On smallness condition of initial data for Le Jan–Sznitman cascade of the Navier-Stokes equations

Tuan Pham

Oregon State University

October 14, 2019

NSE, mild solutions

(NSE):
$$\begin{cases} \partial_t u - \Delta u + u \cdot \nabla u + \nabla p = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ & \text{div } u = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ & u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^d. \end{cases}$$

NSE, mild solutions

(NSE):
$$\begin{cases} \partial_t u - \Delta u + u \cdot \nabla u + \nabla p = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ \text{div } u = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^d. \end{cases}$$

Integro-differential equation:

$$u(x,t) = e^{\Delta t}u_0 - \int_0^t e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] ds.$$

(NSE):
$$\begin{cases} \partial_t u - \Delta u + u \cdot \nabla u + \nabla p = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ \text{div } u = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^d. \end{cases}$$

Integro-differential equation:

$$u(x,t) = e^{\Delta t}u_0 - \int_0^t e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] ds.$$

Mild solutions – obtained by Picard's iteration:

$$v_0 \equiv 0$$

$$v_n = U + B(v_{n-1}, v_{n-1})$$

$$u = \lim v_n$$

(NSE):
$$\begin{cases} \partial_t u - \Delta u + u \cdot \nabla u + \nabla p = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ \text{div } u = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^d. \end{cases}$$

Integro-differential equation:

$$u(x,t) = e^{\Delta t}u_0 - \int_0^t e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] ds.$$

Mild solutions – obtained by Picard's iteration:

$$v_0 \equiv 0$$

$$v_n = U + B(v_{n-1}, v_{n-1})$$

$$u = \lim v_n$$

- ✓ Global existence and uniqueness in $L_t^{\infty} L_x^2$ for d = 2: Leray (1933).
- ✓ Local existence and uniqueness in subcritical spaces: Leray ('34), Kato ('84),...
- ✓ Global existence in critical spaces for small initial data: Kato ('84), Koch-Tataru (2001),...
 - ? Global existence for arbitrarily large initial data.

NSE, weak solutions

Weak formulation = diff. eq. in distribution sense + energy inequality.
Energy solutions: Leray '34, Hopf '51

$$\int_{\mathbb{R}^d} \frac{|u(x,t)|^2}{2} dx + \int_0^t \int_{\mathbb{R}^d} |\nabla u|^2 dx ds \leq \int_{\mathbb{R}^d} \frac{|u_0(x)|^2}{2} dx$$

NSE, weak solutions

Weak formulation = diff. eq. in distribution sense + energy inequality.
Energy solutions: Leray '34, Hopf '51

$$\int_{\mathbb{R}^d} \frac{|u(x,t)|^2}{2} dx + \int_0^t \int_{\mathbb{R}^d} |\nabla u|^2 dx ds \leq \int_{\mathbb{R}^d} \frac{|u_0(x)|^2}{2} dx$$

Local energy solutions: Scheffer '77, CKN '82, L-R 2002,...

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} |\nabla u|^2 \phi dx dt \leq \int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{|u|^2}{2} \left(\partial_t \phi + \Delta \phi \right) + \left(\frac{|u|^2}{2} + p \right) u \nabla \phi \right] dx dt$$

NSE, weak solutions

Weak formulation = diff. eq. in distribution sense + energy inequality.
Energy solutions: Leray '34, Hopf '51

$$\int_{\mathbb{R}^d} \frac{|u(x,t)|^2}{2} dx + \int_0^t \int_{\mathbb{R}^d} |\nabla u|^2 dx ds \leq \int_{\mathbb{R}^d} \frac{|u_0(x)|^2}{2} dx$$

Local energy solutions: Scheffer '77, CKN '82, L-R 2002,...

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} |\nabla u|^2 \phi dx dt \leq \int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{|u|^2}{2} \left(\partial_t \phi + \Delta \phi \right) + \left(\frac{|u|^2}{2} + p \right) u \nabla \phi \right] dx dt$$

✓ Global existence

? Uniqueness, smoothness

Partial regularity:

Let $u_0 \in L^2$. How big is the set of singular points $S \subset \mathbb{R}^d \times (0, \infty)$?

