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We devise a new high order local absorbing boundary condition (ABC) for radiating 
problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary 
shape. By introducing an artificial boundary S enclosing the scatterer, the original 
unbounded domain � is decomposed into a bounded computational domain �− and 
an exterior unbounded domain �+ . Then, we define interface conditions at the artificial 
boundary S , from truncated versions of the well-known Wilcox and Karp farfield expansion 
representations of the exact solution in the exterior region �+. As a result, we obtain 
a new local absorbing boundary condition (ABC) for a bounded problem on �−, which 
effectively accounts for the outgoing behavior of the scattered field. Contrary to the low 
order absorbing conditions previously defined, the error at the artificial boundary induced 
by this novel ABC can be easily reduced to reach any accuracy within the limits of the 
computational resources. We accomplish this by simply adding as many terms as needed to 
the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions 
guarantees that the order of approximation of the new ABC can be increased arbitrarily 
without having to enlarge the radius of the artificial boundary. We include numerical 
results in two and three dimensions which demonstrate the improved accuracy and 
simplicity of this new formulation when compared to other absorbing boundary conditions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Equations modeling wave phenomena in fields such as geophysics, oceanography, and acoustics among others, are nor-
mally defined on unbounded domains. Due to the complexity of the corresponding boundary value problems (BVP), in 
general, an explicit analytical technique cannot be found. Therefore, they are treated by numerical methods. Major chal-
lenges appear when numerically solving wave problems defined in these unbounded regions using volume discretization 
methods. One of them consists of the appropriate definition of absorbing boundary conditions (ABC) on artificial boundaries 
such that the solution of the new bounded problem approximates to a reasonable degree the solution of the original un-
bounded problem in their common domain. That is why the definition of ABCs for wave propagation problems in unbounded 
domain plays a key role in computation.
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Historically two main approaches were initially followed in the evolution of ABCs, as described by Givoli in [1]. First, 
low order local ABCs were constructed. Undoubtedly, one of the most important ABCs in this category was introduced 
by Bayliss–Gunzburger–Turkel in their celebrated paper [2]. This condition is denoted as BGT in the ABC literature. Other 
well-known conditions in this category were introduced by Engquist–Majda [3], Feng [4] and Li–Cendes [5]. Some of them 
became references for many that followed thereafter. Several years later in the late 1980s and early 1990s, exact non-local 
ABCs made their appearance. Since their definitions are based on Dirichlet-to-Neumann (DtN) maps, they are called DtN 
absorbing boundary conditions. The pioneer work in their formulations and implementations was performed by Keller–Givoli 
[6,7] and Grote–Keller [8]. The main virtue of the DtN absorbing conditions is that they approximate the field at the artificial 
boundary almost exactly. Therefore, the accuracy of the numerical computation depends almost entirely on the accuracy of 
the numerical method employed for the computation at the interior points.

The BGT absorbing condition consists of a sequence of differential operators applied at the artificial boundary (a circle 
or a sphere of radius R) which progressively annihilate the first terms of a farfield expansion of the outgoing wave valid 
in the exterior of the artificial boundary. We call the first of these operators BGT1. In three dimensions, it provides an 
accuracy of O (1/R3) and involves a first order normal derivative. The next condition in this sequence, BGT2 has O (1/R5)

accuracy and includes a second order normal derivative in its definition. They are called BGT operators of order one and 
order two, respectively. The drawback of the BGT and of the other ABCs in the first category is that to increase the order of 
the approximation at the boundary, the order of the derivatives present in their definitions also needs to be increased. This 
leads to impractical ABCs due to the difficulty found in their implementations beyond the first two orders. There is also 
a downside for the DtN-ABCs stemming from the fact the computation of the field at any boundary point involves all the 
other boundary points which leads to partially dense matrices at the final stage of the numerical computation.

The above disadvantages are overcome by the introduction of high order local ABCs without high order derivatives. Ac-
cording to [1], they are sequences of ABCs of increasing accuracy which are also practically implementable for an arbitrarily 
high order. Several ABCs have been formulated within this category in recent years. A detailed description of some of them 
is found in [1]. A common feature of all these high order local ABCs is the presence of auxiliary variables which avoid the 
occurrence of high derivatives (beyond order two) in the ABC’s formulation. Probably, the best known of all these high order 
local conditions was formulated by Hagstrom–Hariharan [9] which we denote as HH. They start representing the outgoing 
solution by an infinite series in inverse powers of 1

R , where R is the radius of a circular or spherical artificial boundary. 
Analogous to the BGT formulation, the key idea in this formulation is the construction of a sequence of operators that ap-
proximately annihilate the residual of the preceding term in the sequence. As a result, a sequence of conditions in the form 
of recurrence formulas for a set of unknown auxiliary variables is obtained. The expression for the first auxiliary variable 
coincides with BGT1. Similarly, combining the formulas for the first two auxiliary variables, the HH absorbing condition 
reduces to BGT2. Actually, Zarmi [10] proves that HH is equivalent to BGT for all orders. The difference between these two 
formulations is that HH does not involve high derivatives owing to the use of the auxiliary variables. Thus, HH can be imple-
mented for arbitrarily high order. The three-dimensional (3D) HH can be considered an exact ABC since it is obtained from 
an exact representation of the solution in the exterior of the artificial boundary. However, the two-dimensional (2D) HH is 
only asymptotic because it is obtained from an asymptotic expansion of the exact representation of the solution. Recently, 
Zarmi–Turkel [11] generalized the HH construction of local high order ABCs. They developed an annihilating technique that 
can be applied to rather general series representation of the solution in the exterior of the computational domain. As a 
result, they were able to reobtain HH and derive new high order local ABCs such as a high order extension of Li–Cendes 
ABC [5].

Our construction of high order local ABCs proceeds in the opposite way of the previous ABCs discussed above. Instead of 
defining local differential operators which progressively annihilate the first terms of a series representation of the solution 
in the exterior of the artificial boundary, we use a truncated version of the series representations directly to define the ABC 
without defining special differential operators at the boundary. As a consequence, the derivation of the absorbing condition 
is extremely simple. Moreover, the order of the error induced by this ABC can be easily improved by simply adding as many 
terms as needed to the truncated farfield expansions The series representations employed are Karp’s farfield expansion [12]
in 2D, and Wilcox’s farfield expansion [13] in 3D. They are exact representations of the outgoing wave outside the circular 
or spherical artificial boundaries of radius R , respectively. Therefore, the resulting ABC which we call Karp’s double farfield 
expansion (KDFE) and Wilcox farfield expansion (WFE), respectively, can be considered exact ABCs. The exact character of 
KDFE represents an improvement over HH in 2D, which is only asymptotically valid. Instead of having unknown auxiliary 
functions as part of the new condition, we simply consider as unknowns the original angular functions appearing in Wilcox’s 
or Karp’s farfield expansions. To determine these angular functions, we use the recurrence formulas derived from Wilcox’s or 
Karp’s theorems which do not disturb the local character of the ABC. A relevant feature of the farfield expansions approach 
is that the coefficient (angular function) of their leading term is the farfield pattern of the propagating wave. Thus, no 
additional computation is required to obtain an approximation for this important profile. For comparison purposes, we also 
obtain a farfield expansion ABC from the asymptotic farfield expansion of Karp’s exact series. We call it Karp’s single farfield 
expansion (KSFE) absorbing boundary condition.

An important consideration is that the formulation of these absorbing boundary conditions depends on existing knowl-
edge of an exact or asymptotic series representation for the outgoing waves of the problem being studied. This limits the 
use of Karp and Wilcox farfield expansions ABCs to problems in the entire plane or space, respectively. As a consequence, 
problems involving straight infinite boundaries as waveguide problems, half-plane, or quarter-plane cannot be modeled by 
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these ABCs. For these type of problems, the most popular method to formulate ABCs is the perfectly matched layer (PML) 
introduced by Berenger [14]. However, a class of high order absorbing boundary conditions has also been employed by sev-
eral authors. For instance, Hagstrom, Mar-Or, and Givoli [15] obtained high order local ABCs for two-dimensional waveguide 
problems modeled by the wave equation. This ABC was first formulated for the wave equation by Hagstrom–Warburton [16]
which in turn is based on a modification of the Higdon ABCs [17]. More recently, Rabinovich et al. [18] adapted Hagstrom–
Warburton ABC to time-harmonic problems in a waveguide and a quarter-plane modeled by the Helmholtz equation.

The outline of the succeeding sections is as follows. In Section 2, details about the expansions KDFE, KSFE, and WFE are 
given. Also, the relationships between lower orders of KSFE absorbing boundary condition, BGT1, and BGT2 are established. 
Then in Section 3, the numerical method is described in the 2D case for KDFE. In particular, the discrete equations at 
the boundary are carefully derived. This is followed by an analysis of the structure of the matrices defining the ultimate 
linear systems for KSFE, KDFE, and DtN boundary value problems, respectively. Finally, numerical results for scattering and 
radiating problems, from circular and complexly shaped obstacles in 2D, and also from spherical obstacles in 3D, employing 
the novel farfield expansions ABCs, are reported in Section 6.

