On smallness condition of initial data for Le Jan-Sznitman cascade of the Navier-Stokes equations

Tuan Pham
Oregon State University

October 14, 2019

NSE, mild solutions

$(\mathrm{NSE}):\left\{\begin{aligned} \partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\ \operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\ u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d} .\end{aligned}\right.$

NSE, mild solutions

$$
(\mathrm{NSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
\operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

NSE, mild solutions

$$
(\mathrm{NSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
\operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

Mild solutions - obtained by Picard's iteration:

$$
\begin{aligned}
v_{0} & \equiv 0 \\
v_{n} & =U+B\left(v_{n-1}, v_{n-1}\right) \\
u & =\lim v_{n}
\end{aligned}
$$

NSE, mild solutions

$$
(\mathrm{NSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
\operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

Mild solutions - obtained by Picard's iteration:

$$
\begin{aligned}
v_{0} & \equiv 0 \\
v_{n} & =U+B\left(v_{n-1}, v_{n-1}\right) \\
u & =\lim v_{n}
\end{aligned}
$$

NSE, mild solutions

Global existence and uniqueness in $L_{t}^{\infty} L_{x}^{2}$ for $d=2$: Leray (1933).
\checkmark Local existence and uniqueness in subcritical spaces: Leray ('34), Kato ('84),...
\checkmark Global existence in critical spaces for small initial data: Kato ('84), Koch-Tataru (2001),...
? Global existence for arbitrarily large initial data.

NSE, weak solutions

Weak formulation $=$ diff. eq. in distribution sense + energy inequality. - Energy solutions: Leray '34, Hopf '51

$$
\int_{\mathbb{R}^{d}} \frac{|u(x, t)|^{2}}{2} d x+\int_{0}^{t} \int_{\mathbb{R}^{d}}|\nabla u|^{2} d x d s \leq \int_{\mathbb{R}^{d}} \frac{\left|u_{0}(x)\right|^{2}}{2} d x
$$

NSE, weak solutions

Weak formulation $=$ diff. eq. in distribution sense + energy inequality.

- Energy solutions: Leray '34, Hopf '51

$$
\int_{\mathbb{R}^{d}} \frac{|u(x, t)|^{2}}{2} d x+\int_{0}^{t} \int_{\mathbb{R}^{d}}|\nabla u|^{2} d x d s \leq \int_{\mathbb{R}^{d}} \frac{\left|u_{0}(x)\right|^{2}}{2} d x
$$

- Local energy solutions: Scheffer '77, CKN ‘82, L-R 2002,...

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}|\nabla u|^{2} \phi d x d t \leq \int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left[\frac{|u|^{2}}{2}\left(\partial_{t} \phi+\Delta \phi\right)+\left(\frac{|u|^{2}}{2}+p\right) u \nabla \phi\right] d x d t
$$

NSE, weak solutions

Weak formulation $=$ diff. eq. in distribution sense + energy inequality.

- Energy solutions: Leray '34, Hopf ‘51

$$
\int_{\mathbb{R}^{d}} \frac{|u(x, t)|^{2}}{2} d x+\int_{0}^{t} \int_{\mathbb{R}^{d}}|\nabla u|^{2} d x d s \leq \int_{\mathbb{R}^{d}} \frac{\left|u_{0}(x)\right|^{2}}{2} d x
$$

- Local energy solutions: Scheffer '77, CKN ‘82, L-R 2002,...

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}|\nabla u|^{2} \phi d x d t \leq \int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left[\frac{|u|^{2}}{2}\left(\partial_{t} \phi+\Delta \phi\right)+\left(\frac{|u|^{2}}{2}+p\right) u \nabla \phi\right] d x d t
$$

\checkmark Global existence
? Uniqueness, smoothness

NSE, weak solutions

Partial regularity:
Let $u_{0} \in L^{2}$. How big is the set of singular points $S \subset \mathbb{R}^{d} \times(0, \infty)$?

