}(x, t) \quad \rightarrow \quad \lambda_{k} u^{k}\left(\frac{x-x^{k}}{\lambda_{k}}, \frac{t}{\lambda_{k}^{2}}\right), \quad \lambda_{k}=\sqrt{t^{k}}
$$

- Step 4 : Compactness Theorem (Seregin-Sverak '17, Lin '98).

$$
\begin{aligned}
& u^{k} \rightarrow u \text { in } L_{\mathrm{loc}}^{3} \\
& p^{k} \rightharpoonup p \text { in } L_{\mathrm{loc}}^{3 / 2} \\
& f^{k} \rightharpoonup f \text { in } Y_{q}
\end{aligned}
$$

(u, p) is sw-solution with data f.

Theorem 1: Sketch of proof

- Step 5 : $z_{0}=(0,1)$ is a singularity of u ?

$$
\frac{1}{r^{2}} \iint_{Q_{r}\left(z_{0}\right)}\left(\left|u^{k}\right|^{3}+\left|p^{k}\right|^{\frac{3}{2}}\right) d x d t>\varepsilon \quad \forall r>0, k=1,2, \ldots
$$

Theorem 1: Sketch of proof

- Step 5: $z_{0}=(0,1)$ is a singularity of u ?

$$
\frac{1}{r^{2}} \iint_{Q_{r}\left(z_{0}\right)}\left(\left|u^{k}\right|^{3}+\left|p^{k}\right|^{\frac{3}{2}}\right) d x d t>\varepsilon \quad \forall r>0, k=1,2, \ldots
$$

Want:

$$
\frac{1}{r^{2}} \int_{Q_{r}\left(z_{0}\right)}\left|p^{k}-p\right|^{\frac{3}{2}} d x d t \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, \quad r \rightarrow 0
$$

Theorem 1: Sketch of proof

- Step 5: $z_{0}=(0,1)$ is a singularity of u ?

$$
\frac{1}{r^{2}} \iint_{Q_{r}\left(z_{0}\right)}\left(\left|u^{k}\right|^{3}+\left|p^{k}\right|^{\frac{3}{2}}\right) d x d t>\varepsilon \quad \forall r>0, k=1,2, \ldots
$$

Want:

$$
\frac{1}{r^{2}} \int_{Q_{r\left(z_{0}\right)}}\left|p^{k}-p\right|^{\frac{3}{2}} d x d t \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, \quad r \rightarrow 0
$$

Interior pressure decomposition:

$$
p^{k}=R_{i} R_{j}\left(u_{i}^{k} u_{j}^{k}\right)=\underbrace{R_{i} R_{j}\left(u_{i}^{k} u_{j}^{k} \chi\right)}_{p_{1}^{k} \rightarrow p_{1}}+\underbrace{R_{i} R_{j}\left(u_{i}^{k} u_{j}^{k}(1-\chi)\right)}_{p_{2}^{k} \text { harmonic in } B_{1}}
$$

Theorem 1: Sketch of proof

- Step 5: $z_{0}=(0,1)$ is a singularity of u ?

$$
\frac{1}{r^{2}} \iint_{Q_{r}\left(z_{0}\right)}\left(\left|u^{k}\right|^{3}+\left|p^{k}\right|^{\frac{3}{2}}\right) d x d t>\varepsilon \quad \forall r>0, k=1,2, \ldots
$$

Want:

$$
\frac{1}{r^{2}} \int_{Q_{r}\left(z_{0}\right)}\left|p^{k}-p\right|^{\frac{3}{2}} d x d t \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, \quad r \rightarrow 0
$$

Interior pressure decomposition:

$$
p^{k}=R_{i} R_{j}\left(u_{i}^{k} u_{j}^{k}\right)=\underbrace{R_{i} R_{j}\left(u_{i}^{k} u_{j}^{k} \chi\right)}_{p_{1}^{k} \rightarrow p_{1}}+\underbrace{R_{i} R_{j}\left(u_{i}^{k} u_{j}^{k}(1-\chi)\right)}_{p_{2}^{k} \text { harmonic in } B_{1}}
$$

- Step 6: u must blow up !

$$
\rho_{\max } \leq\|f\| \leq \liminf _{k \rightarrow \infty}\left\|f^{k}\right\|=\rho_{\max }
$$

Theorem 2 (b): Sketch of proof

Normalize $\left(x^{k}, t^{k}\right)$ to $\left(\left(0,0, d_{k}\right), 1\right)$ by translation and scaling.