Partial regularity:

Let $u_0 \in L^2$. How big is the set of singular points $S \subset \mathbb{R}^d \times (0, \infty)$?

$$H^1(\mathbb{R}^d) \hookrightarrow L^{rac{2d}{d-2}}(\mathbb{R}^d)$$

•
$$d = 3$$
: $\mathcal{H}^1_{\text{par}}(S) = 0$ (CKN '82).

•
$$d = 4$$
: $\mathcal{H}^2_{\text{par}}(S) = 0$ (Dong-Gu 2014, Wang-Wu '14).

•
$$d = 5$$
 (stationary): $S = \emptyset$ (Struwe 1995).

•
$$d = 6$$
 (stationary): $\mathcal{H}^2(S) = 0$ (Dong-Strain 2012).

Fourier transformed Navier-Stokes (FNS)

$$\hat{u}(\xi,t) = e^{-|\xi|^2 t} \hat{u}_0(\xi) + c_0 \int_0^t e^{-|\xi|^2 s} |\xi| \int_{\mathbb{R}^d} \hat{u}(\eta,t-s) \odot_{\xi} \hat{u}(\xi-\eta,t-s) d\eta ds$$

where $a \odot_{\xi} b = -i(e_{\xi} \cdot b)(\pi_{\xi^{\perp}}a)$.

$$\hat{u}(\xi,t) = e^{-|\xi|^2 t} \hat{u}_0(\xi) + c_0 \int_0^t e^{-|\xi|^2 s} |\xi| \int_{\mathbb{R}^d} \hat{u}(\eta,t-s) \odot_{\xi} \hat{u}(\xi-\eta,t-s) d\eta ds$$

where $a \odot_{\xi} b = -i(e_{\xi} \cdot b)(\pi_{\xi^{\perp}}a).$

Normalization to (FNS): LJS '97, Bhattacharya et al (2003)

$$\begin{split} \chi(\xi,t) &= e^{-t|\xi|^2}\chi_0(\xi) \\ &+ \int_0^t e^{-s|\xi|^2}|\xi|^2 \int_{\mathbb{R}^d} \chi(\eta,t-s) \odot_{\xi} \chi(\xi-\eta,t-s) H(\eta|\xi) d\eta ds \end{split}$$

where $\chi = c_0 \hat{u}/h$ and $H(\eta|\xi) = \frac{h(\eta)h(\xi-\eta)}{|\xi|h(\xi)}$.

h: majorizing kernel, i.e. $h * h = |\xi|h$.

Cascade structure of FNS

Cascade structure of FNS

Define a stochastic multiplicative functional recursively as

$$\mathbf{X}_{\text{FNS}}(\xi, t) = \begin{cases} \chi_0(\xi) & \text{if } T_0 > t, \\ \mathbf{X}_{\text{FNS}}^{(1)}(W_1, t - T_0) \odot_{\xi} \mathbf{X}_{\text{FNS}}^{(2)}(\xi - W_1, t - T_0) & \text{if } T_0 \le t. \end{cases}$$

Closed form of $\boldsymbol{X}_{\mathrm{FNS}}$

Consider the following event:

On this event,

 $\mathbf{X}_{\mathsf{FNS}}(\xi, t) = (\chi_0(W_{11}) \odot_{W_1} \chi_0(W_{12})) \odot_{\xi} \chi_0(W_2).$

Closed form of $\boldsymbol{X}_{\mathrm{FNS}}$

Consider the following event:

On this event,

 $\mathbf{X}_{\mathsf{FNS}}(\xi,t) = (\chi_0(W_{11}) \odot_{W_1} \chi_0(W_{12})) \odot_{\xi} \chi_0(W_2).$

Three ingredients: clocks, branching process, product. *Cascade structure* = clocks + branching process.

