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I am interested in partial differential equations, stochastic processes, fluid dynamics and numerical anal-
ysis. The main theme of my research is the regularity of the Navier-Stokes equations:

(NSE) :

{
ut −∆u+ u∇u+∇p = 0, div u = 0 in Rd × (0,∞),
u(x, 0) = u0(x).

The global well-posedness of the three-dimensional NSE—a Millennium problem—is one of the most funda-
mental problems in mathematical fluid mechanics. My approaches to this challenging problem are analytic
and probabilistic, and are directed toward answering the following questions: (1) Under what conditions
does a solution remain smooth for all time? Such a condition could be a priori (involving the initial data)
or a posteriori (based on a numerical approximation of the solution). (2) What roles does the flow’s phys-
ical boundary play in the formation of singularities? (3) What do NSE look like at a stochastic scale (in
the analogy to Brownian motions in the context of diffusion equations)? (4) How may such a stochastic
mechanism be useful in the regularity theory and numerical simulation?

Regarding question 1, the less information about the approximate solution required by an a posteriori
regularity criterion the better. The previously available a posteriori criteria either require the knowledge
of the derivatives (in addition to the magnitude) of the approximate solution or are not invariant under
the natural scaling of NSE. In [29], I derived a criterion which overcomes these two issues. Question 2 is
the motivation of my PhD thesis [28]. My study of the boundary regularity results in a new application of
pressure decomposition introduced by Seregin [34] to show the stability of singularities near the boundary.
I became interested in question 3 through the groundbreaking work of Le Jan and Sznitman (LJS) [18],
and through my collaboration with Radu Dascaliuc, Enrique Thomann, and Edward Waymire at Oregon
State University. In LJS’s method, a solution is represented as the expected value of a branching process
on trees. In their construction of solutions, an artificial coin-tossing device was needed to terminate the
branching process. Together with my collaborators, we introduce a simple method, intrinsic to the nature of
the branching process, to construct a solution without coin-tossing [8]. Inspired by LJS’s stochastic model
for NSE, we introduce a new class of probabilistic models called doubly stochastic Yule cascades [9,10] which
turns out to be a natural generalization of probabilistic models in data compression, percolation, aging, and
cancer growth. Regarding question 4, in [26] I identify a symmetric property of the Fourier-transformed NSE
from the conservation of frequencies—a property at the stochastic scale—and use it to obtain global strong
solutions for initial data whose Fourier transforms are supported on the half-space (no smallness condition
is required).

Below, I will describe in more details my featured research works—their methodology and their connection
with the aforementioned questions.

1 A posteriori regularity criterion

Consider a sequence of approximate solutions {uε}ε>0 that converges to the true solution u in some sense.
One can think of, for example, a sequence of approximate solutions coming from numerical simulations, or
from perturbing the initial data, or from Leray’s mollification [u∇u]ε. Full information about the behavior
of this sequence as ε ↓ 0 would give useful information about the exact strong solution. In practice, however,
we only have information about finitely many approximate solutions. Let us assume that we know only one
approximate solution for a certain value of ε. The question is: how large can ε be so that we can infer the
global existence of the exact strong solution from uε? From a practical perspective, the larger ε is the better.

1



A global regularity criterion of this kind is known in literature as an a posteriori regularity criterion, which
serves as a check for an approximate/numerical solution to guarantee the existence of the exact solution.

The previously available a posteriori regularity criteria are not invariant under the natural scaling of NSE
or require information on the derivatives of the approximate/numerical solution (see [5, 12,20,24,25]). This
observation motivates my work [29], in which I give a simple scaling-invariant posteriori regularity criterion
that only requires the knowledge of the L∞-norm of the approximate solution. A simplified statement of the
main result is as follows.

Theorem 1 ([29]) Consider the mollified Navier-Stokes system

(NSE)ε :

{
ut −∆u+ [u∇u]ε +∇p = 0, div u = 0,
u(x, 0) = u0(x).

Suppose (NSE)ε has a global strong solution uε bounded by M . If ε . M−1 exp(−‖u0‖4L2M2) then NSE has
a global strong solution bounded by 2M .

At a local scale, the proof is a nice application of the ε-regularity criterion introduced by Caffarelli-Kohn-
Nirenberg (1982). A rate of ε . M−1 would be more desirable for practical purposes. However, the
time-dependence nature complicates the problem. Larger total energy naturally requires finer resolution in
order to capture microscopic structures of the exact solution. Therefore, the presence of the total energy in
the estimate of ε seems inevitable.