$$
u^{k}(x, t) \quad \rightarrow \quad \lambda_{k} u^{k}\left(\frac{x-\bar{x}^{k}}{\lambda_{k}}, \frac{t}{\lambda_{k}^{2}}\right), \quad \lambda_{k}=\sqrt{t^{k}}
$$

Theorem 2 (b): Sketch of proof

Normalize $\left(x^{k}, t^{k}\right)$ to $\left(\left(0,0, d_{k}\right), 1\right)$ by translation and scaling.

$$
u^{k}(x, t) \rightarrow \lambda_{k} u^{k}\left(\frac{x-\bar{x}^{k}}{\lambda_{k}}, \frac{t}{\lambda_{k}^{2}}\right), \quad \lambda_{k}=\sqrt{t^{k}}
$$

$d_{k} \rightarrow d$ with $\mathbf{d}>0$, or $\mathbf{d}=0$, or $\mathbf{d}=\infty$.

Theorem 2 (b): the case $d=0$

Boundary pressure decomposition (Seregin 2002):

$$
\begin{gathered}
(u, p)=(v, q)+\underbrace{(w, \pi)}_{\left(w_{1}, \pi_{1}\right)+\left(w_{2}, \pi_{2}\right)} \\
\left\{\begin{array} { l }
{ \partial _ { t } w _ { 1 } - \Delta w _ { 1 } + \nabla \pi _ { 1 } = u \cdot \nabla u } \\
{ \operatorname { d i v } w _ { 1 } = 0 } \\
{ w _ { 1 } = 0 \text { on } \partial _ { p } Q _ { 1 } ^ { + } }
\end{array} \quad \left\{\begin{array}{l}
\partial_{t} w_{2}-\Delta w_{2}+\nabla \pi_{2}=0 \\
\operatorname{div} w_{2}=0 \\
w_{2}=0 \text { on } \Gamma
\end{array}\right.\right.
\end{gathered}
$$

Theorem 2 (b): the case $d=0$

Boundary pressure decomposition (Seregin 2002):

$$
\begin{gathered}
(u, p)=(v, q)+\underbrace{(w, \pi)}_{\left(w_{1}, \pi_{1}\right)+\left(w_{2}, \pi_{2}\right)} \\
\left\{\begin{array} { l }
{ \partial _ { t } w _ { 1 } - \Delta w _ { 1 } + \nabla \pi _ { 1 } = u \cdot \nabla u } \\
{ \operatorname { d i v } w _ { 1 } = 0 } \\
{ w _ { 1 } = 0 \text { on } \partial _ { p } Q _ { 1 } ^ { + } }
\end{array} \quad \left\{\begin{array}{l}
\partial_{t} w_{2}-\Delta w_{2}+\nabla \pi_{2}=0 \\
\operatorname{div} w_{2}=0 \\
w_{2}=0 \text { on } \Gamma
\end{array}\right.\right.
\end{gathered}
$$

Γ

$$
\mathbf{Q}_{\mathbf{r}}^{+}=\mathbf{B}_{\mathbf{r}}^{+} \times\left(\mathbf{1}-\mathbf{r}^{2}, \mathbf{1}\right)
$$

Theorem 2 (b): the case $d=0$

Want:

$$
\frac{1}{r^{2}} \int_{Q_{r}^{+}}\left|\pi^{k}-\pi\right|^{\frac{3}{2}} d x d t \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, \quad r \rightarrow 0
$$

Theorem 2 (b): the case $d=0$

Want:

$$
\frac{1}{r^{2}} \int_{Q_{r}^{+}}\left|\pi^{k}-\pi\right|^{\frac{3}{2}} d x d t \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, \quad r \rightarrow 0
$$

By maximal regularity,

$$
\left\|\pi_{1}^{k}-\pi_{1}\right\|_{L_{t, x}^{\frac{3}{2}}\left(Q_{1}^{+}\right)} \lesssim\left\|\nabla \pi_{1}^{k}-\nabla \pi_{1}\right\|_{L_{t}^{\frac{3}{2}} L_{x}^{\frac{45}{44}}} \lesssim\left\|u^{k} \nabla u^{k}-u \nabla u\right\|_{L_{t}^{\frac{3}{3}} L_{x}^{\frac{45}{44}} \rightarrow 0}
$$

Theorem 2 (b): the case $d=0$

Want:

$$
\frac{1}{r^{2}} \int_{Q_{r}^{+}}\left|\pi^{k}-\pi\right|^{\frac{3}{2}} d x d t \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, \quad r \rightarrow 0
$$