FNS: mild solutions, cascade solutions

$$\begin{split} \chi(\xi,t) &= e^{-t|\xi|^2}\chi_0(\xi) \\ &+ \int_0^t e^{-s|\xi|^2}|\xi|^2 \int_{\mathbb{R}^d} \chi(\eta,t-s) \odot_{\xi} \chi(\xi-\eta,t-s) H(\eta|\xi) d\eta ds \end{split}$$

• Mild solution:

$$\begin{array}{rcl} \gamma_0 &\equiv & 0 \\ \gamma_n &= & e^{-t|\xi|^2} \chi_0 + \bar{B}(\gamma_{n-1}, \gamma_{n-1}) \\ \chi &= & \lim \gamma_n \end{array}$$

FNS: mild solutions, cascade solutions

$$\begin{split} \chi(\xi,t) &= e^{-t|\xi|^2}\chi_0(\xi) \\ &+ \int_0^t e^{-s|\xi|^2}|\xi|^2\int_{\mathbb{R}^d}\chi(\eta,t-s)\odot_\xi\chi(\xi-\eta,t-s)H(\eta|\xi)d\eta ds \end{split}$$

• Mild solution:

$$\begin{array}{rcl} \gamma_0 &\equiv & 0 \\ \gamma_n &= & e^{-t|\xi|^2} \chi_0 + \bar{B}(\gamma_{n-1}, \gamma_{n-1}) \\ \chi &= & \lim \gamma_n \end{array}$$

• Cascade solution (~ LJS 1997):

$$\chi(\xi,t) = \mathbb{E}_{\xi,t} \mathbf{X}_{\text{FNS}}$$

FNS: mild solutions, cascade solutions

$$\begin{aligned} \chi(\xi,t) &= e^{-t|\xi|^2}\chi_0(\xi) \\ &+ \int_0^t e^{-s|\xi|^2}|\xi|^2 \int_{\mathbb{R}^d} \chi(\eta,t-s) \odot_{\xi} \chi(\xi-\eta,t-s) H(\eta|\xi) d\eta ds \end{aligned}$$

Mild solution:

$$\begin{array}{rcl} \gamma_0 &\equiv & 0 \\ \gamma_n &= & e^{-t|\xi|^2} \chi_0 + \bar{B}(\gamma_{n-1}, \gamma_{n-1}) \\ \chi &= & \lim \gamma_n \end{array}$$

• Cascade solution (~ LJS 1997):

$$\chi(\xi, t) = \mathbb{E}_{\xi, t} \mathsf{X}_{\text{FNS}}$$

Two issues: (1) stochastic explosion and (2) existence of expectation.

Branching process may never stop, potentially making \mathbf{X}_{FNS} not well-defined.

- Property of cascade structure, not of product.
- Depending only on the majorizing kernel *h* and the clocks.

Branching process may never stop, potentially making \mathbf{X}_{FNS} not well-defined.

- Property of cascade structure, not of product.
- Depending only on the majorizing kernel h and the clocks.
- 3D self-similar cascade $h_{dilog}(\xi) = C|\xi|^{-2}$: stochastic explosion a.s. (Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\rm b}(\xi) = C |\xi|^{-1} e^{-|\xi|}$: no-explosion a.s. (Orum, Pham 2019)

Branching process may never stop, potentially making \mathbf{X}_{FNS} not well-defined.

- Property of cascade structure, not of product.
- Depending only on the majorizing kernel h and the clocks.
- 3D self-similar cascade $h_{dilog}(\xi) = C|\xi|^{-2}$: stochastic explosion a.s. (Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\rm b}(\xi) = C|\xi|^{-1}e^{-|\xi|}$: no-explosion a.s. (Orum, Pham 2019)

We bypass the explosion problem by defining instead

$$\chi(\xi, t) = \mathbb{E}_{\xi, t}[\mathbf{X}_{\text{FNS}} \mathbb{1}_{S>t}],$$

where S is the shortest path.

Existence of expectation

It may happen that $\mathbb{E}_{\xi,t}[|\mathbf{X}_{\text{FNS}}|\mathbb{1}_{S>t}] = \infty$.

$$\mathbf{X}_{\mathrm{FNS}}(\xi,t)\mathbb{1}_{S>t} = \bigotimes_{s \in \mathcal{V}_0(\xi,t)} \chi_0(W_s)$$
 (finite product)

Existence of expectation

It may happen that $\mathbb{E}_{\xi,t}[|\mathbf{X}_{\text{FNS}}|\mathbb{1}_{S>t}] = \infty$.

$$\mathbf{X}_{FNS}(\xi, t) \mathbb{1}_{S>t} = \bigotimes_{s \in \mathcal{V}_0(\xi, t)} \chi_0(W_s)$$
 (finite product)

This issue depends on both cascade structure and the product.