2. High order local absorbing conditions from farfield expansions

We start this Section by considering the scattering problem of a time-harmonic incident wave, uinc , from a single obstacle 
in two or three dimensions. This scatterer is an impenetrable obstacle that occupies a simply connected bounded region with 
boundary �. The open unbounded region in the exterior of � is denoted as �. This region � is occupied by a homogeneous 
and isotropic medium. Both the incident field uinc and the scattered field usc satisfy the Helmholtz equation in �. For 
simplicity, we assume a Dirichlet boundary condition (soft obstacle) on �. However, the analysis in this article can be 
easily extended to Neumann or Robin boundary conditions, and to a bounded penetrable scatterer with inhomogeneous and 
anisotropic properties. Then, usc solves the following boundary value problem (BVP):

�usc + k2usc = f in �, (1)

usc = −uinc on �, (2)

lim
r→∞ r(δ−1)/2 (∂rusc − ikusc) = 0. (3)

The wave number k and the source f may vary in space. Equation (3) is known as the Sommerfeld radiation condition where 
r = |x| and δ = 2 or 3 for two or three dimensions, respectively. It implies that usc is an outgoing wave. This boundary value 
problem is well-posed under classical and weak formulations [19–21].

As pointed out in the introduction, the unbounded BVP (1)–(3) needs to be transformed into a bounded BVP before 
a numerical solution can be sought. This is typically done by introducing an artificial boundary S enclosing the obstacle 
followed by defining an appropriate absorbing boundary condition (ABC) on S . We choose a circular or spherical artificial 
boundary for the two- or three-dimensional scenarios, respectively. As a result, the region � is divided into two open 
regions. The region �− , bounded internally by the obstacle boundary � and externally by the artificial boundary S (a circle 
or a sphere of radius r = R), and the open unbounded connected region �+ = � \�− . We assume that the source f has its 
support in �− , and the wave number k is constant in �+ . An appropriate ABC should induce no or little spurious reflections 
from the artificial boundary S in order to maintain a good accuracy for the numerical solution inside �− .

As an intermediate step before constructing our high order local ABC in the next sections, we consider the following 
equivalent interface problem to the original BVP (1)–(3) for u−

sc = usc|�− and u+
sc = usc|�+ :

�u−
sc + k2u−

sc = f , in �−, (4)

�u+
sc + k2u+

sc = 0, in �+, (5)

u−
sc = −uinc, on �, (6)

with the interface and Sommerfeld conditions:

u−
sc = u+

sc, on S, (7)

∂νu−
sc = ∂νu+

sc on S, (8)

lim
r→∞ r(δ−1)/2 (

∂ru+
sc − iku+

sc

) = 0, (9)

where ∂ν denotes the derivative in the outer normal direction on S . The original scattering problem (1)–(3), and the interface 
problem (4)–(9) are equivalent as shown in [22, Thm 1] or [21, Lemma 4.19]. As a consequence, by simply requiring the 
Cauchy data to match at the artificial boundary S , all higher order derivatives also match at the interface. This matching 
condition at the artificial boundary will ultimately lead to a bounded BVP in �− whose numerical solution approximates to 
a reasonable degree the solution of the original unbounded problem in �− . This bounded BVP is constructed by realizing 
that there is an analytical representation of the solution u+

sc for the portion of the interface problem defined in �+ . By 
matching, at the artificial boundary S , this analytical solution with the solution u−

sc defined in the interior region �− , the 
bounded BVP sought in �− is finally obtained. The numerical solution of this bounded BVP in �− is the main subject of this 
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work. Furthermore, once this numerical solution for u−
sc is obtained, the analytical representation for u+

sc can be evaluated 
in �+ . Details of the derivation of the bounded BVP in �− are given in the sections below. Moreover, since the problem in 
�− is to be solved numerically, we can consider a rather general source term f and a variable wave number k inside �− . 
However, for sake of simplicity, from now on we assume f = 0 and k constant.

2.1. Karp’s double farfield expansion (KDFE) absorbing boundary condition in 2D

Here, we consider the outgoing field u+
sc satisfying the 2D Helmholtz equation exterior to a circle r = R and the Som-

merfeld radiation condition (3) for δ = 2. Our derivation of the new exact absorbing boundary condition is based on a 
well-known representation of outgoing solutions of the Helmholtz equation in 2D by two infinite series in powers of 1/kr. 
This representation is provided by the following theorem due to Karp.

Theorem 1 (Karp [12]). Let u+
sc be an outgoing solution of the two-dimensional Helmholtz equation in the exterior region to a circle 

r = R. Then, u+
sc can be represented by a convergent expansion

u+
sc(r, θ) = H0(kr)

∞∑
l=0

Fl(θ)

(kr)l
+ H1(kr)

∞∑
l=0

Gl(θ)

(kr)l
, for r > R. (10)

This series is uniformly and absolutely convergent for r > R and can be differentiated term by term with respect to r and θ any number 
of times.

Here, r and θ are polar coordinates. The functions H0 and H1 are Hankel functions of first kind of order 0 and 1, 
respectively. Karp also claimed that the terms Fl and Gl (l = 1, 2, . . . ) can be computed recursively from F0 and G0. To 
accomplish this, he suggested the substitution of the expansion (10) into Helmholtz equation in polar coordinates and the 
use of the identities: H ′

0(z) = −H1(z) and H ′
1(z) = H0(z) − 1

z H1(z). In fact, by doing this and requiring the coefficients of 
H0 and H1 to vanish, we derive a recurrence formula for the coefficients Fl and Gl of the expansion (10). This result is 
stated in the following corollary.

Corollary 1. The coefficients Fl(θ) and Gl(θ) (l > 1) of the expansion (10), can be determined from F0(θ) and G0(θ) by the recursion 
formulas

2lGl(θ) = (l − 1)2 Fl−1(θ) + d2
θ Fl−1(θ), for l = 1,2, . . . (11)

2lFl(θ) = −l2Gl−1(θ) − d2
θ Gl−1(θ), for l = 1,2, . . . . (12)

As discussed in the previous section, we use the semi-analytical representation of u+
sc given by (10) and the matching 

conditions (7)–(8), at the interface S , to obtain an approximation u ≈ u−
sc that satisfies the following bounded BVP in the 

region �−:

�u + k2u = f , in �−, (13)

u = −uinc, on �, (14)

u(R, θ) = H0(kR)

L−1∑
l=0

Fl(θ)

(kR)l
+ H1(kR)

L−1∑
l=0

Gl(θ)

(kR)l
, (15)

∂ru(R, θ) = ∂r

(
H0(kr)

L−1∑
l=0

Fl(θ)

(kr)l
+ H1(kr)

L−1∑
l=0

Gl(θ)

(kr)l

)∣∣∣∣
r=R

, (16)

where R is the radius of the circular artificial boundary S . This problem is not complete until enough conditions at the 
artificial boundary S , for the two families of unknown angular functions Fl and Gl of Karp’s expansion, are specified. Clearly, 
extra conditions to determine Fl and Gl for l = 1, . . . L − 1 are provided by the recurrence formulas (11) and (12). To apply 
these recurrence formulas, F0 and G0 need to be known. The boundary conditions (15) and (16) may be used to determine 
u and F0 at the boundary S . Therefore, we are still short by another condition to determine G0 at S . Now, usc has a second 
order partial derivative which is continuous with respect to r at r = R . Thus, a natural condition to add at r = R , to our new 
bounded problem (13)–(16) supplemented with (11)–(12), is ∂2

ν u−
sc = ∂2

ν u+
sc which can be fully written in terms of u as

∂2
r u(R, θ) = ∂2

r

(
H0(kr)

L−1∑
l=0

Fl(θ)

(kr)l
+ H1(kr)

L−1∑
l=0

Gl(θ)

(kr)l

)∣∣∣∣
r=R

, (17)

where the second radial derivative ∂2
r u may also be expressed in terms of ∂r u and ∂2u using the Helmholtz equation itself.
θ
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Summarizing, we approximate the solution of the interface problem (4)–(9) in the region �− by the solution of the 
bounded BVP consisting of (13)–(17) and (11)–(12). The equations (15)–(17) for the double family of farfield functions Fl
and Gl , supplemented by the recurrence formulas (11)–(12), constitute our novel Karp’s Double Farfield Expansion (KDFEL)

absorbing boundary conditions with L terms.

