METHODS OF APPLIED MATHEMATICS

Homework 1: Review of Vector Calculus

1. Using a Cartesian coordinate system, verify the following vector identities:
(a) $\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$.
(b) $(\mathbf{A} . \nabla) \mathbf{A}=\nabla\left(\frac{|\mathbf{A}|^{2}}{2}\right)-\mathbf{A} \times(\nabla \times \mathbf{A})$
(c) $\nabla \times(\mathbf{A} \times \mathbf{B})=(\mathbf{B} \cdot \nabla) \mathbf{A}-\mathbf{B}(\nabla \cdot \mathbf{A})-(\mathbf{A} \cdot \nabla) \mathbf{B}+\mathbf{A}(\nabla \cdot \mathbf{B})$
2. (a) Use (A.15) to prove that

$$
\nabla \times\left(\nabla^{2} \mathbf{u}\right)=\nabla^{2}(\nabla \times \mathbf{u})
$$

(b) Use some of the previous identities to show that

$$
\nabla \times((\mathbf{u} \cdot \nabla) \mathbf{u})=-(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}+(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}
$$

where $\boldsymbol{\omega}=\nabla \times \mathbf{u}$.
(c) Using (a) and (b) obtain (10.5) from (10.1) and (10.2) (in Leal's book)
3. If flow is two dimensional
(a) Show that $\boldsymbol{\omega}=\omega \mathbf{k}$

It means the vorticity only has a nonzero component and is normal to the plane of flow.
(b) Show that $(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}=0$.
(c) Knowing that $\nabla \times \mathbf{u}=\boldsymbol{\omega}(x, y)=0$, everywhere in the unbounded region $x^{2}+y^{2}>1$ and $\mathbf{u}(x, y)=\nabla \times(\psi(x, y) \mathbf{k})$. Show (either directly or using one of the previous vector identities) that

$$
\nabla^{2} \psi(x, y)=0, \quad \text { everywhere on } x^{2}+y^{2}>1
$$

4. Use the method of separation of variable to obtain the solution of the exterior problem for the stream function, ψ.

$$
\left\{\begin{array}{l}
\nabla_{r, \theta}^{2} \psi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}=0 \tag{2.1}\\
\psi(1, \theta)=0 \\
\psi(r, \theta) \rightarrow y=r \sin \theta, \quad \text { when } r \rightarrow \infty
\end{array} \quad x^{2}+y^{2}>1\right\}
$$

(a) Introduce $\psi(r, \theta)=\Phi(\theta) G(r)$
and obtain an eigenvalue problem for $\Phi(\theta)$, and a second order equation for $G(r)$.
(b) Solve the eigenvalue problem for $\Phi(\theta)$ and obtain a general solution for $G(r)$ for each eigenvalue.
(c) Apply the principle of superposition to obtain a solution for (2.1). At this stage keep all unknown constants.
(d) Determine all the unknowns constants from B.C's (2.2) and (2.3).
5. Using suffix notation prove the following vector identities:
(a) (Problem 1. (c) above)

$$
\nabla \times(\mathbf{A} \times \mathbf{B})=(\mathbf{B} \cdot \nabla) \mathbf{A}-\mathbf{B}(\nabla \cdot \mathbf{A})-(\mathbf{A} \cdot \nabla) \mathbf{B}+\mathbf{A}(\nabla \cdot \mathbf{B})
$$

(b) $\nabla \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{B})$
(c) $[\mathbf{u} \times(\nabla \times \mathbf{v})]_{i}=\mathbf{u} \cdot \frac{\partial \mathbf{v}}{\partial x_{i}}-[(\mathbf{u} \cdot \nabla) \mathbf{v}]_{i}$

Use this identity (c) to obtain

$$
\nabla(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \times(\nabla \times \mathbf{v})+\mathbf{v} \times(\nabla \times \mathbf{u})+(\mathbf{u} \cdot \nabla) \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{u}
$$