LJS '97, Bhattacharya et al 2003: $|\chi_0| \leq 1$ leads to

- Global existence
- 2 Uniqueness in the class $\{\chi : |\chi| \le 1 \text{ a.e. } (\xi, t)\}$
- Scalar Cascade solution agrees with mild solution.

LJS '97, Bhattacharya et al 2003: $|\chi_0| \leq 1$ leads to

- Global existence
- 2 Uniqueness in the class $\{\chi : |\chi| \le 1 \text{ a.e. } (\xi, t)\}$
- Scalar Cascade solution agrees with mild solution.

Question: can smallness of χ_0 in a global sense guarantee existence of expectation?

$$\|u_0\|_{\dot{H}^{d/2-1}} = C_d \left\{ \int_{\mathbb{R}^d} |\xi|^{d-2} h^2(\xi) |\chi_0(\xi)|^2 d\xi \right\}^{1/2}.$$

LJS '97, Bhattacharya et al 2003: $|\chi_0| \leq 1$ leads to

- Global existence
- 2 Uniqueness in the class $\{\chi : |\chi| \le 1 \text{ a.e. } (\xi, t)\}$
- Scalar Solution agrees with mild solution.

Question: can smallness of χ_0 in a global sense guarantee existence of expectation?

$$\|u_0\|_{\dot{H}^{d/2-1}} = C_d \left\{ \int_{\mathbb{R}^d} |\xi|^{d-2} h^2(\xi) |\chi_0(\xi)|^2 d\xi \right\}^{1/2}.$$

An iteration method was used by LJS (1997) to show uniqueness; by Bhattacharya et al (2003) to show cascade-mild agreement; by Dascaliuc et al (2018) to show nonuniqueness for α -Riccati equation.

Chain from initial condition to solution - Introduce a ground state.

$$\begin{split} \mathbf{X}_{\text{FNS},0}(\xi,t) &\equiv 0, \\ \mathbf{X}_{\text{FNS},n}(\xi,t) &= \begin{cases} \chi_0(\xi) & \text{if } T_0 > t, \\ \mathbf{X}_{\text{FNS},n-1}^{(1)}(W_1,...) \odot_{\xi} \mathbf{X}_{\text{FNS},n-1}^{(2)}(\xi - W_1,...) & \text{if } T_0 \leq t. \end{cases} \end{split}$$

Chain from initial condition to solution - Introduce a ground state.

$$\begin{split} \mathbf{X}_{\mathrm{FNS},0}(\xi,t) &\equiv 0, \\ \mathbf{X}_{\mathrm{FNS},n}(\xi,t) &= \begin{cases} \chi_0(\xi) & \text{if } T_0 > t, \\ \mathbf{X}_{\mathrm{FNS},n-1}^{(1)}(W_1,\ldots) \odot_{\xi} \mathbf{X}_{\mathrm{FNS},n-1}^{(2)}(\xi - W_1,\ldots) & \text{if } T_0 \leq t. \end{cases} \end{split}$$

Ignore the product:

$$\begin{split} \mathbf{X}_{0}(\xi,t) &\equiv 0, \\ \mathbf{X}_{n}(\xi,t) &= \begin{cases} |\chi_{0}(\xi)| & \text{if } T_{0} > t, \\ \mathbf{X}_{n-1}^{(1)}(W_{1},t-T_{0}) \mathbf{X}_{n-1}^{(2)}(\xi-W_{1},t-T_{0}) & \text{if } T_{0} \leq t. \end{cases} \end{split}$$

Domination principle: $|\mathbf{X}_{\text{FNS},n}| \leq \mathbf{X}_n$.

 \mathbf{X}_n corresponds to the following scalar equation:

$$(\mathsf{mNSE}): \begin{cases} \partial_t u - \Delta u = \sqrt{-\Delta}(u^2) & \text{in } \mathbb{R}^d \times (0, \infty), \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^d. \end{cases}$$

called majorizing NSE.

It is called "cheap NSE" by Montgomery-Smith (2001).