2.2. Karp’s single farfield expansion (KSFE) absorbing boundary condition in 2D

It is possible to approximate the two-family expansion (10) with a one-family expansion by means of an asymptotic 
approximation for large values of kr. A similar procedure was employed in [2]. The Hankel functions H0(z) and H1(z) admit 
the following approximations [23, §9.2],

H0(z) = eiz

√
z

L−1∑
l=0

C0,l

zl
+ O (|z|−L) and H1(z) = eiz

√
z

L−1∑
l=0

C1,l

zl
+ O (|z|−L) (18)

valid for z ∈ C with |arg(z)| < π as |z| → ∞. Therefore, after multiplication of the power series of (10) with these approx-
imations for H0(kr) and H1(kr), re-arranging terms of same powers, and neglecting the terms O (|kr|−L), we can combine 
the two families of angular functions Fl and Gl into one family fl . As a result, a new asymptotic series representation of the 
outgoing wave (19) is obtained. Moreover, the application of the 2D Helmholtz operator to the new asymptotic expansion 
renders a recursive formula (21) for the functions fl . Thus, in virtue of the approximation (18) and the matching at the 
artificial boundary S described in the previous section, we obtain a new absorbing boundary condition for the problem 
(13)–(14) given by

u(R, θ) = eikR

√
kR

L−1∑
l=0

fl(θ)

(kR)l
(19)

∂ru(R, θ) = eikR

√
kR

L−1∑
l=0

(
ik −

(
l + 1

2

)
/R

) fl(θ)

(kR)l
, (20)

2il fl(θ) =
(

l − 1
2

)2
fl−1(θ) + ∂2

θ fl−1(θ), l ≥ 1. (21)

We call the boundary condition defined by (19)–(21) with a single family of farfield functions fl the Karp’s Single Farfield 
Expansion (KSFEL) absorbing boundary condition with L terms. As we see in the numerical results in Section 6, both the 
KSFEL and KDFEL render similar results as the number of terms L increases, for moderate to large values of kR . But, KSFEL

exhibits a slower convergence behavior. However, we warn that (as discussed in [12]) the approximations (18) cannot be 
convergent for fixed |z| as L → ∞, because the Hankel functions possess a branch cut on the negative real axis which 
prevents them to be expanded by any Laurent series. Thus the number L should be chosen judiciously, especially for small 
values of kR .

2.2.1. Relationship between KSFE and BGT absorbing conditions
First, we consider the relationship between the BVPs corresponding to KSFE1 and BGT1 (the first order ABC from [2]). 

More precisely, we consider u1 solving a BVP corresponding to the KSFE1 condition (KSFE1-BVP):

�u1 + k2u1 = 0, in �−, (22)

u1 = −uinc, on �, (23)

u1(R, θ) = eikR f0(θ)

(kR)1/2
(24)

∂ru1(R, θ) = ∂r

(
eikr f0(θ)

(kr)1/2

)∣∣∣∣
r=R

= eikR f0(θ)

(kR)1/2

(
ik − 1

2R

)
, (25)

and U1 solving a BVP corresponding to the BGT1 condition (BGT1-BVP):

�U1 + k2U1 = 0, in �−, (26)

U1 = −uinc, on �, (27)

∂r U1(R, θ) + 1

2R
U1(R, θ) − ikU1(R, θ) = 0. (28)

It is clear from combining (24) and (25) that a solution u1 of (22)–(25) also satisfies the BVP (26)–(28). Conversely, if U1
is a solution of (26)–(28), then by defining f0(θ) = U1(R, θ)(kR)1/2e−ikR , we immediately show that U1 is a also a solution 
of (22)–(25). Furthermore, the BVP (26)–(28) has a unique solution as shown in [2]. As a consequence, the BVPs defined by 
the BGT1 and KSFE1 conditions have the same unique solution, which we state in the form of a theorem.
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Theorem 2. The boundary value problems (22)–(25) and (26)–(28) are equivalent and they have a unique solution.

Secondly, we analyze if the BVPs corresponding to KSFE2 and BGT2 are equivalent. The KSFE2-BVP consists of finding a 
function u2 satisfying Helmholtz equation in �− , Dirichlet boundary condition on �, and the following absorbing boundary 
condition on S:

u2(R, θ) = eikR

(kR)1/2

(
f0(θ) + f1(θ)

kR

)
(29)

∂ru2(R, θ) = eikR

(kR)1/2

((
ik − 1

2R

)
f0(θ) +

(
ik − 3

2R

)
f1(θ)

kR

)
, (30)

2i f1(θ) = 1

4
f0(θ) + f ′′

0 (θ). (31)

Similarly, the BGT2-BVP consists of finding a function U2 satisfying Helmholtz equation in �− , Dirichlet boundary condition 
on �, and the following absorbing boundary condition on S:

∂r U2 = (2(kR)2 + 3ikR − 3/4)U2 + ∂2
θ U2

2R(1 − ikR)
. (32)

Next, we will prove the following statement about the relationship between the BVPs corresponding to KSFE2, KSFE3, and 
BGT2.

Theorem 3.

a. A solution u2 of KSFE2-BVP satisfies BGT2-BVP only up to O (R−7/2) at the artificial boundary S.
b. A solution u3 of KSFE3-BVP satisfies BGT2-BVP up to O (R−9/2) at the artificial boundary S.

Proof. We will prove statement (a) by showing that when U2 is replaced by u2 in (32), then the left hand side (lhs) of (32)
is equal to its right hand side (rhs) up to O (R−3/2). To obtain the expression for the lhs, we replace ∂r U2 in (32) with ∂r u2
and use (30). This leads to

lhs =
[(

ik − 1

2R

)
f0 +

(
ik − 3

2R

)
f1

kR

]
eikR

(kR)1/2
. (33)

On the other hand, replacing U2 by u2 defined by (29) into the rhs of (32), we obtain,

rhs = 1

2R (1 − ikR)

[(
2(kR)2 + 3ikR − 3

4

)(
f0 + f1

kR

)
+ f ′′

0 + f ′′
1

kR

]
eikR

(kR)1/2
. (34)

Now, using the recurrence formula (31) in (33)–(34), we obtain,

(1 − ikR) (lhs − rhs) = ikeikR

(kR)5/2

(
9

16
f0 + 5

2
f ′′
0 + f ′′′′

0

)
. (35)

Hence, division by (1 − ikR) renders the statement (a).
A similar procedure leads to the proof of statement (b). First, we consider BVP defining the absorbing condition KSFE3

which consists of finding a function u3 satisfying Helmholtz equation in �− , Dirichlet boundary condition on �, and the 
following absorbing boundary condition on S:

u3(R, θ) = eikR

(kR)1/2

(
f0(θ) + f1(θ)

kR
+ f2(θ)

(kR)2

)
, (36)

∂ru3(R, θ) = eikR

(kR)1/2

((
ik − 1

2R

)
f0(θ) +

(
ik − 3

2R

)
f1(θ)

kR
+

(
ik − 5

2R

)
f2(θ)

(kR)2

)
, (37)

2i f1(θ) = 1

4
f0(θ) + f ′′

0 (θ), (38)

4i f2(θ) = 9

4
f1(θ) + f ′′

1 (θ). (39)

When replacing U3 with u3, then lhs of (32) becomes equal to

lhs = eikR

1/2

((
ik − 1

)
f0(θ) +

(
ik − 3

)
f1(θ) +

(
ik − 5

)
f2(θ)

2

)
. (40)
(kR) 2R 2R kR 2R (kR)
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Similarly, substituting u3 into the rhs of (32) leads to

2R(1 − ikR) rhs =
(

2(kR)2 + 3ikR − 3/4
)(

f0 + f1

kR
+ f2

(kR)2

)
+ f ′′

0 + f ′′
1

kR
+ f ′′

2

(kR)2
. (41)

Then, using the recurrence formulas (38)–(39), we obtain that (1 − ikR) (lhs − rhs) = O (R−7/2). Finally, the statement (b) is 
proved by dividing both sides by (1 − ikR). �

It was shown in [2] that a solution U2 of the BGT2-BVP approximates the exact solution of (1)–(3) to O (R−9/2) when 
R → ∞. From our previous results, we conclude that BGT2-BVP and KSFE2-BVP are not equivalent. Since a solution of 
KSFE2-BVP satisfies BGT2 to O (R−7/2), a solution of KSFE2-BVP will be a poorer approximation to the exact solution than U2. 
However, the solution of KSFE3-BVP satisfies BGT2 to O (R−9/2) also. It means that the solutions of BGT2-BVP and KSFE3-BVP 
approximate the exact solution at a comparable rate. This behavior is confirmed in our numerical experiments in Section 6.

2.3. Wilcox’s farfield expansion absorbing boundary condition in 3D

For the 3D case (δ = 3), we also use a representation of outgoing waves by an infinite series in powers of 1/kr . This 
representation is provided by a well-known theorem due to Atkinson and Wilcox, which is stated here for completeness.

Theorem 4 (Atkinson–Wilcox [13]). Let u+
sc be an outgoing solution of the three-dimensional Helmholtz equation in the exterior region 

to a sphere of radius r = R. Then, u+
sc can be represented by a convergent expansion

u+
sc(r, θ,φ) = eikr

kr

∞∑
l=0

Fl(θ,φ)

(kr)l
for r > R. (42)

This series is uniformly and absolutely convergent for r > R, θ , and φ . It can be differentiated term by term with respect to r, θ , and 
φ any number of times and the resulting series all converge absolutely and uniformly. Moreover the coefficients Fl (l ≥ 1) can be 
determined by the recursion formula,

2ilFl(θ,φ) = l(l − 1)Fl−1(θ,φ) + �SFl−1(θ,φ), l ≥ 1. (43)

Here, r, θ , and φ are spherical coordinates and �S is the Laplace–Beltrami operator in the angular coordinates θ and φ. 
See [2].