NSE, weak solutions

Partial regularity:
Let $u_{0} \in L^{2}$. How big is the set of singular points $S \subset \mathbb{R}^{d} \times(0, \infty)$?

$$
H^{1}\left(\mathbb{R}^{d}\right) \hookrightarrow L^{\frac{2 d}{d-2}}\left(\mathbb{R}^{d}\right)
$$

- $d=2: S=\emptyset$ (Leray '33).
- $d=3: \mathcal{H}_{\mathrm{par}}^{1}(S)=0$ (CKN '82).
- $d=4: \mathcal{H}_{\mathrm{par}}^{2}(S)=0$ (Dong-Gu 2014, Wang-Wu '14).
- $d=5$ (stationary): $S=\emptyset$ (Struwe 1995).
- $d=6$ (stationary): $\mathcal{H}^{2}(S)=0$ (Dong-Strain 2012).

Fourier transformed Navier-Stokes (FNS)

$\hat{u}(\xi, t)=e^{-|\xi|^{2} t} \hat{u}_{0}(\xi)+c_{0} \int_{0}^{t} e^{-|\xi|^{2} s}|\xi| \int_{\mathbb{R}^{d}} \hat{u}(\eta, t-s) \odot_{\xi} \hat{u}(\xi-\eta, t-s) d \eta d s$ where $a \odot_{\xi} b=-i\left(e_{\xi} \cdot b\right)\left(\pi_{\xi^{\perp}} a\right)$.

Fourier transformed Navier-Stokes (FNS)

$\hat{u}(\xi, t)=e^{-|\xi|^{2} t} \hat{u}_{0}(\xi)+c_{0} \int_{0}^{t} e^{-|\xi|^{2} s}|\xi| \int_{\mathbb{R}^{d}} \hat{u}(\eta, t-s) \odot_{\xi} \hat{u}(\xi-\eta, t-s) d \eta d s$
where $a \odot_{\xi} b=-i\left(e_{\xi} \cdot b\right)\left(\pi_{\xi^{\perp}} a\right)$.
Normalization to (FNS): LJS ‘97, Bhattacharya et al (2003)

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

where $\chi=c_{0} \hat{u} / h$ and $H(\eta \mid \xi)=\frac{h(\eta) h(\xi-\eta)}{|\xi| h(\xi)}$.
h : majorizing kernel, i.e. $h * h=|\xi| h$.

Cascade structure of FNS

Cascade structure of FNS

Define a stochastic multiplicative functional recursively as
$\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left\{\begin{array}{lll}\chi_{0}(\xi) & \text { if } & T_{0}>t, \\ \mathbf{X}_{\mathrm{FNS}}^{(1)}\left(W_{1}, t-T_{0}\right) \odot_{\xi} \mathbf{X}_{\mathrm{FNS}}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } \quad T_{0} \leq t\end{array}\right.$

Closed form of $\mathbf{X}_{\text {FNS }}$

Consider the following event:

On this event,

$$
\mathbf{X}_{\text {FNS }}(\xi, t)=\left(\chi_{0}\left(W_{11}\right) \odot_{W_{1}} \chi_{0}\left(W_{12}\right)\right) \odot_{\xi} \chi_{0}\left(W_{2}\right)
$$

Closed form of $\mathbf{X}_{\text {FNS }}$

Consider the following event:

On this event,

$$
\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left(\chi_{0}\left(W_{11}\right) \odot_{W_{1}} \chi_{0}\left(W_{12}\right)\right) \odot_{\xi} \chi_{0}\left(W_{2}\right)
$$

Three ingredients: clocks, branching process, product.
Cascade structure $=$ clocks + branching process.

FNS: mild solutions, cascade solutions

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

- Mild solution:

$$
\begin{aligned}
\gamma_{0} & \equiv 0 \\
\gamma_{n} & =e^{-t|\xi|^{2}} \chi_{0}+\bar{B}\left(\gamma_{n-1}, \gamma_{n-1}\right) \\
\chi & =\lim \gamma_{n}
\end{aligned}
$$

FNS: mild solutions, cascade solutions

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

- Mild solution:

$$
\begin{aligned}
\gamma_{0} & \equiv 0 \\
\gamma_{n} & =e^{-t|\xi|^{2}} \chi_{0}+\bar{B}\left(\gamma_{n-1}, \gamma_{n-1}\right) \\
\chi & =\lim \gamma_{n}
\end{aligned}
$$