Iteration process

Note that $\mathbf{X}_{\text{FNS},n}(\xi, t) \rightarrow \mathbf{X}_{\text{FNS}}(\xi, t) \mathbb{1}_{S>t}$ a.s. Put $\phi_n(\xi, t) = \mathbb{E}_{\xi,t} \mathbf{X}_n$. By Fatou's lemma and domination principle,

$$\phi(\xi, t) := \mathbb{E}_{\xi, t}[|\mathbf{X}_{\text{FNS}}|\mathbb{1}_{S>t}] \leq \text{ lim inf } \mathbb{E}_{\xi, t}|\mathbf{X}_{\text{FNS}, n}|$$

- \leq lim inf $\mathbb{E}_{\xi,t}\mathbf{X}_n$
- = $\liminf \phi_n(\xi, t).$

Iteration process

Note that $\mathbf{X}_{\text{FNS},n}(\xi, t) \to \mathbf{X}_{\text{FNS}}(\xi, t) \mathbb{1}_{S>t}$ a.s. Put $\phi_n(\xi, t) = \mathbb{E}_{\xi,t} \mathbf{X}_n$. By Fatou's lemma and domination principle,

$$\begin{split} \phi(\xi, t) &:= \mathbb{E}_{\xi, t}[|\mathbf{X}_{\text{FNS}}|\mathbb{1}_{S>t}] \leq \text{ lim inf } \mathbb{E}_{\xi, t}|\mathbf{X}_{\text{FNS}, n}| \\ &\leq \text{ lim inf } \mathbb{E}_{\xi, t}\mathbf{X}_{n} \end{split}$$

$$= \liminf \phi_n(\xi, t).$$

Admissible functional

A map $N_T : \mathcal{M}_T \to [0, \infty]$ is said to be an *admissible functional* if it has the following properties:

• If
$$N_T[f] < \infty$$
 then $|f(\xi, t)| < \infty$ for a.e. $(\xi, t) \in \mathbb{R}^d \times (0, T)$.

2 If $f, f_n \in \mathcal{M}_T$ and $f \leq \liminf f_n$ a.e. then $N_T[f] \leq \liminf N_T[f_n]$.

 $\mathcal{M}_{\mathcal{T}}$: space of all Borel measurable functions from $\mathbb{R}^d \times (0, \mathcal{T})$ to $[0, \infty]$.

Example of admissible functionals:

$$N_{\mathcal{T}}[f] = \|f\rho\|_{L_{t}^{r}L_{\xi}^{q}} = \left\|\|f(\cdot, t)\rho(\cdot, t)\|_{L_{\xi}^{q}(\mathbb{R}^{d})}\right\|_{L_{t}^{r}(0, T)}$$

where $0 < r, q \le \infty$ and $\rho : \mathbb{R}^d \times (0, T) \to [0, \infty]$ is a measurable function which vanishes only on a set of measure zero.

Recall:

$$\begin{aligned} \phi_n(\xi, t) &= & \mathbb{E}_{\xi, t} \mathsf{X}_n, \\ \phi(\xi, t) &= & \mathbb{E}_{\xi, t} [|\mathsf{X}_{\text{FNS}}| \mathbb{1}_{S > t}]. \end{aligned}$$

Recall:

$$\begin{aligned} \phi_n(\xi, t) &= \mathbb{E}_{\xi, t} \mathsf{X}_n, \\ \phi(\xi, t) &= \mathbb{E}_{\xi, t} [|\mathsf{X}_{\text{FNS}}| \mathbb{1}_{S>t}]. \end{aligned}$$

If $N_T[\phi_n] \le M < \infty$ for all *n* then By (2), $N_T[\phi] \le \liminf N_T[\phi_n] \le M$. By (1), $\phi(\xi, t) < \infty$ a.e. $(\xi, t) \in \mathbb{R}^d \times (0, T)$.

$\phi_n(\xi,t)$

$$= \mathbb{E}_{\xi,t}[\mathbf{X}_{n}\mathbb{1}_{\tau_{0}>t}] + \mathbb{E}_{\xi,t}[\mathbf{X}_{n}\mathbb{1}_{\tau_{0}\leq t}]$$

$$= e^{-t|\xi|^{2}}|\chi_{0}|$$

$$+ \int_{0}^{t} |\xi|^{2}e^{-s|\xi|^{2}} \int_{\mathbb{R}^{d}} \phi_{n-1}(\eta, t-s)\phi_{n-1}(\xi-\eta, t-s)H(\eta|\xi)d\eta ds.$$