Following an analogous procedure to the one employed in Section 2.1 for the 2D case, we use a truncated version of the 
series (42) defined in �+ to match the solution in �− through the interface conditions (7)–(8). This yields an approximation 
u ≈ u−

sc that is defined to be the solution of the following BVP in the region �−:

�u + k2u = 0, in �−, (44)

u = −uinc, on �, (45)

u(R, θ,φ) = eikR

kR

L−1∑
l=0

Fl(θ,φ)

(kR)l
(46)

∂ru(R, θ,φ) = eikR

kR

L−1∑
l=0

(
ik − l + 1

R

)
Fl(θ,φ)

(kR)l
, (47)

2ilFl(θ,φ) = l(l − 1)Fl−1(θ,φ) + �SFl−1(θ,φ), l ≥ 1. (48)

The equations (46)–(48) form the absorbing boundary condition with L terms which we call Wilcox farfield expansion absorb-
ing boundary condition and denote WFEL . We also denote the BVP (44)–(48) as WFEL -BVP. Contrary to the 2D case, there is 
only one family of unknown angular functions Fl in this case. Hence, we only need the interface conditions (7)–(8) plus the 
recurrence formula (43) to define the new farfield expansion ABC at the artificial boundary S .

The WFE-BVP (44)–(48) can also be posed in weak form which is essential for the finite element methods. First we 
define the following (affine) spaces to deal with the Dirichlet boundary conditions (45),

H1
�,Dir(�

−) =
{

u ∈ H1(�−) : u = −uinc on �
}

,

H1
�,0(�

−) =
{

u ∈ H1(�−) : u = 0 on �
}

.

We require the solution (u, F0, F1, ..., F L−1) to satisfy u ∈ H1 (�−), Fl ∈ H1(S) for l = 0, ..., L − 2, F L−1 ∈ H0(S), and

�,Dir
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−〈∇u,∇v〉� + k2〈u, v〉� + eikR

kR

L−1∑
l=0

ik − (l + 1)/R

(kR)l
〈Fl, v〉S = 0, for all v ∈ H1

�,0(�
−), (49)

〈u, v0〉S = eikR

kR

L−1∑
l=0

1

(kR)l
〈Fl, v0〉S , for all v0 ∈ H0(S), (50)

2il〈Fl, vl〉S = l(l − 1)〈Fl−1, vl〉S − 〈∇S Fl−1,∇S vl〉S , for all vl ∈ H1(S), l ≥ 1, (51)

where the symbol ∇S represent the gradient in the geometry of the sphere S , and the functions Fl , originally defined on 
the unit-sphere, can be seen as defined on the sphere S of radius R by writing the argument as x̂ = x/R where x ∈ S and R
is fixed.

3. Numerical method

We start this section describing how to obtain a numerical approximation of the solution for the acoustic scattering 
of a plane wave from a circular shaped obstacle of radius r = r0 using Karp farfield expansions as ABC. As discussed in 
previous sections, our approach consists of numerically solving the KDFEL -BVP defined by (13)–(14) with the ABC given 
by (15)–(17) supplemented by the recurrence formulas (11)–(12). For this particular circular scatterer, polar coordinates 
(r, θ) is the natural choice of coordinate system. However, we will extend the discussion to more general obstacle shapes in 
generalized curvilinear coordinates in the next section. The numerical method chosen is based on a centered second order 
finite difference. The number of grid points in the radial direction is N and in the angular direction is m + 1. Therefore, the 
step sizes in the radial and angular directions are �r = (R − r0)/(N − 1) and �θ = 2π/m, respectively. Also, ri = (i − 1)�r, 
θ j = ( j − 1)�θ and ui, j = u(ri, θ j), where i = 1, . . . N and j = 1, . . . , m + 1. Since the pairs (ri, θ1) and (ri, θm+1) represent 
the same physical point, ui,1 = ui,m+1, for i = 1, . . . N . The discretization of the governing equations varies according to 
the location of the grid points. The areas of interest within the numerical domain and its boundaries are: the obstacle 
boundary �, the interior of the domain �− , and the artificial boundary S .

At the obstacle boundary u = −uinc holds. Then, we start constructing the corresponding linear system AU = b by simply 
including the negative value of uinc at each boundary grid point in the forcing vector b, and let the corresponding entry in 
the coefficient matrix A equal unity. This results in an identity matrix of size m × m in the upper left-hand corner of the 
matrix A.

At the interior points (ri, θ j) (i = 2, . . . N − 2, j = 1, . . .m) in �− , we discretize Helmholtz equation to obtain

α+
i ui+1, j + α−

i ui−1, j + αiui, j + βiui, j+1 + βiui, j−1 = 0, (52)

α+
i = 1

�r2 + 1
(2�r)ri

, α−
i = 1

�r2 − 1
(2�r)ri

,

αi = k2 − 2
�r2 − 2

�θ2r2
i
, βi = 1

�θ2r2
i
.

This discrete equation renders (N − 3)m new rows to the sparse matrix A with a total of 5(N − 3)m non-zero entries.
At the interior points (rN−1, θ j) with j = 1, . . .m, we replace the uN, j term by H0(kR) 

∑L−1
l=0

Fl, j

(kR)l + H1(kR) 
∑L−1

l=0
Gl, j

(kR)l

from the farfield absorbing condition. This leads to the following discrete equation:

α+
N−1

L−1∑
l=0

H0(kR)

(kR)l
Fl, j + α+

N−1

L−1∑
l=0

H1(kR)

(kR)l
Gl, j

+ α−
N−1uN−2, j + αN−1uN−1, j + βN−1uN−1, j+1 + βN−1uN−1, j−1 = 0. (53)

This equation adds m new rows to the matrix A with a total of 2(L + 2)m nonzero entries.
Also at the artificial boundary points (rN , θ j) with j = 1, . . .m, the discrete equation (52) is written as

α+
N uN+1, j + α−

N uN−1, j + αN uN, j + βN uN, j+1 + βN uN, j−1 = 0. (54)

Now, consider the discretization of equation (16) using centered finite difference, i.e.

uN+1, j = uN−1, j − 2�r
L−1∑
l=0

Al(kR)Fl, j − 2�r
L−1∑
l=0

Bl(kR)Gl, j, (55)

where

Al(kR) = kH1(kR)

(kR)l
+ klH0(kR)

(kR)l+1
and Bl(kR) = k(l + 1)H1(kR)

(kR)l+1
− kH0(kR)

(kR)l
.

Substitution of uN+1, j , uN, j+1, and uN, j−1 into (54) using the previous expression and Karp’s expansion, respectively, 
leads to the following set of m equations for j = 1, . . .m,
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(α+
N + α−

N )uN−1, j +
L−1∑
l=0

Cl(kR)Fl, j +
L−1∑
l=0

Dl(kR)Gl, j

+ βN

L−1∑
l=0

H0(kR)

(kR)l
Fl, j+1 + βN

L−1∑
l=0

H1(kR)

(kR)l
Gl, j+1 + βN

L−1∑
l=0

H0(kR)

(kR)l
Fl, j−1 + βN

L−1∑
l=0

H1(kR)

(kR)l
Gl, j−1 = 0, (56)

where the coefficients Cl and Dl are given by

Cl(kR) = −α+
N 2�r Al(kR) + αN

H0(kR)

(kR)l
and Dl(kR) = −α+

N 2�r Bl(kR) + αN
H1(kR)

(kR)l
.

The number of non-zero entries for these set of equation is nz = (6L + 1)m.
Another set of m equations is obtained from the discretization of the continuity condition on the second derivative 

combined with (55), and Karp farfield expansion,

2

�r2
uN−1, j +

L−1∑
l=0

Ml(kR)Fl, j +
L−1∑
l=0

Nl(kR)Gl, j = 0, (57)

where

Ml(kR) = − 2

�r
k Al(kR) + k2

(
H0(kR)

(kR)l
− (2l + 1)

H1(kR)

(kR)l+1
− l(l + 1)H0(kR)

(kR)l+2

)
− 2H0(kR)

�r2(kR)l

Nl(kR) = − 2

�r
k Bl(kR) + k2

(
−(2l + 1)

H0(kR)

(kR)l+1
+ H1(kR)

(kR)l
− (l + 1)(l + 2)H1(kR)

(kR)l+2

)
− 2H1(kR)

�r2(kR)l

The total number of nonzero entries for these equations is (2L + 1)m.
Finally, each one of the recurrence formulas (11)–(12) contribute with (L − 1)m new equations. They are given by

2lGl, j =
(

(l − 1)2 − 2

�θ2

)
Fl−1, j + 1

�θ2
Fl−1, j+1 + 1

�θ2
Fl−1, j−1, (58)

2lFl, j =
(

−l2 + 2

�θ2

)
Gl−1, j − 1

�θ2
Gl−1, j+1 − 1

�θ2
Gl−1, j−1 (59)

for l = 1, . . . L − 1 and j = 1, . . .m. The number of nonzero entries is four for each j and for each recurrence formula.
The above discrete equations are written as a linear system of equations AU = b. The matrix A structure depends on 

how the unknown vector U is ordered. We chose U as follows:

U =
[ at boundary︷ ︸︸ ︷

u1,1...u1,m

at interior grid points︷ ︸︸ ︷
u2,1...u2,m...uN−1,1...uN−1,m

at artificial boundary︷ ︸︸ ︷
F0,1...F0,m G0,1...G0,m... F L−1,1...F L−1,m G L−1,1...G L−1,m

]T
(60)

From the previous discrete equations (52)–(60), (56)–(59), it can be seen that the matrix A has dimension (N − 1 + 2L)m ×
(N − 1 + 2L)m. Furthermore, adding the m non-zero entries corresponding to the upper left-hand corner subdiagonal matrix 
of A to the non-zero entries of the discrete equations (52)–(60) and (56)–(59), it can be shown that the non-zero entries of 
A are nz = (5N − 16)m + 18Lm.