- Cascade solution (~ LJS 1997):

$$
\chi(\xi, t)=\mathbb{E}_{\xi, t} \mathbf{X}_{\mathrm{FNS}}
$$

FNS: mild solutions, cascade solutions

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

- Mild solution:

$$
\begin{aligned}
\gamma_{0} & \equiv 0 \\
\gamma_{n} & =e^{-t|\xi|^{2}} \chi_{0}+\bar{B}\left(\gamma_{n-1}, \gamma_{n-1}\right) \\
\chi & =\lim \gamma_{n}
\end{aligned}
$$

- Cascade solution (~ LJS 1997):

$$
\chi(\xi, t)=\mathbb{E}_{\xi, t} \mathbf{X}_{\mathrm{FNS}}
$$

Two issues: (1) stochastic explosion and (2) existence of expectation.

Explosion

Branching process may never stop, potentially making $\mathbf{X}_{\text {FNS }}$ not well-defined.

- Property of cascade structure, not of product.
- Depending only on the majorizing kernel h and the clocks.

Explosion

Branching process may never stop, potentially making $\mathbf{X}_{\text {FNS }}$ not well-defined.

- Property of cascade structure, not of product.
- Depending only on the majorizing kernel h and the clocks.
- 3D self-similar cascade $h_{\text {dilog }}(\xi)=C|\xi|^{-2}$: stochastic explosion a.s. (Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\mathrm{b}}(\xi)=C|\xi|^{-1} e^{-|\xi|}$: no-explosion a.s. (Orum, Pham 2019)

Explosion

Branching process may never stop, potentially making $\mathbf{X}_{\text {FNS }}$ not well-defined.

- Property of cascade structure, not of product.
- Depending only on the majorizing kernel h and the clocks.
- 3D self-similar cascade $h_{\text {dilog }}(\xi)=C|\xi|^{-2}$: stochastic explosion a.s. (Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\mathrm{b}}(\xi)=C|\xi|^{-1} e^{-|\xi|}$: no-explosion a.s. (Orum, Pham 2019)

We bypass the explosion problem by defining instead

$$
\chi(\xi, t)=\mathbb{E}_{\xi, t}\left[\mathbf{X}_{\mathrm{FNS}} \mathbb{1}_{S>t}\right],
$$

where S is the shortest path.

Existence of expectation

It may happen that $\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right]=\infty$.

$$
\mathbf{X}_{\mathrm{FNS}}(\xi, t) \mathbb{1}_{S>t}=\bigodot \chi_{0}\left(W_{s}\right) \quad \text { (finite product) }
$$

Existence of expectation
It may happen that $\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right]=\infty$.

$$
\mathbf{X}_{\mathrm{FNS}}(\xi, t) \mathbb{1}_{S>t}=\bigodot_{s \in \mathcal{V}_{0}(\xi, t)} \chi_{0}\left(W_{s}\right) \quad \text { (finite product) }
$$

This issue depends on both cascade structure and the product.

$$
a \odot_{\xi} b=-i b^{\prime} a^{\prime}
$$

Existence of expectation

LJS '97, Bhattacharya et al 2003: $\left|\chi_{0}\right| \leq 1$ leads to
(1) Global existence
(2) Uniqueness in the class $\{\chi:|\chi| \leq 1$ a.e. $(\xi, t)\}$
(3) Cascade solution agrees with mild solution.

Existence of expectation

LJS '97, Bhattacharya et al 2003: $\left|\chi_{0}\right| \leq 1$ leads to
(1) Global existence
(2) Uniqueness in the class $\{\chi:|\chi| \leq 1$ a.e. $(\xi, t)\}$
(3) Cascade solution agrees with mild solution.

Question: can smallness of χ_{0} in a global sense guarantee existence of expectation?

$$
\left\|u_{0}\right\|_{\mathcal{H}^{d / 2-1}}=C_{d}\left\{\int_{\mathbb{R}^{d}}|\xi|^{d-2} h^{2}(\xi)\left|\chi_{0}(\xi)\right|^{2} d \xi\right\}^{1 / 2}
$$

Existence of expectation

LJS '97, Bhattacharya et al 2003: $\left|\chi_{0}\right| \leq 1$ leads to
(1) Global existence
(2) Uniqueness in the class $\{\chi:|\chi| \leq 1$ a.e. $(\xi, t)\}$
(3) Cascade solution agrees with mild solution.