$\phi_n(\xi,t)$

$$= \mathbb{E}_{\xi,t}[\mathbf{X}_{n}\mathbb{1}_{\tau_{0}>t}] + \mathbb{E}_{\xi,t}[\mathbf{X}_{n}\mathbb{1}_{\tau_{0}\leq t}]$$

$$= e^{-t|\xi|^{2}}|\chi_{0}|$$

$$+ \int_{0}^{t} |\xi|^{2}e^{-s|\xi|^{2}} \int_{\mathbb{R}^{d}} \phi_{n-1}(\eta, t-s)\phi_{n-1}(\xi-\eta, t-s)H(\eta|\xi)d\eta ds.$$

Therefore,

$$\phi_n = F_1[|\chi_0|] + F_2[\phi_{n-1}, \phi_{n-1}].$$

This is a *Picard iteration*.

Problem:

What can we choose for E and \mathcal{E}_T such that if $|\chi_0|$ is sufficiently small in E then ϕ_n is bounded in \mathcal{E}_T ?

Problem:

What can we choose for E and \mathcal{E}_T such that if $|\chi_0|$ is sufficiently small in E then ϕ_n is bounded in \mathcal{E}_T ?

We call (E, \mathcal{E}_T) a *Kato's setting* if

- F_1 is bounded linear from E to \mathcal{E}_T ,
- F_2 is bounded bilinear from $\mathcal{E}_T \times \mathcal{E}_T$ to \mathcal{E}_T .

Lemarie-Rieusset calls E an adapted value space, \mathcal{E}_T an admissible path space.

$$\|\phi_n\|_{\mathcal{E}_{\mathcal{T}}} \leq \kappa \||\chi_0|\|_{\mathcal{E}} + \gamma \|\phi_{n-1}\|_{\mathcal{E}_{\mathcal{T}}}^2.$$

Theorem (P. - Thomann 2019)

Let (E, \mathcal{E}_T) be a Kato's setting such that $\|\cdot\|_{\mathcal{E}_T}$ is an admissible functional. If $|\chi_0|$ is sufficiently small in E then $\phi(\xi, t) = \mathbb{E}_{\xi, t}[|\mathbf{X}_{\text{FNS}}|\mathbb{1}_{S>t}]$ is finite for a.e. $(\xi, t) \in \mathbb{R}^d \times (0, T)$.

Theorem (P. - Thomann 2019)

Let (E, \mathcal{E}_T) be a Kato's setting such that $\|\cdot\|_{\mathcal{E}_T}$ is an admissible functional. If $|\chi_0|$ is sufficiently small in E then $\phi(\xi, t) = \mathbb{E}_{\xi, t}[|\mathbf{X}_{\text{FNS}}|\mathbb{1}_{S>t}]$ is finite for a.e. $(\xi, t) \in \mathbb{R}^d \times (0, T)$.

Choices of E include

• From smallness of
$$u_0$$
 in $\dot{H}^{d/2-1}$:

$$\|\chi_0\|_E = \left\{\int_{\mathbb{R}^d} |\xi|^{d-2} h^2(\xi) |\chi_0(\xi)|^2 d\xi\right\}^{1/2}$$

Theorem (P. - Thomann 2019)

Let (E, \mathcal{E}_T) be a Kato's setting such that $\|\cdot\|_{\mathcal{E}_T}$ is an admissible functional. If $|\chi_0|$ is sufficiently small in E then $\phi(\xi, t) = \mathbb{E}_{\xi, t}[|\mathbf{X}_{\text{FNS}}|\mathbb{1}_{S>t}]$ is finite for a.e. $(\xi, t) \in \mathbb{R}^d \times (0, T)$.

Choices of E include

• From smallness of
$$u_0$$
 in $\dot{H}^{d/2-1}$:

$$\|\chi_0\|_E = \left\{\int_{\mathbb{R}^d} |\xi|^{d-2} h^2(\xi) |\chi_0(\xi)|^2 d\xi\right\}^{1/2}$$

Is From smallness of u₀ in Lin-Lei's space (2011):

$$\|\chi_0\|_E = \int_{\mathbb{R}^d} |\xi|^{-1} h(\xi) |\chi_0(\xi)| d\xi.$$

Thank You!