A completely analogous work can be performed for the discretization of KSFE-BVPs. However, the BVP defined by 
(13)–(14) with the KSFEL condition (19)–(21) has only one family of unknown farfield angular coefficients fl(θ) (l = 0, . . .
L − 1). As a consequence, the matrix A corresponding to its discrete equations has dimension (N − 1 + L)m × (N − 1 + L)m. 
Moreover, it can be shown that its number of non-zero entries is nz = (5N − 13)m + 8Lm. For purpose of comparison, 
we also consider the discretization of the Dirichlet-to-Neumann boundary value problem (DtN-BVP) derived by Keller and 
Givoli [6]. For this BVP the matrix A, obtained by employing a second order centered finite difference method, has dimen-
sion Nm × Nm and its non-zero entries are nz = (5N − 8)m + m2. A relevant feature of the matrices A for the KDFE-BVP 
and KSFE-BVP is that they do not have full blocks as found in the case of DtN-BVP. In fact, the number of non-zero entries 
for the DtN-BVP matrix is O (m2) against O (Lm) for the KDFE-BVP and KSFE-BVP matrices, respectively. Now, the number 
L of terms in the farfield expansion is always much smaller than m (nodes in the angular direction). As a consequence, the 
non-zeros of the matrices associated to the KDFE and KSFE boundary value problems are considerable less than those of 
the matrix corresponding to the DtN-BVP for the same problem. This is a key property for the computational efficiency of 
the numerical technique proposed in this work. Furthermore, this is why higher order local ABCs are preferred over global 
exact ABCs such as DtN.
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Fig. 1. Comparison of the matrix structure for: a) KDFE3, b) DtN, and c) KSFE8 with R = 2 and P P W = 20.

4. Applications of farfield ABCs

4.1. Scattering from a circular obstacle

To illustrate the computational advantage of the exact farfield expansions ABCs over the DtN-ABC, we consider the 
acoustic scattering of a plane wave propagating along the positive x-axis from a circular obstacle of radius r0 = 1. We 
place the artificial boundary at R = 2 and select a frequency k = 2π for the incident wave. Then, we apply the centered 
finite difference scheme described in Section 3 for the KDFE-BVP. For purpose of comparison, we also apply it with its 
respective modifications to KSFE-BVP and DtN-BVP. The points per wavelength in each case is P P W = 20. The number of 
terms employed for KDFEL is L = 3 and for the KSFEL is L = 8. These choices of L made possible that the three numerical 
solutions approximate the exact solution at the artificial boundary with about the same relative error of 3.8 × 10−3 in the 
L2-norm. In Fig. 1, the structure of their respective matrices are depicted. Although the matrix corresponding to the DtN-ABC 
has the smallest dimension, it has more than one and a half times as many non-zero entries as the farfield expansions ABCs. 
As the number of point per wavelength increases, this difference is even bigger since the number of points for the DtN-ABC 
is O (m2) while for the farfield ABCs is only O (Lm).

It is timely to comment on the numerical difficulties that can be faced when solving three-dimensional problems mod-
eled by the farfield ABCs. Using our finite difference technique will lead to sparse but very large matrices at the discrete 
level. Therefore, a direct solver may not be a feasible choice as the mesh is refined. Iterative methods become an imper-
ative choice. Among such methods are Krylov subspace iterative methods, multigrid and domain decomposition methods. 
However, their applications to the resulting sparse matrices experience difficulties because these matrices are known to be 
non-Hermitian and poorly conditioned. Efforts have been made to develop good preconditioners and parallelizable methods 
tailored to these wave scattering problems modeled by the Helmholtz equation [24,25]. We intend to explore some of these 
new techniques along with the application of the farfield absorbing boundary conditions to complex 3D problems in future 
work.

4.2. Scattering from a spherical obstacle. Axisymmetric case

In this section, we formulate the BVP corresponding to scattering from a spherical obstacle of an incident plane wave 
uinc = eikz propagating along the positive z-axis. The mathematical model including our novel Wilcox farfield ABC (WFE-ABC) 
consists of the BVP (44)–(48) in spherical coordinates (r, θ, φ). This problem is axisymmetric about the z-axis. Therefore, 
the governing Helmholtz equation for the approximation u of the scattered field usc is independent of the angle φ. As a 
consequence, it reduces to

∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ k2u = 0, in �−. (61)

Obviously, this equation is singular at the poles when θ = 0, π . However, there is not such singularity at these angular values 
for Helmholtz equation in cartesian coordinates. The singularity arises by the introduction of spherical coordinates. It can 
be shown [26] that equation (61) reduces to ∂u

∂θ
(r, θ) = 0, when θ = 0, π . The angular coefficients Fl of the Wilcox farfield 

expansion are also independent of φ. As in the two-dimensional case, we employ a second order centered finite difference 
scheme as our numerical method to obtain the approximate solution to this scattering problem. Due to the analogy between 
the KSFE and the WFE absorbing boundary conditions for this axisymmetric case, the discretization of the equations and 
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the structure of the matrix obtained after applying a centered finite difference approximation to the equations defining this 
BVP are similar to those of KSFE-BVP. In Section 6.3, numerical results for this problem are presented.

4.3. Radiation and scattering from complexly shaped obstacles in two-dimensions

Since most real applications deal with obstacle of arbitrary shape, in this section, we consider scattering problems for 
arbitrary shaped scatterers using the farfield absorbing boundary conditions. In order to do this, we introduce generalized 
curvilinear coordinates such that the physical scatterer boundaries correspond to coordinate lines. These type of coordinates, 
called boundary conforming coordinates [27], are generated by invertible transformations T : D′ → D, from a rectangular 
computational domain D′ with coordinates (ξ, η) to the physical domain D with coordinates (x, y) = (x(ξ, η), y(ξ, η)). 
A common practice in elliptic grid generation is to implicitly define the transformation T as the numerical solution to a 
Dirichlet boundary value problem governed by a system of quasi-linear elliptic equations for the physical coordinates x and 
y. Following this approach, the authors Acosta and Villamizar [22] introduced the elliptic-polar grids as the solution to the 
following quasi-linear elliptic system of equations:

αxξξ − 2βxξη + γ xηη + 1

2
αξ xξ + 1

2
γηxη = 0, (62)

αyξξ − 2β yξη + γ yηη + 1

2
αξ yξ + 1

2
γη yη = 0. (63)

The symbols α, β , and γ , represent the scale metric factors of the coordinates transformation T , respectively. These are 
defined as

α = x2
η + y2

η, β = xξ xη + yξ yη, γ = x2
ξ + y2

ξ .

In this work, we adopt the elliptic-polar coordinates in the presence of complexly shaped obstacles. Before we attempt a 
numerical solution to our BVP with the farfield expansions ABCs in these coordinates, we express the governing equations 
in terms of them. For instance, the two-dimensional Helmholtz equation transforms into

1

J 2

[
αuξξ − 2βuξη + γ uηη + 1

2

(
αξ uξ + γη uη

)]
+ k2u = 0, (64)

where the symbol J corresponds to the jacobian of the transformation T . Once the farfield expansions ABC equations are 
also expressed in terms of elliptic-polar coordinates, we transform all of these continuous equations into discrete ones using 
centered second order finite difference schemes. This process is described in detail in [22]. Then, the corresponding linear 
system is derived in much the same way as we did above for polar coordinates. Numerical results for several complexly 
shaped obstacles are discussed in Section 6.

5. Farfield pattern definition and its accurate numerical computation

In scattering problems, an important property to be determined is the scattered field far from the obstacles. The geometry 
and physical properties of the scatterers are closely related to it. In Section 4.2.1 of [28], Martin defines the farfield pattern 
(FFP) as the angular function present in the dominant term of the asymptotic expansions for the scattered wave when 
r → ∞. For instance in 2D, the farfield pattern is the coefficient f0(θ) of KSFE,

u(r, θ) = eikr

(kr)1/2
f0(θ) + O

(
1/(kr)3/2

)
. (65)

Following Bruno and Hyde [29], we now describe how the FFP can be efficiently calculated from the approximation of the 
scattered wave at the artificial boundary.