Question: can smallness of χ_{0} in a global sense guarantee existence of expectation?

$$
\left\|u_{0}\right\|_{\dot{H}^{d / 2-1}}=C_{d}\left\{\int_{\mathbb{R}^{d}}|\xi|^{d-2} h^{2}(\xi)\left|\chi_{0}(\xi)\right|^{2} d \xi\right\}^{1 / 2}
$$

An iteration method was used by LJS (1997) to show uniqueness; by Bhattacharya et al (2003) to show cascade-mild agreement; by Dascaliuc et al (2018) to show nonuniqueness for α-Riccati equation.

Iteration process

Chain from initial condition to solution - Introduce a ground state.
$\mathbf{X}_{\mathrm{FNS}, 0}(\xi, t) \equiv 0$,
$\mathbf{X}_{\mathrm{FNS}, n}(\xi, t)= \begin{cases}\chi_{0}(\xi) & \text { if } T_{0}>t, \\ \mathbf{X}_{\mathrm{FNS}, n-1}^{(1)}\left(W_{1}, \ldots\right) \odot_{\xi} \mathbf{X}_{\mathrm{FNS}, n-1}^{(2)}\left(\xi-W_{1}, \ldots\right) & \text { if } T_{0} \leq t .\end{cases}$

Iteration process

Chain from initial condition to solution - Introduce a ground state.
$\mathbf{X}_{\mathrm{FNS}, 0}(\xi, t) \equiv 0$,
$\mathbf{X}_{\mathrm{FNS}, n}(\xi, t)= \begin{cases}\chi_{0}(\xi) & \text { if } T_{0}>t, \\ \mathbf{X}_{\mathrm{FNS}, n-1}^{(1)}\left(W_{1}, \ldots\right) \odot_{\xi} \mathbf{X}_{\mathrm{FNS}, n-1}^{(2)}\left(\xi-W_{1}, \ldots\right) & \text { if } T_{0} \leq t .\end{cases}$
Ignore the product:

$$
\begin{aligned}
& \mathbf{X}_{0}(\xi, t) \equiv 0, \\
& \mathbf{X}_{n}(\xi, t)= \begin{cases}\left|\chi_{0}(\xi)\right| & \text { if } T_{0}>t \\
\mathbf{X}_{n-1}^{(1)}\left(W_{1}, t-T_{0}\right) \mathbf{X}_{n-1}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } \quad T_{0} \leq t\end{cases}
\end{aligned}
$$

Domination principle: $\left|\mathbf{X}_{\text {FNS, } n}\right| \leq \mathbf{X}_{n}$.

Majorizing NSE equation

\mathbf{X}_{n} corresponds to the following scalar equation:

$$
(\mathrm{mNSE}):\left\{\begin{array}{rlrl}
\partial_{t} u-\Delta u & =\sqrt{-\Delta}\left(u^{2}\right) & \text { in } \mathbb{R}^{d} \times(0, \infty) \\
u(\cdot, 0) & =u_{0} & & \text { in } \mathbb{R}^{d}
\end{array}\right.
$$

called majorizing NSE.
It is called "cheap NSE" by Montgomery-Smith (2001).

Iteration process

Note that $\quad \mathbf{X}_{\mathrm{FNS}, n}(\xi, t) \rightarrow \mathbf{X}_{\mathrm{FNS}}(\xi, t) \mathbb{1}_{S>t} \quad$ a.s. Put $\phi_{n}(\xi, t)=\mathbb{E}_{\xi, t} \mathbf{X}_{n}$. By Fatou's lemma and domination principle,

$$
\begin{aligned}
\phi(\xi, t):=\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right] & \leq \liminf \mathbb{E}_{\xi, t}\left|\mathbf{X}_{\mathrm{FNS}, n}\right| \\
& \leq \liminf \mathbb{E}_{\xi, t} \mathbf{X}_{n} \\
& =\liminf \phi_{n}(\xi, t) .
\end{aligned}
$$