By maximal regularity,

$$
\left\|\pi_{1}^{k}-\pi_{1}\right\|_{L_{t, x}^{\frac{3}{2}}\left(Q_{1}^{+}\right)} \lesssim\left\|\nabla \pi_{1}^{k}-\nabla \pi_{1}\right\|_{L_{t}^{\frac{3}{2}} L_{x}^{45}} \lesssim\left\|u^{k} \nabla u^{k}-u \nabla u\right\|_{L_{t}^{\frac{3}{2}} L_{x}^{45}} \rightarrow 0
$$

By Seregin's lemma,

$$
\left\|\pi_{2}^{k}\right\|_{L_{t}^{3 / 2} L_{x}^{10}\left(Q_{1 / 2}^{+}\right)} \lesssim\left\|\left(w_{2}^{k}, \nabla w_{2}^{k}, \pi_{2}^{k}\right)\right\|_{L_{t}^{3 / 2} L_{x}^{9 / 8}\left(Q_{1}^{+}\right)} \lesssim\left\|f^{k}\right\| \leq M
$$

Theorem 2 (b): the case $d=\infty$

Claim $\rho_{\text {max }}^{+} \geq \rho_{\text {max }}$!

Theorem 2 (b): the case $d=\infty$

Claim $\rho_{\text {max }}^{+} \geq \rho_{\text {max }}$!

Theorem 2 (b): the case $d=\infty$

- Shift $\left(0,0, d_{k}\right)$ to the origin $(0,0,0)$.

$$
\tilde{u}^{k}(x, t)=\left\{\begin{array}{cc}
u^{k}\left(x^{\prime}, x_{3}+d_{k}, t\right), & x_{3}>-d_{k} \\
0 & x_{3} \leq-d_{k}
\end{array}\right.
$$

Similarly, $\quad p^{k} \rightsquigarrow \tilde{p}^{k}, \quad f^{k} \rightsquigarrow \tilde{f}^{k}$.

Theorem 2 (b): the case $d=\infty$

- Shift $\left(0,0, d_{k}\right)$ to the origin $(0,0,0)$.

$$
\tilde{u}^{k}(x, t)=\left\{\begin{array}{cc}
u^{k}\left(x^{\prime}, x_{3}+d_{k}, t\right), & x_{3}>-d_{k} \\
0 & x_{3} \leq-d_{k}
\end{array}\right.
$$

Similarly, $\quad p^{k} \rightsquigarrow \tilde{p}^{k}, \quad f^{k} \rightsquigarrow \tilde{f}^{k}$.

- Compactness Theorem :

$$
\begin{gathered}
\tilde{f}^{k} \rightharpoonup \tilde{f} \text { in } Y_{q}, \quad \tilde{u}^{k} \rightarrow \tilde{u} \text { in } L_{\mathrm{loc}}^{3}, \quad \tilde{p}^{k} \rightharpoonup \tilde{p} \text { in } L_{\mathrm{loc}}^{3 / 2} \\
(\tilde{u}, \tilde{p}) \text { is sw-solution with data } \tilde{f} .
\end{gathered}
$$

Theorem 2 (b): the case $d=\infty$

- Shift $\left(0,0, d_{k}\right)$ to the origin $(0,0,0)$.

$$
\tilde{u}^{k}(x, t)=\left\{\begin{array}{cl}
u^{k}\left(x^{\prime}, x_{3}+d_{k}, t\right), & x_{3}>-d_{k} \\
0 & x_{3} \leq-d_{k}
\end{array}\right.
$$

Similarly, $\quad p^{k} \rightsquigarrow \tilde{p}^{k}, \quad f^{k} \rightsquigarrow \tilde{f}^{k}$.

- Compactness Theorem :

$$
\begin{gathered}
\tilde{f}^{k} \rightharpoonup \tilde{f} \text { in } Y_{q}, \quad \tilde{u}^{k} \rightarrow \tilde{u} \text { in } L_{\mathrm{loc}}^{3}, \quad \tilde{p}^{k} \rightharpoonup \tilde{p} \text { in } L_{\mathrm{loc}}^{3 / 2} \\
(\tilde{u}, \tilde{p}) \text { is sw-solution with data } \tilde{f} .
\end{gathered}
$$

- Norm estimate :

$$
\rho_{\max } \leq\|\tilde{f}\| \leq \liminf _{k \rightarrow \infty}\left\|\tilde{f}^{k}\right\|=\liminf _{k \rightarrow \infty}\left\|f^{k}\right\|=\rho_{\max }^{+}
$$

Theorem 2 (a): $\rho_{\max }^{+} \leq \rho_{\max }$

Minimal blowup data f (in whole space) gives blowup solution u.