If r > R , where R is the radius of the artificial circular boundary enclosing the obstacle, then, the scattered wave can be 
represented as the following complex Fourier series,

u(r, θ) =
∞∑

q=−∞
cq(r)eiqθ =

∞∑
q=−∞

bq H (1)
q (kr)eiqθ , where bq = cq(r)

H (1)
q (kr)

. (66)

Using the asymptotic expansion of the Hankel function H (1)
q (kr) when r → ∞, equation (66) transforms into

u(r, θ) = eikr

(kr)1/2

⎛
⎝√

2

π
e−iπ/4

∞∑
q=−∞

bq(−i)qeiqθ

⎞
⎠ +O

(
1/(kr)3/2

)
. (67)

By comparing (67) with (65) the following expression for f0(θ) is derived
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f0(θ) =
√

2

π
e−iπ/4

∞∑
q=−∞

bq(−i)qeiqθ . (68)

Thus, the FFP can be determined once the coefficients bq have been calculated. But as pointed out above, the coefficients bq

can be determined from the coefficients cq(r) for r fixed. Likewise, approximated values of cq(R) can be obtained from the 
scattered field approximation at the artificial boundary r = R , i.e., uN, j for j = 1, . . .m. In fact as stated by Kress [30], approx-
imations ĉq to the coefficients cq(R), at the fictitious infinite boundary can be obtained by considering the discrete Fourier 
transform vector ĉq (q = −m/2, . . .m/2 − 1) of the vector uN, j , interpolating the points 

(
θ j, uN, j

)
for j = 1, . . .m (m even). 

More precisely,

ĉq = 1

m

m−1∑
j=1

uN, je
−iqθ j , for q = −m/2, . . .m/2 − 1. (69)

These finite series can be directly evaluated, or a FFT algorithm can be used to compute them. The importance of the above 
derivation is that a semi-analytical formula

f0(θ) =
√

2

π
e−iπ/4

m/2−1∑
q=−m/2

b̂q(−i)qeiqθ , (70)

approximating the FFP for arbitrary shaped obstacles, can be obtained from the numerical approximation of the scattered 
far field, where b̂q = ĉq/H (1)

q (kR). This formula is extremely accurate as shown in [29]. The error in the approximation of 
f0(θ) using (70) depends almost entirely upon the error made in the approximation of the coefficients b̂q .

6. Numerical results

In this Section, we present numerical evidences of the advantages of using the exact farfield expansions ABCs, when 
dealing with acoustic scattering and radiating problems, compared with other commonly used ABCs. First, we numerically 
solve bounded problems with farfield expansions ABCs as defined in Sections 2.1–2.3. Then, we show that these numerical 
solutions indeed converge to the exact solutions of the original unbounded BVPs. As described in Section 3, the numerical 
method employed consists of familiar second order centered finite difference discretizations for Helmholtz equation in polar, 
spherical, and generalized curvilinear coordinates. This numerical method is completed with the discrete equations of the 
farfield expansions ABCs on the artificial boundary S . Our numerical results contain two sources of error. The first one is 
the error introduced by the finite difference scheme employed to discretize the Helmholtz equation in the computational 
domain �− . This error can be diminished by refining the finite difference mesh as we increase the number of points per 
wavelength. The second source of error is due to the truncation of the farfield expansion series. This error can be diminished 
by increasing the number L of terms in the absorbing conditions KSFEL , KDFEL , or WFEL . For example, if a finite difference 
scheme for a two-dimensional problem in polar coordinates leads to a second order convergence, then the order of the total 
error introduced by combining the finite difference scheme with the proposed absorbing boundary conditions is given by

error = O
(

h2
)

+ O
(
(kR)−L

)
, (71)

where h = r0�θ = �r is the mesh refinement parameter and L is the number of terms in the farfield expansions absorbing 
boundary conditions. Then for the total error to exhibit second order convergence with mesh refinement, it is necessary 
to choose L = O  (log(1/h)). Therefore, there is no need of large increments of L to improve the order of convergence. In 
practice, we can expect that a moderately large (but fixed) choice of L will be sufficient to reveal the order of convergence of 
the finite difference method for a reasonable range of mesh refinements. We construct our numerical experiments, reported 
later in this section, according to this fact.

First, we present numerical results for the scattering of a plane wave uinc = eikx from a circular obstacle in 2D. As a 
reference point, we also display the results from the use of the DtN nonreflecting condition [6,31,8,32]. Since this latter 
condition is considered exact, it serves as a reference point to gauge the error introduced by the finite difference scheme 
alone. For all ABCs, we use a second order centered finite difference scheme in the interior of the domain �− . In our 
experiments for the circular scatterer, we are able to obtain second order convergence of the numerical solution to the 
exact solution. In fact, we found that the numerical solution obtained from KDFEL and KSFEL , for appropriate number of 
terms L, are comparable to the approximation obtained from the DtN absorbing boundary condition. However, the advantage 
over the DtN-ABC formulation is that the farfield expansions ABCs are local while the former is not.

Secondly, we numerically solve the scattering from complexly shaped scatterers, using the exact farfield expansions ABCs. 
As a result, the farfield patterns (FFP) for several obstacles of arbitrary shape are obtained. Then we present our results, 
with the new ABCs, for an exterior radiating problem obtained from two sources conveniently located inside a domain 
bounded by complexly shaped curves. For these specials radiating problems, it is possible to obtain analytical solutions. 
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Fig. 2. Convergence of solutions of KSFEL - and KDFEL -BVPs (h fixed and L increasing) to the exact solution of scattering of a plane wave from a circular 
scatterer of radius r0 = 1 along the artificial boundary with radius R = 1.05.

Then, by comparing the numerical approximations and the exact solutions, we determine the order of convergence for 
several non-separable geometries, as we do in the circular case.

Finally, results for a spherical scatterer are presented. The numerical method is analogous to the one employed in the 
two-dimensional case for the KDFEL -BVP: a centered finite difference of second order in �− and WFE-ABC on the artificial 
boundary. Again, a second order convergence is reached by using few terms in the WFE farfield expansions.

6.1. Scattering from a circular obstacle. Comparison against exact solution and order of convergence

First, we point out that approximated solutions of the scattering problem obtained for the BVP corresponding to KSFE1
are identical to the numerical solutions obtained for the BVP corresponding to BGT1. This is a numerical evidence of the 
equivalence between these two problems, as proved in Theorem 2.

Another important result is the convergence of the numerical solutions of KDFEL and KSFEL boundary value problems to 
the exact solution as the number L of terms in the farfield expansion is increased for a sufficiently small h. In particular, 
this is shown in Fig. 2. However, the KSFEL numerical solutions only converge asymptotically as kR → ∞ when L is fixed. 
Indeed when kR is fixed, e.g. kR = π/2, and L grows then the numerical solution unavoidably diverges as explained at the 
end of subsection 2.2. This fact is also discussed in more detail in the Conclusions Section 7. Actually, Fig. 2 (left panel) 
shows the appearance of unphysical oscillations in the farfield pattern for KSFE9 which become larger as L increases.

The relevant data used in these problems is the following: wavenumber k = 2π , radius of the circular obstacle is r0 =
1, and radius of artificial boundary R = 1.05. We define the grid such that the number of points per wavelength in all 
experiments is PPW = 30 in the angular direction and N = 21 points in the radial direction. This is an extreme problem 
where the artificial boundary radius has been chosen almost equal to the radius of the circular scatterer. So, the domain 
of computation is very small. Even in this extreme situation, it is observed how well the numerical solution of KDFE7-BVP 
approximates the exact solution at the artificial boundary with a L2-norm relative error equal to 3.44 ×10−4 with only seven 
terms in the farfield expansion. Similarly, the numerical solution of KSFE11-BVP at the artificial boundary also approximates 
the exact solution with a L2-norm relative error equal to 3.73 × 10−4 with eleven terms in the expansion. This illustrates 
the slower convergence of the numerical solutions of KSFEL -BVP when compared with the sequence of solutions obtained 
from KDFEL -BVP.