Iteration process

Note that $\quad \mathbf{X}_{\mathrm{FNS}, n}(\xi, t) \rightarrow \mathbf{X}_{\mathrm{FNS}}(\xi, t) \mathbb{1}_{S>t} \quad$ a.s.
Put $\phi_{n}(\xi, t)=\mathbb{E}_{\xi, t} \mathbf{X}_{n}$. By Fatou's lemma and domination principle,

$$
\begin{aligned}
\phi(\xi, t):=\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right] & \leq \liminf \mathbb{E}_{\xi, t}\left|\mathbf{X}_{\mathrm{FNS}, n}\right| \\
& \leq \liminf \mathbb{E}_{\xi, t} \mathbf{X}_{n} \\
& =\liminf \phi_{n}(\xi, t) .
\end{aligned}
$$

Admissible functional

A map $N_{T}: \mathcal{M}_{T} \rightarrow[0, \infty]$ is said to be an admissible functional if it has the following properties:
(1) If $N_{T}[f]<\infty$ then $|f(\xi, t)|<\infty$ for a.e. $(\xi, t) \in \mathbb{R}^{d} \times(0, T)$.
(2) If $f, f_{n} \in \mathcal{M}_{T}$ and $f \leq \liminf f_{n}$ a.e. then $N_{T}[f] \leq \liminf N_{T}\left[f_{n}\right]$.
\mathcal{M}_{T} : space of all Borel measurable functions from $\mathbb{R}^{d} \times(0, T)$ to $[0, \infty]$.

Admissible functionals

Example of admissible functionals:

$$
N_{T}[f]=\|f \rho\|_{L_{t}^{r} L_{\xi}^{q}}=\| \| f(\cdot, t) \rho(\cdot, t)\left\|_{L_{\xi}^{q}\left(\mathbb{R}^{d}\right)}\right\|_{L_{t}^{r}(0, T)}
$$

where $0<r, q \leq \infty$ and $\rho: \mathbb{R}^{d} \times(0, T) \rightarrow[0, \infty]$ is a measurable function which vanishes only on a set of measure zero.

Key estimates

Recall:

$$
\begin{aligned}
\phi_{n}(\xi, t) & =\mathbb{E}_{\xi, t} \mathbf{X}_{n} \\
\phi(\xi, t) & =\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right]
\end{aligned}
$$

Key estimates

Recall:

$$
\begin{aligned}
\phi_{n}(\xi, t) & =\mathbb{E}_{\xi, t} \mathbf{X}_{n} \\
\phi(\xi, t) & =\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right]
\end{aligned}
$$

If $N_{T}\left[\phi_{n}\right] \leq M<\infty$ for all n then
By (2), $N_{T}[\phi] \leq \liminf N_{T}\left[\phi_{n}\right] \leq M$.
By (1), $\phi(\xi, t)<\infty$ a.e. $(\xi, t) \in \mathbb{R}^{d} \times(0, T)$.

What can we choose for N_{T} ?

$$
\begin{aligned}
\phi_{n}(\xi, & t) \\
& =\mathbb{E}_{\xi, t}\left[\mathbf{X}_{n} \mathbb{1}_{T_{0}>t}\right]+\mathbb{E}_{\xi, t}\left[\mathbf{X}_{n} \mathbb{1}_{T_{0} \leq t}\right] \\
& =e^{-t|\xi|^{2}}\left|\chi_{0}\right| \\
& +\int_{0}^{t}|\xi|^{2} e^{-s|\xi|^{2}} \int_{\mathbb{R}^{d}} \phi_{n-1}(\eta, t-s) \phi_{n-1}(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s .
\end{aligned}
$$

What can we choose for N_{T} ?

$$
\begin{aligned}
\phi_{n}(\xi, & t) \\
& =\mathbb{E}_{\xi, t}\left[\mathbf{X}_{n} \mathbb{1}_{T_{0}>t}\right]+\mathbb{E}_{\xi, t}\left[\mathbf{X}_{n} \mathbb{1}_{T_{0} \leq t}\right] \\
& =e^{-t|\xi|^{2}}\left|\chi_{0}\right| \\
& +\int_{0}^{t}|\xi|^{2} e^{-s|\xi|^{2}} \int_{\mathbb{R}^{d}} \phi_{n-1}(\eta, t-s) \phi_{n-1}(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s .
\end{aligned}
$$

Therefore,

$$
\phi_{n}=F_{1}\left[\left|\chi_{0}\right|\right]+F_{2}\left[\phi_{n-1}, \phi_{n-1}\right] .
$$

This is a Picard iteration.

