Name: \qquad
Student ID: \qquad
Section: \qquad
Instructor: \qquad

Math 113 (Calculus 2)
 Exam 1

25-29 January 2008

Instructions:

1. Work on scratch paper will not be graded.
2. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
3. Simplify your answers. Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.
4. Calculators are not allowed.

For Instructor use only.

$\#$	Possible	Earned	$\#$	Possible	Earned	
1.a	6			4	10	
1.b	6			$5 . \mathrm{a}$	8	
1.c	6			$5 . \mathrm{b}$	8	
1.d	6			$5 . \mathrm{c}$	8	
1.e	6			$5 . \mathrm{d}$	8	
2	10			5.3	8	
3	10			Total	100	

1. (30\%) Consider the region between the curves $y=x^{2}$ and $y=6 x-x^{3}$ in the first quadrant.

(a) Set up an integral for the area of the region bounded by the curves. DO NOT EVALUATE.

$$
\int_{0}^{2}\left(6 x-x^{3}-x^{2}\right) d x
$$

(b) Set up an integral for the volume when the region is rotated about the x-axis. DO NOT EVALUATE.

$$
\pi \int_{0}^{2}\left(\left(6 x-x^{3}\right)^{2}-\left(x^{2}\right)^{2}\right) d x
$$

(c) Set up an integral for the volume when the region is rotated about the y-axis. DO NOT EVALUATE.

$$
2 \pi \int_{0}^{2} x\left(6 x-x^{3}-x^{2}\right) d x
$$

(d) Set up an integral for the volume when the region is rotated about the line $x=-1$. DO NOT EVALUATE.

$$
2 \pi \int_{0}^{2}(x+1)\left(6 x-x^{3}-x^{2}\right) d x
$$

(e) Set up an integral for the volume when the region is rotated about the line $y=6$. DO NOT EVALUATE.

$$
\pi \int_{0}^{2}\left(\left(6-x^{2}\right)^{2}-\left(6-6 x+x^{3}\right)^{2}\right) d x
$$

2. (10%) Use the disk method or the shell method to show that the volume V of a sphere with radius r is given by $V=\frac{4}{3} \pi r^{3}$.
The equation of a circle of radius r centered at the origin is given by $x^{2}+y^{2}=r^{2}$. Solving for y we get $y= \pm \sqrt{r^{2}-x^{2}}$. We take the curve given by the positive square root and rotate the region under it about the x-axis from $0 \leq x \leq r$ to get the volume of a hemisphere. Multiplying by 2 gives the volume of the sphere.

$$
V=2 \pi \int_{0}^{r}\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x=2 \pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x=\left.2 \pi\left(r^{2} x-\frac{x^{3}}{3}\right)\right|_{0} ^{r}=2 \pi\left(r^{3}-\frac{r^{3}}{3}\right)=\frac{4 \pi r^{3}}{3}
$$

3. (10\%) A heavy rope, 100 ft long, weighs $0.5 \mathrm{lb} / \mathrm{ft}$ and hangs over the edge of a building 120 ft high. How much work is done in pulling the rope to the top of the building?

$$
\int_{0}^{100} x(.5) d x \quad \text { foot }- \text { pounds }=\left.\frac{x^{2}}{4}\right|_{0} ^{100} \quad \text { foot }- \text { pounds }=2,500 \quad \text { foot }- \text { pounds }
$$

4. (10%) A spherical tank having radius 10 feet is filled with a fluid which weighs 100 pounds per cubic foot. This tank is half full. Find the work in foot pounds needed to pump the fluid out of a hole in the top of the tank.

Math 113 Exam 1 Problem 4

Solution 1. Regard the spherical tank as being obtained by rotating the circle $x^{2}+y^{2}=10^{2}$ about the y-axis. Then the center of the tank is at the origin and the liquid occupies the space in the tank with $-10 \leq y \leq 0$ and the top of the tank is at $y=10$. The volume of a thin layer of liquid at height y is

$$
\text { volume of slice }=\pi x^{2} d y=\pi\left(\sqrt{100-y^{2}}\right)^{2} d y=\pi\left(100-y^{2}\right) d y
$$

Since the liquid weighs 100 pounds per cubic foot, the weight of the slice is

$$
\text { weight of slice }=100(\text { volume of slice })=100 \pi\left(100-y^{2}\right) d y .
$$

The distance from the thin layer at height y to the top of the tank is $10-y$, and there are thin layers for values of y such that $-10 \leq y \leq 0$. Thus, the work W to empty the tank is

$$
\begin{align*}
W & =\int_{-10}^{0} 100 \pi\left(100-y^{2}\right)(10-y) d y \tag{6points}\\
& =100 \pi \int_{-10}^{0}\left(1000-100 y-10 y^{2}+y^{2}\right) d y=\left.100 \pi\left[1000 y-\frac{100 y^{2}}{2}-\frac{10 y^{3}}{3}+\frac{y^{4}}{4}\right]\right|_{-10} ^{0} \\
& =0-100 \pi\left[-10000-\frac{10000}{2}+\frac{10000}{3}+\frac{10000}{4}\right] \\
& =1,000,000 \pi\left[1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right]=1,000,000 \pi \cdot \frac{11}{12}=2,500,000 \cdot \frac{11}{3} \cdot \pi=\frac{2,750,000 \pi}{3}
\end{align*}
$$