2 On Le Jan–Sznitman’s stochastic approach

Le Jan and Sznitman (1997) introduced an elegant stochastic approach to the deterministic NSE in which
they expressed the function χ = c0û/h as the expected value of a random variable: χ = EξX. Here, c0 is a
universal constant and h is a function satisfying h∗h = |ξ|h, called a standard majorizing kernel. Such kernels

include the Bessel kernel hb(ξ) = ce−|ξ||ξ|−1 for d = 3, and the scale-invariant kernel hin(ξ) = cd|ξ|1−d for
d ≥ 3. The random variable X is defined implicitly as

X(ξ, t) =

{
χ0(ξ) if T0 ≥ t,
X(1)(W1, t− T0)�ξX(2)(W2, t− T0) if T0 < t

(1)

where the “circle-dot” product is a non-commutative, non-associative vector operation encoding the divergence-
free condition of NSE, T0 is an exponential clock with mean |ξ|−2, W1 ∈ Rd and W2 = ξ −W1 are random
variables with a distribution determined by h, and X(1) and X(2) are two independent copies of X. Applying

Figure 1: Cascade figure illustrating the branching process. The recursive formula (1) arrives at a closed
form when all paths of the tree cross the time horizon t.

the formula (1) repeatedly, one may realize that X is defined on a branching process (see Figure 1 for a
cascade figure illustrating this branching process). In closed form, X is a circle-dot product of χ0 evaluated
at random locations in space.

This framework provides a probabilistic perspective for the well-posedness problem of the Navier-Stokes
equations and has led to several interesting results which I will describe below.
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Conservation of frequencies

The Navier-Stokes equations have a natural scaling symmetry: u(x, t)→ λu(λx, λ2t), p(x, t)→ λp(λx, λ2t).
There is another symmetry property at the stochastic scale:

χ0 → eξ·aχ0, X→ eξ·aX (a ∈ Rd) (2)

which comes from the observation that after each branching, the sum of all the wave numbers at the leaves
of the tree in Figure 1 is always equal to the starting wave number ξ. This conservation of frequencies was
noted in [7] by Dascaliuc et al. although the symmetry (2) was not identified there. At the deterministic
scale, the conservation of frequencies manifests in the symmetry:

û0 → eξ·aû0, û→ eξ·aû (a ∈ Rd). (3)

An interesting application to the global well-posedness of NSE immediately follows [26]: if û0 is supported
in a half-space of Rd (but can be large), then one can select a suitable vector a ∈ Rd so that û0a = eξ·aû0
is sufficiently small in some scale-critical space; then NSE with initial data u0a has a global solution ua; by
reversing the scaling, one obtains a global solution u = F−1{e−ξ·aûa} corresponding to the initial data u0.

This simple argument needs û0 to be supported in a half-space, which excludes all real-valued initial
data u0 of NSE. Nevertheless, it at least shows that the global well-posedness of NSE is difficult because the
initial velocity field must be real ! In addition, the argument simplifies and generalizes the global regularity
criteria in [13,22]. A result in my upcoming paper [26] is as follows.

Theorem 2 ([26]) If supp û0 ⊂ Rd+ and û0 ∈ L2, where d = 2 or 3, then the strong solution is global. If

supp û0 ⊂ Rd+ and û0 ∈ Lp, where 1 ≤ p < d
d−1 , then the strong solution is global.

Nonuniqueness and blowup of the Montgomery-Smith equation

There are intrinsic connections between the stochastic cascade illustrated in Figure 1 and the equation

(MS): ut −∆u =
√
−∆(u2), u(x, 0) = u0(x)

introduced by Montgomery-Smith [23] for a study of the finite-time blowup of the Navier-Stokes equations.
If we denote by ρ(ξ, t) the probability that a cascade starting at a wave number ξ ∈ Rd crosses the horizon
t after finitely many branchings, then the function v = F−1{hρ/c0} solves MS. This connection makes MS
a natural equation to study the stochastic structure of the NSE. In particular, the uniqueness of solutions
to MS implies the non-explosion of the cascade (i.e. the probability of non-explosion, ρ(ξ, t), is equal to
1). Vice versa, the explosion of the cascade implies the nonuniqueness of solutions to MS. Together with
my collaborators Radu Dascaliuc, Enrique Thomann, and Edward Waymire, we achieve several interesting
results in this direction.

Theorem 3 ([8]) For d = 3, we have the following statements.

(i) For u0(x) = 2
π

1
|x| , MS has at least two solutions: the time-independent solution u1 = u0 and the

time-decaying solution u2 = ( 2
π )3/2F−1{|ξ|−2ρ(ξ, t)}.