Kato's settings

Problem:

What can we choose for E and \mathcal{E}_{T} such that if $\left|\chi_{0}\right|$ is sufficiently small in E then ϕ_{n} is bounded in \mathcal{E}_{T} ?

Kato's settings

Problem:

What can we choose for E and \mathcal{E}_{T} such that if $\left|\chi_{0}\right|$ is sufficiently small in E then ϕ_{n} is bounded in \mathcal{E}_{T} ?

We call $\left(E, \mathcal{E}_{T}\right)$ a Kato's setting if

- F_{1} is bounded linear from E to \mathcal{E}_{T},
- F_{2} is bounded bilinear from $\mathcal{E}_{T} \times \mathcal{E}_{T}$ to \mathcal{E}_{T}.

Lemarie-Rieusset calls E an adapted value space, \mathcal{E}_{T} an admissible path space.

$$
\left\|\phi_{n}\right\|_{\mathcal{E}_{T}} \leq \kappa\| \| \chi_{0}\| \|_{E}+\gamma\left\|\phi_{n-1}\right\|_{\mathcal{E}_{T}}^{2}
$$

Smallness of χ_{0} in integral sense

Theorem (P. - Thomann 2019)

Let $\left(E, \mathcal{E}_{T}\right)$ be a Kato's setting such that $\|\cdot\|_{\mathcal{E}_{T}}$ is an admissible functional. If $\left|\chi_{0}\right|$ is sufficiently small in E then $\phi(\xi, t)=\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right]$ is finite for a.e. $(\xi, t) \in \mathbb{R}^{d} \times(0, T)$.

Smallness of χ_{0} in integral sense

Theorem (P. - Thomann 2019)

Let $\left(E, \mathcal{E}_{T}\right)$ be a Kato's setting such that $\|\cdot\|_{\mathcal{E}_{T}}$ is an admissible functional. If $\left|\chi_{0}\right|$ is sufficiently small in E then $\phi(\xi, t)=\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right]$ is finite for a.e. $(\xi, t) \in \mathbb{R}^{d} \times(0, T)$.

Choices of E include
(1) From smallness of u_{0} in $\dot{H}^{d / 2-1}$:

$$
\left\|\chi_{0}\right\|_{E}=\left\{\int_{\mathbb{R}^{d}}|\xi|^{d-2} h^{2}(\xi)\left|\chi_{0}(\xi)\right|^{2} d \xi\right\}^{1 / 2}
$$

Smallness of χ_{0} in integral sense

Theorem (P. - Thomann 2019)

Let $\left(E, \mathcal{E}_{T}\right)$ be a Kato's setting such that $\|\cdot\|_{\mathcal{E}_{T}}$ is an admissible functional. If $\left|\chi_{0}\right|$ is sufficiently small in E then $\phi(\xi, t)=\mathbb{E}_{\xi, t}\left[\left|\mathbf{X}_{\mathrm{FNS}}\right| \mathbb{1}_{S>t}\right]$ is finite for a.e. $(\xi, t) \in \mathbb{R}^{d} \times(0, T)$.

Choices of E include
(1) From smallness of u_{0} in $\dot{H}^{d / 2-1}$:

$$
\left\|\chi_{0}\right\|_{E}=\left\{\int_{\mathbb{R}^{d}}|\xi|^{d-2} h^{2}(\xi)\left|\chi_{0}(\xi)\right|^{2} d \xi\right\}^{1 / 2}
$$

(2) From smallness of u_{0} in Lin-Lei's space (2011):

$$
\left\|\chi_{0}\right\|_{E}=\int_{\mathbb{R}^{d}}|\xi|^{-1} h(\xi)\left|\chi_{0}(\xi)\right| d \xi
$$

Thank You!