In our next set of numerical experiments, we analyze the performance of the second order finite difference method for 
the scattering from a circular scatterer using the following ABC: BGT2, DtN, KSFEL , and KDFEL (L = 2, 4, 8, 10). By comparing 
the numerical farfield pattern (FFP) with the one obtained from the exact solution, we obtain the L2-norm relative error. 
The formula employed to compute the FFP, for all types of ABCs from the numerical solution of the scattered field at the 
artificial boundary, is the formula (70) described in Section 3. The results of these experiments are illustrated in Fig. 3. The 
common data in these numerical simulations is the following: frequency k = 2π , radius of the circular obstacle is r0 = 1, 
and radius of artificial boundary R = 2. In all our experiments, the error reported is the L2-norm relative error. The grid 
is systematically refined, as L is kept fixed, to discover the rate of convergence. For L = 2 (top left corner subgraph), it 
is observed that the rate of convergence for three of the four types of ABC is close to zero, while the approximation to 
the exact solution of the numerical solution corresponding to DtN improves as the grid is refined. The subgraph at the 
top right corner reveals that the numerical solution of KDFE4-BVP has almost the same rate of convergence than the one 
corresponding to DtN-BVP. From the subgraph in the lower row left corner, we conclude that the numerical solution of 
KSFE8-BVP also converges at almost the same rate as the one for KDFE4 and DtN boundary value problems. Finally for ten 
terms in both farfield expansions, the rate of convergence for the ABC: KSFE, KDFE, and DtN is basically the same.
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Fig. 3. Comparison of L2-norm relative error of the Farfield Pattern among DtN, BGT2, KSFEL , and KDFEL for L = 2, 4, 8, 10. The data in use is r0 = 1, R = 2, 
and k = 2π .

Table 1
Order of convergence of FFP approximation using KDFE5-BVP.

PPW Grid size h = r0�θ = �r L2-norm rel. error Observed order

30 30 × 190 0.03324 1.64 × 10−3

40 40 × 253 0.02493 9.19 × 10−4 2.02
50 50 × 316 0.01995 5.87 × 10−4 2.00
60 60 × 378 0.01667 4.10 × 10−4 1.99
70 70 × 441 0.01428 3.04 × 10−4 1.95

The previous discussion illustrated in Fig. 3 is appropriately summarized by a single graph depicted in Fig. 4. This 
figure clearly shows the second order convergence of the three methods using: DtN, KDFEL (L ≥ 5) and KSFEL , (L ≥ 9) while 
BGT2-BVP order of convergence is around 3.8 ×10−1. The set of grids employed to obtain Fig. 4 consist of PPW = 30, 40, 50, 
60, and 70, respectively. As a particular case of the quadratic convergence of KDFEL -BVP (L ≥ 5), we show the convergence 
of the numerical solution of KDFE5-BVP in Table 1. The grids are ordered from less to more refine. Furthermore, Fig. 5
shows the line obtained from the least squares approximation of the orders between progressively finer grids. The slope of 
this line is 1.99948, which confirms the quadratic order of convergence for the numerical solution of KFDE5-BVP using the 
technique proposed in this work.

We observe that the numerical solution of KSFE-BVP also exhibits a second order convergence to the exact solution, 
although it requires more terms than the solution of KDFE-BVP to converge at the same rate. In fact as shown in Fig. 4, nine 
terms or more are required in the farfield expansion of KSFE-ABC to reach second order convergence while only four or 
more terms are required in the farfield expansion of KDFE-ABC. Moreover, these numerical experiments provide numerical 
evidence of the non-equivalence between KSFE2-ABC and BGT2 as established in Theorem 3.
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Fig. 4. Comparison of order of convergence of FFP approximation for various ABCs versus the number of terms in the farfield expansion. The data in use is 
r0 = 1, k = 2π , R = 2, and PPW = 30, 40, 50, 60, 70.

Fig. 5. Least squares fitting line for the data in Table 1.

6.2. Scattering and radiation from complexly shaped obstacles

Our results in Section 6.1 for a circular shaped scatterer reveals the high precision that can be achieved by using the 
farfield expansions as ABCs with the appropriate number of terms and reasonable set of grids. As pointed out above, the 
accuracy of the overall numerical method is limited by the accuracy of the numerical method employed in the interior of 
the domain for relatively small number of terms, L, of the farfield ABCs. In this section, we take advantage of this fact to 
numerically solve more realistic scattering problems. In fact, we find numerical solutions for acoustic scattering problems 
from obstacles with complexly shaped bounding curves such as a star, epicycloid, and astroid. We choose as the artificial 
boundary a circle of radius R = 3 and the frequency k = 2π . As described in Section 4.3, the differential equations defining 
these BVPs are written in terms of generalized curvilinear coordinates that Acosta and Villamizar derived in [22]. The 
corresponding grids for these curvilinear coordinates were obtained from an elliptic grid generator and they were named 
elliptic-polar grids. Following the circular scatterer case, we use a second order centered finite difference method as our 
numerical technique for the interior points. A detailed account of the discretized equations in curvilinear coordinates are 
also found at [22]. We employ KSFE5 as our farfield expansion combined with PPW = 50 (points per wavelength). The 
results are illustrated in Fig. 6 where the total field and its corresponding FFP are shown for each one of these obstacles. 
The parametric equations of these bounding curves are given by

Star: x(θ) = 0.2(4 + cos(5θ)) cos(θ) y(θ) = 0.2(4 + cos(5θ)) sin(θ), 0 ≤ θ ≤ 2π. (72)

Epicycloid: x(θ) = ((5 sin(−(θ + 5π/4)) − sin(−5(θ + 5π/4))) cos(π/4) −
(5 cos(−(θ + 5π/4)) − cos(−5(θ + 5π/4))) sin(π/4))1/6
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Fig. 6. Total field and corresponding FFP for scattering from complexly shaped obstacles on elliptic-polar grids using KSFE5-ABC with k = 2π , R = 3, and 
PPW = 50.

y(θ) = ((5 sin(−(θ + 5π/4)) − sin(−5(θ + 5π/4))) sin(π/4) − (73)

(5 cos(−(θ + 5π/4)) − cos(−5(θ + 5π/4))) cos(π/4))1/6, 0 ≤ θ ≤ 2π.

Astroid: x(θ) = (2 cos(θ − π/3) + cos(2(θ − π/3))) cos(π/3)/3 −
(2 sin(θ − π/3) + sin(2(θ − π/3))) sin(π/3)/3 (74)

y(θ) = (2 cos(θ − π/3) + cos(2(θ − π/3))) sin(π/3)/3 −
(2 sin(θ − π/3) + sin(2(θ − π/3))) cos(π/3)/3, 0 ≤ θ ≤ 2π.
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For the experiments corresponding to the graphs shown in Fig. 6, using relatively fine grids with P P W = 50, we did not 
find significant changes in the numerical solution by increasing the number of terms in the KSFEL condition up to L = 12
terms.

Next, we discuss the numerical results for radiating problems defined in the exterior region � bounded internally by an 
arbitrary simple closed curve �. These BVPs consist of Helmholtz equation, Sommerfeldt radiation condition, and a Dirichlet 
condition on the complexly shaped bounding curve �. By imposing an appropriate boundary condition on �, we can easily 
prescribe a solution for each one of these BVPs. In fact, consider the function u defined in the exterior region � from the 
superposition of two sources which are located inside the closed region bounded by �. More precisely, u is given in terms 
of Hankel functions of first kind of order zero as

u(x) = H (1)
0 (kr1(x)) + H (1)

0 (kr2(x)), x ∈ � (75)

where r1 = |x − x1|, and r2 = |x − x2| with x1 and x2 inside the region bounded by �. Clearly, the function u satisfies 
Helmholtz equation in � since H (1)

0 (kri) does for i = 1, 2. It also satisfies the Sommerfeld radiation condition. Thus if we 
also impose the values of u at the boundary � (superposition of the two sources) as the boundary condition on �, the 
function u defined by (75) satisfies the radiating problem just defined, regardless of the shape of the bounding curve �.

Starting with the previously superimposed boundary condition on the bounding curve �, it is possible to obtain a nu-
merical solution. First, we transform the unbounded radiating problem into a bounded one by introducing the KDFE-ABC or 
KSFE-ABC on a circular artificial boundary (r = R). Then, we apply the proposed numerical technique in generalized curvilin-
ear coordinates in the region �− , bounded internally by � and externally by the circle of radius R to obtain the numerical 
solution sought.

The relevant data employed in our numerical experiments is the following: artificial boundary R = 2, frequency k = 2π , 
number of terms in the KSFE expansion L = 10, location of sources x1 = (0, 1/2) and x2 = (0, −1/2), set of grid points 
PPW = 60, 65, 70, 75, 80. We show that these numerical solutions indeed converge to the exact prescribed solution (75) of 
the original radiating BVP. This is illustrated in Fig. 7 where the known radiating field from the two sources is numerically 
approximated in three different regions �− which are internally bounded by three different curves. They are a circle of 
radius r0 = 1, the epicycloid boundary curve defined in (73), and the star curve defined in (72). The relative L2-norm error 
between the FFP of the prescribed solution and the approximated solution is computed for each different grid. Then, the 
order of convergence is estimated based on these errors. As seen in Fig. 7, we are able to prove quadratic convergence for 
the circle and for the star bounding curves. However, for the epicycloid we can only get 1.5 as order of convergence for 
the same set of grid points and number of terms in the farfield expansion L. This is due to the difficulty of generating 
conforming smooth grids in the neighborhood of the epicycloid singularities.

6.3. Scattering from a spherical obstacle. The axisymmetric case. Numerical approximation and order of convergence

In this section, we discuss the results for the scattering from a spherical obstacle modeled by WFEL -BVP as described in 
Section 4.2.