(ii) Consider the initial data of the form u0 = 2a(1 + |x|2)−1. If a ∈ [0, 1), MS has a unique global solution
in L5(R3× (0,∞)). If a = 1, MS has a time-independent solution and the solution is unique. If a > 1,
MS has a unique solution which escapes L5(R3 × (0, T )) for some T <∞.

The nonuniqueness result in Part (i) is worth noting. It is conjectured by Jia and Šverák [17] that uniqueness
of scale-invariant solutions to NSE may break for large scale-invariant initial data. Although the conjecture
has not been settled for NSE, our result shows that it has an affirmative answer for the toy model MS.

Doubly Stochastic Yule cascades and the stochastic explosion

Inspired by Le Jan and Sznitman’s stochastic method for NSE, we introduce a new class of probabilistic
models called Doubly Stochastic Yule (DSY ) cascades. In literature, the classical Yule process is a pure birth
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Markov process with (constant) rate λ > 0 and can be viewed as a tree-indexed family {λ−1Tv}v∈T where T =
{0} ∪∪∞n=1{1, 2}n is a rooted full binary tree and {Tv}v∈T is a family of i.i.d. mean-one exponential random
variables (called clocks, or the standard Yule cascade). As in the case of doubly stochastic Poisson process,
one may allow the intensities to be positive random variables dependent on the vertices but independent of
the clocks. This defines a DSY cascade {λ−1v Tv}v∈T.

DSY cascades arise naturally from the perspective of evolutionary differential equations, including the
Navier-Stokes equations and the Fisher-KPP equation, to purely probabilistic models of stochastic phenom-
ena, such as percolation and aging models. The special case λv = α−|v| is interpreted in terms of data
compression and percolation [3]. It has also been considered for important cellular biology questions related
to aging and cancer, where generational cell division rates decrease with generations [4].

Stochastic explosion—the situation when the tree in Figure 1 produces infinitely many branches before a
time horizon—is an intrinsic issue in the Le Jan-Sznitman’s construction of solutions to NSE. In a broader
sense, stochastic explosion is a natural probabilistic problem associated with any DSY cascade. The DSY
cascade associated with NSE has a branching Markov chain structure underlying the intensities {λv}v∈T.
Our study of DSY cascades with this underlying structure has been quite fruitful. In [9], we give criteria
for the non-explosion of Markov-type DSY cascades using the technique of large deviations. In [10], we use
a new probabilistic technique called “cutset arguments” and a greedy algorithm to respectively establish
non-explosion and explosion criteria. Notable applications include the following.

Theorem 4 ([9, 10]) The Bessel cascade (corresponding to h = hb) of the 3-dimensional NSE is a.s. non-
explosive. The self-similar cascade (corresponding to h = hin) of the 3-dimensional NSE is a.s. explosive.
The self-similar cascade of the d-dimensional NSE, for d ≥ 12, is a.s. non-explosive.

Using a tree-partitioning technique to compare a DSY cascade with the standard Yule cascade, I obtain the
following non-explosion criterion (reminiscent of Feller’s non-explosion criterion for Markov processes and
Pemantle-Peres’s non-explosion criterion for percolation on trees).

Theorem 5 ([27]) Let {λ−1v Tv}v∈T be a DSY cascade with deterministic intensities which only depend on
the generational heights, i.e. λv = λ|v|. Suppose the sequence {λn} is nondecreasing. Then the cascade is

a.s. non-explosive if and only if
∑

1
λn

=∞.

3 Minimal blowup data in the presence of boundaries

Assuming that there exist initial data leading to finite-time singularities, one might wonder if the minimum
(in a certain norm) among them exists. From a control theory perspective, the size of the minimal blowup
data represents the minimal cost to generate a blowup solution. For NSE in the whole space R3, the answer
is affirmative in various settings of the initial data [14–16, 21, 30, 32]. In my PhD thesis [28], I investigate
the influence of the physical boundary on the existence of minimal blowup data. The main difficulties are
(1) the low regularity of pressure at the boundary, and (2) the instability of singularities with respect to
localization of domains.

To deal with the instability issue, the force term is incorporated in the equation to make the data size more
stable under the change of domains and perturbation of the equation. Let NSE+ be the forced Navier-Stokes
problem in R3

+ with non-slip boundary condition. Denote by ρ+max the supremum of all ρ > 0 such that NSE+

is globally well-posed for every initial data u0 and force f satisfying ‖(u0, f)‖X×Y = ‖u0‖X + ‖f‖Y < ρ.
One can define ρmax the same way but for the whole space. To deal with the the pressure regularity at the
boundary, I work with the class of weak solutions introduced by Seregin and Šverák [33], which are suitable
for the decomposition of the pressure near the boundary. Put

Yq = {f : R3 × (0,∞)→ R3 : tq∗f ∈ Lq(R3 × (0,∞))}
with ‖f‖Yq

= ‖tq∗f‖Lq and q∗ = 3/2− 5/(2q). I obtain the following.