Theorem 2 (a): $\rho_{\max }^{+} \leq \rho_{\max }$

Theorem (Bogovskii 1979)

$D \subset \mathbb{R}^{n}(n \geq 2)$ bounded, $1<p<\infty$. There exists $C=C(n, p, D)>0$ such that : for each $g \in L_{0}^{p}(D)$, there exists $\phi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\begin{gathered}
\operatorname{div} \phi=g,\left.\quad \phi\right|_{\partial D}=0 \\
\|\nabla \phi\|_{L^{p}} \leq C\|g\|_{L^{p}}
\end{gathered}
$$

Moreover, ϕ is compactly supported in D if g is compactly supported in D.

Theorem 2 (a): $\rho_{\max }^{+} \leq \rho_{\max }$

Theorem (Bogovskii 1979)

$D \subset \mathbb{R}^{n}(n \geq 2)$ bounded, $1<p<\infty$. There exists $C=C(n, p, D)>0$ such that : for each $g \in L_{0}^{p}(D)$, there exists $\phi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\begin{gathered}
\operatorname{div} \phi=g,\left.\quad \phi\right|_{\partial D}=0 \\
\|\nabla \phi\|_{L^{p}} \leq C\|g\|_{L^{p}}
\end{gathered}
$$

Moreover, ϕ is compactly supported in D if g is compactly supported in D.

Bogovskii localization: $\tilde{u}=u \chi_{R}+\phi_{R}$, $\operatorname{div} \phi=-u \cdot \nabla \chi_{R}, \quad \operatorname{supp} \phi \subset S_{R, 2 R}$,

$$
\left\|\nabla \phi_{R}\right\|_{L^{p}} \leq C(p)\left\|\operatorname{div} \phi_{R}\right\|_{L^{p}} \leq \frac{C(p)}{R}\|u\|_{L^{p}}
$$

Theorem 2 (a): $\rho_{\max }^{+} \leq \rho_{\max }$

- $\partial_{t} \tilde{u}-\Delta \tilde{u}+\tilde{u} \cdot \nabla \tilde{u}+\nabla \tilde{p}=\tilde{f}$ where

$$
\begin{aligned}
\tilde{f} & =f \chi-\partial_{t} \phi+p \nabla \chi+\nabla u \nabla \chi+u \Delta \chi+u \nabla u \chi(1-\chi)-u \nabla \phi \chi \\
& +\phi \nabla u \chi+u u \chi \nabla \chi-\phi u \nabla \chi-\phi \nabla \phi-\Delta \phi
\end{aligned}
$$

Theorem 2 (a): $\rho_{\max }^{+} \leq \rho_{\max }$

- $\partial_{t} \tilde{u}-\Delta \tilde{u}+\tilde{u} \cdot \nabla \tilde{u}+\nabla \tilde{p}=\tilde{f}$ where

$$
\begin{aligned}
\tilde{f} & =f_{\chi}-\partial_{t} \phi+p \nabla \chi+\nabla u \nabla \chi+u \Delta \chi+u \nabla u \chi(1-\chi)-u \nabla \phi \chi \\
& +\phi \nabla u \chi+u u \chi \nabla \chi-\phi u \nabla \chi-\phi \nabla \phi-\Delta \phi
\end{aligned}
$$

- $\tilde{f} \rightarrow f$ in Y_{q}

Theorem 2 (a): $\rho_{\max }^{+} \leq \rho_{\max }$

- $\partial_{t} \tilde{u}-\Delta \tilde{u}+\tilde{u} \cdot \nabla \tilde{u}+\nabla \tilde{p}=\tilde{f}$ where

$$
\begin{aligned}
\tilde{f} & =f \chi-\partial_{t} \phi+p \nabla \chi+\nabla u \nabla \chi+u \Delta \chi+u \nabla u \chi(1-\chi)-u \nabla \phi \chi \\
& +\phi \nabla u \chi+u u \chi \nabla \chi-\phi u \nabla \chi-\phi \nabla \phi-\Delta \phi
\end{aligned}
$$

- $\tilde{f} \rightarrow f$ in Y_{q}
- ũ blows up

$$
\rho_{\max }^{+} \leq\|\tilde{f}\|_{Y_{q}} \rightarrow \rho_{\max } \quad \text { as } \quad R \rightarrow \infty
$$

Thank You!