In Fig. 8, cross-sections of the total field for an arbitrary angle θ are depicted. The middle graphs corresponds to the 
approximation of the farfield pattern of this scattering problem. These graphs were extended to the interval [0, 2π ] by 
taking the mirror image of the solution in [0, π ]. Finally, the rightmost graphs show the second order convergence of the 
numerical solution to the exact solution when Wilcox farfield expansions ABC are employed. The data employed to generate 
the graphs in the top row of Fig. 8 is: k = 2π , R = 3, terms in WFEL , L = 8, and set of grid points used to achieve the 
second order convergence, PPW = 25, 30, 35, 40, 45. Similarly, the bottom row graphs were obtained using: k = 4π , R = 3, 
terms in WFEL , L = 8, and set of grid points used to achieve the second order convergence, PPW = 30, 35, 40, 45, 50.

These results reveals the high accuracy that can be achieved using the exact Wilcox farfield expansions in the 3D case. 
As we showed in the 2D case, the accuracy of the numerical solutions depends only on the order of approximation of the 
numerical method employed in the interior of �− when enough terms in the exact farfield expansions ABCs are used.

7. Concluding remarks

We have derived high order local ABCs for acoustic waves in two-dimensions (KDFE), and in three-dimensions (WFE). 
We have constructed them directly from Karp’s and Atkinson–Wilcox’s farfield expansions, respectively. A previous attempt 
by Zarmi and Turkel [11] to derive a high order local ABC from Karp’s expansion was partially successful. However, they 
were able to obtain other high order local conditions using an annihilating technique more general than the procedure used 
to obtain HH-ABC.

Some of the attributes of the novel farfield ABCs have been highlighted in various sections of this article. Among the 
most relevant attributes we find the exact character of these absorbing conditions according to [1]. This means the error 
between the solutions of KDFEL -BVP and WFEL -BVP, and the solutions of their corresponding original unbounded problems 
approaches zero when L → ∞ and the radius R of the artificial boundary is held fixed. Although, it is not possible to prove 
this exact property merely from numerical experiments, it is still possible to determine this behavior for moderately large 
values of L. A discussion on this convergence properties follows in the next paragraphs.
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Fig. 7. Numerical computation of a radiating field from two sources using KSFE10-ABC, k = 2π , R = 2, and PPW = 80. Order of convergence of FFP 
approximation for PPW = 60, 65, 70, 75, 80 for complex bounding curves.

As we pointed out earlier, possibly the most well-known higher order local absorbing boundary condition in two-
dimensions is due to Hagstrom and Hariharan [9] which we denote as HH-ABC. The advantage of KDFE sequence of ABCs 
over the HH counterpart is that the former leads to convergence of the numerical approximation to the exact solution for 
a fixed value of R , while the HH-ABC only converges asymptotically as R increases. In addition to KDFE and WFE farfield 
ABCs, we also derived KSFE in Section 2.2, which is a farfield expansion obtained from a classical asymptotic expansion of 
Karp’s series. This asymptotic expansion is the same employed in the derivation of the BGT and HH absorbing conditions in 
two-dimensions.

In Fig. 9 the convergence properties of the numerical FFP obtained form KSFE-BVP and KDFE-BVP are compared. The 
physical problem is the same scattering problem studied in Section 6.1 and illustrated in Fig. 2. However, instead of describ-
ing the approximation of the outgoing wave at the artificial boundary, we describe the approximation of the farfield pattern 
for different values of kR which are obtained for a fixed R = 1.05 combined with appropriate values of k.

Notice that the convergence of the solutions of KSFEL -BVP is conditioned by the value of the frequency k and radius R
of the artificial boundary. More precisely, for kR = π/2 and kR = π , the FFP approximation of KSFEL-BVP begins to diverge 
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Fig. 8. Numerical results for scattering from a spherical scatterer using Wilcox farfield ABC: cross-sections of the total field for arbitrary θ , farfield pattern, 
and order of convergence for two different frequencies k = 2π, 4π .

Fig. 9. Convergence properties of the numerical approximation of the FFP, obtained from KSFEL -BVP and KDFEL -BVP, when L increases for various kR
products.

from the exact FFP for L ≥ 4 and L ≥ 7, respectively. However for kR = 2π , the FFP of KSFEL -BVP converges to the exact 
FFP when L increases, for 1 ≤ L ≤ 15. Furthermore, this approximation is as good as the one obtained using the exact DtN 
boundary condition for 10 ≤ L ≤ 15. However, as we continue increasing the number of terms L, the solutions of KSFEL -BVP 
will eventually diverge. This behavior parallels the one established by a rigorous proof given by Schmidt and Heier [33]
for the convergence properties of the solution obtained using Feng’s absorbing boundary conditions. Feng’s condition arises 
from an asymptotic expansion of the exact DtN boundary condition for large R .

In practical terms, the use of KSFE-ABC is advisable only if the product kR is large enough which is also applicable to any 
absorbing condition obtained from an asymptotic expansion of series representation of the outgoing waves. The application 
of KSFEL is still useful in many physical problems where kR is sufficiently large since it takes only a few terms to reach the 
same order of convergence than the one obtained from DtN-ABC. On the other hand, the exact character of KDFE-BVP is 
clearly shown in Fig. 9. In fact, it only takes four terms of Karp’s expansion (L = 4) to reach the same level of convergence 
of the solution of the DtN-BVP when kr = π/2. This level is maintained until L = 15. Similar behavior is observed for the 
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other two values of the product kR . In all these experiments R = 1.05 and the frequency k was chosen according to the 
desired value of kR . We also employed the same grid in all these experiments.

A non-asymptotic version of BGT2 can be obtained by constructing a second order operator that annihilates the terms of 
O  (1) in Karp’s expansion. This was the approach followed by Grote and Keller [8] to obtain the second order differential 
operator,

L0u = ∂ru − k

(
H ′

0(kr)

H0(kr)
u −

(
H ′

0(kr)

H0(kr)
− H ′

1(kr)

H1(kr)

)
∂2
θ u

)
(76)

An alternative derivation of (76) was given by Li and Cendes [5] by requiring that the first two terms of the exact solution 
of normal modes of Helmholtz equation in cylindrical coordinates were annihilated. All these authors and more recently 
Turkel, Farhat, and Hetmaniuk [34] used the differential operator (76) at the artificial boundary as an ABC for the scattering 
of a plane wave from a circular obstacle. They noticed the superior accuracy of the solution obtained with this condition 
compared with the one obtained from the absorbing boundary conditions BGTL (for L = 1, 2), for low values of the fre-
quency k. In particular, Turkel et al. [34] showed that for a frequency k = 0.01 and radius R = 5 (artificial boundary) the 
L2-norm relative error at the artificial boundary is about 50 times better using (76) over BGT2. These results can be consid-
ered as a low order version of the results illustrated in Fig. 9 for the high order local KSFE and KDFE absorbing boundary 
conditions. Zarmi and Turkel [11] also arrived to the same conclusion by comparing their higher order version of Li and 
Cendes’ operator in 2D with the higher order versions of HH operators obtained from the asymptotic Karp’s expansion.

We would like to highlight two other valuable attributes of the farfield ABCs. First, the farfield pattern is the coefficient 
of the leading term of the farfield expansion. This leading coefficient (angular function) is one of the unknowns of the linear 
system to be solved to obtain the approximation of the exact solution. So, there is no additional computation afterward to 
obtain the FFP. In most of our experiments, we decided to use the FFP approximation formula obtained in Section 5 for 
comparison purposes. Secondly, by increasing the parameter L (number of terms in the expansion), the error introduced by 
KDFEL and WFEL can easily be reduced and made negligible compared with the error from the numerical method in the 
interior domain �− .

There are numerous directions in which the application of farfield ABCs can be extended. Some of those on which we 
are currently working or plan to work are the following:

a. The combined formulation of high order finite difference (or finite element), for the discretization of the Helmholtz 
equation in �− , with the novel exact local farfield ABCs. This will show the high accuracy that can be achieved by 
simply increasing the number of terms in the ABCs expansion, using relatively coarse grids. For this purpose, we plan 
to explore several high order compact finite difference schemes that have been recently developed [35,36] and others 
well-established found in [37].

b. The extension of the formulation of our ABC to the wave equation (time-domain). This extension is clearly feasible in 
3D since the time-domain analogue of the Wilcox expansion is available [38,39] due to the Fourier duality between ∂t
and ik, and between eikr and time shift. This is also valid for the KSFE-ABC in 2D. However, for the KDFE absorbing 
condition in 2D, Karp’s expansion has no closed-form transformation to the time domain due to the complexity of the 
terms H0(kr) and H1(kr). Such a transformation would lead to nonlocal operators in the time variable similar to the 
ones discussed in [40].

c. Construction of high order local farfield ABCs for multiple scattering of time-harmonic waves. The farfield expansions of 
Wilcox and Karp allow the evaluation of the scattered field semi-analytically at any point outside the artificial boundary. 
This property is fundamental in the multiple scattering setting for the introduction of artificial sub-boundaries enclosing 
obstacles disjointly à la Grote–Kirsch [41].
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