Theorem 6 ([28]) Let X = {0} and Y = Yq for 5/2 < q < 3. Then ρ+max ≤ ρmax. NSE has a minimal
blowup data if ρmax <∞. NSE+ has a minimal blowup data if ρ+max < ρmax.

When ρ+max < ρmax, the boundary facilitates blowup in the sense that all singularities, if exist, must stay
within a finite distance from the boundary. The case ρ+max = ρmax happens only when the singularities move
away from the boundary. In this scenario, the boundary seems to obstruct the existence of minimal blowup
data.
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4 Future research and mentoring plans

I am a principal investigator of a collaborative NSF proposal in Applied Mathematics (funding proposed
for the 2022-2025 period). The project focuses on exploring the dynamics of processes of energy transfer
between scales of incompressible fluid flow through investigation of natural stochastic structure that underlies
deterministic Navier-Stokes equations. Similarly to the branching Brownian motion for the Fisher-KPP
equation, this structure, first derived by Le Jan and Sznitman in 1997, takes the form of a branching
stochastic cascade tree that governs the way information from the initial data is transferred to the NSE
solution at time t. Unlike the branching Brownian motion, the NSE stochastic cascade take place in Fourier
space—a natural setting to study scale-to-scale energy transfer. The theory of random trees, especially
those displaying Markovian-type structures, is well-developed with a number of tools available for their
study. Although exact connection between its random tree structure for wave-vector generation and the way
flows modeled by the NSE solutions shed energy is not yet well-understood, the recent progress in the theory
of branching cascades [6, 9–11] places such advances within reach.

The proposal contains several research problems aimed at three main directions: 1) Understanding the
process of turbulent energy transfer in fluid flows through the lens of stochastic cascades; 2) Development
of efficient Monte-Carlo-type simulations of solutions of Navier-Stokes (and similar) equations based on
simulations of stochastic cascades; 3) Development of mean-field models to study turbulent energy transfer
between scales of the fluid flows based on the probabilistic properties of branching in the stochastic cascade
structure for NSE.

I will briefly explain one of our proposed research problems—the Monte Carlo method of simulating
the solution to NSE. In fluid flows, the energy cascade is the transference of kinetic energy from large
physical scales to small ones. Empirical theories of energy cascades based on statistical assumptions on the
dynamics of fluid flows are ubiquitous in the field of hydrodynamic and aerodynamic turbulence. Although
these assumptions have resulted in useful turbulence models such as the Kolmogorov 5/3 Law and the
Large Eddy Simulation, their full justification at the level of the governing differential equations such as the
Navier-Stokes equations remains elusive. This is partially due to the gap between the statistical nature of
turbulence theories and the determinism of the fluid equations. In contrast to various existing shell models of
turbulence, Le Jan-Sznitman’s stochastic cascade provides a precise notion of averaging directly from NSE.

When a solution to a PDE is interpreted as the expected value of a stochastic process, Monte Carlo
methods can be used as an intuitive way to simulate the solution. In the case of stochastic branching
processes, Monte Carlo methods can be significantly slower than deterministic numerical methods such as
finite difference method and finite element method. Modification techniques to obtain a practically feasible
Monte Carlo algorithm include the interpolation of data and domain decomposition [1, 2, 19, 31]. A Monte
Carlo implementation meets two key difficulties. First, an artificial mechanism to decide when to terminate
a sampling process must be introduced. Such a stoppage mechanism not only ensures that the amount of
data generated is finite but also indicates when the stochastic explosion event has occurred and the ongoing
sampling process should be abandoned. Second, in order to have an adequate picture of the energy spectrum,
one needs to simulate û(ξ, t) for many the wave-vectors ξ. This is where the Decoupling Principle—a property
of the stochastic cascade arising from the natural scaling symmetry of NSE—plays a crucial role in reducing
the cost of a Monte Carlo simulation.

There are mean-field models such as the dyadic model, α-Riccati , 1D complex Burgers,... which can be
used as case study. Such a project is doable for undergraduate/graduate students. It provides an interesting
applied-math framework through which students can build a strong background in differential equations,
numerical simulation, and probability theory.
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[16] H. Jia and V. Šverák, Minimal L3-initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal. 45 (2013),
no. 3, 1448–1459.
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