(2 more points)
(2 more points)

Grading Notes: If the solution had the wrong integral and used the formula $x^{2}+y^{2}=100$, the maximum score was $3 / 10$. If solution had the wrong integral and didn't use the formula $x^{2}+y^{2}=100$ or take into account varying volumes and varying distances, the score was $0 / 10$. If the integral was not set up correctly, the 4 points for the calculation were not awarded.

Solution 2. Place the origin of the coordinate system at the bottom of the circle. Then the center of the circle is at $y=10$, the top of the circle is at $y=20$, the equation for the circle is $x^{2}+(y-10)^{2}=100$, and the liquid is in the space $0 \leq y \leq 10$. Again obtain the sphere by rotating the circle about the y-axis. In this case, an argument similar to that in the first solution gives

$$
W=100 \pi \int_{0}^{10}(20-y)\left(\sqrt{10^{2}-(y-10)^{2}}\right)^{2} d y=100 \pi \int_{0}^{10}(20-y) \underbrace{\left[100-(y-10)^{2}\right]}_{x^{2}} d y=\cdots=\frac{2,750,000 \pi}{3}
$$

Common error in Solution 2: $W=100 \pi \int_{0}^{10}(20-y) \underbrace{\left(100-y^{2}\right)}_{\text {wrong }} d y=\frac{3,250,000 \pi}{3}$
Solutions 3, 4, 5, 6. There are at least four more correct ways to set the problem up that people used.
5. (40\%) Evaluate the following integrals:
(a) $\int_{0}^{\pi} x \sin x d x$

Integration by parts. $u=x, d v=\sin x d x, d u=d x$, and $v=-\cos x$

$$
\int_{0}^{\pi} x \sin x d x=-\left.x \cos x\right|_{0} ^{\pi}+\int_{0}^{\pi} \cos x d x=\pi+\left.\sin x\right|_{0} ^{\pi}=\pi
$$

(b) $\int_{0}^{\pi} \sin ^{2}(2 x) d x$

$$
\int_{0}^{\pi} \sin ^{2}(2 x) d x=\int_{0}^{\pi} \frac{1-\cos (4 x)}{2} d x=\left.\left(\frac{x}{2}-\frac{\sin (4 x)}{8}\right)\right|_{0} ^{\pi}=\frac{\pi}{2}
$$

(c) $\int(\ln x)^{2} d x$

Integration by parts. $u=(\ln x)^{2}, d v=d x, d u=2 \frac{\ln x}{x} d x, v=x$.

$$
\int(\ln x)^{2} d x=x(\ln x)^{2}-2 \int \ln x d x
$$

Now $\int(\ln x)^{2} d x=x \ln x-x+C$ by a second application of integration by parts. The final answer is $x(\ln x)^{2}-2 x \ln x+2 x+C$
(d) $\int e^{3 \theta} \cos (2 \theta) d \theta$

Use Integration by parts $u=e^{3 \theta}, d v=\cos (2 \theta) d \theta, d u=3 e^{3 \theta} d \theta, v=\sin (2 \theta) / 2$. Let $I=\int e^{3 \theta} \cos (2 \theta) d \theta$.

$$
I=\frac{e^{3 \theta} \sin (2 \theta)}{2}-\frac{3}{2} \int e^{3 \theta} \sin (2 \theta) d \theta
$$

Use Integration by parts $U=e^{3 \theta}, d V=\sin (2 \theta) d \theta, d U=3 e^{3 \theta} d \theta, V=-\cos (2 \theta) / 2$.

$$
\begin{aligned}
& I=\frac{e^{3 \theta} \sin (2 \theta)}{2}-\frac{3}{2}\left(\frac{-e^{3 \theta} \cos (2 \theta)}{2}+\frac{3}{2} \int e^{3 \theta} \cos (2 \theta) d \theta\right)=\frac{(2 \sin (2 \theta)+3 \cos (2 \theta)) e^{3 \theta}}{4}-\frac{9}{4} I \\
& \frac{13}{4} I=\frac{(2 \sin (2 \theta)+3 \cos (2 \theta)) e^{3 \theta}}{4} \text { and } I=\frac{(2 \sin (2 \theta)+3 \cos (2 \theta)) e^{3 \theta}}{13}+C
\end{aligned}
$$

(e) $\int \sin ^{4} x \cos ^{3} x d x$

Let $u=\sin x$ so $d u=\cos x d x$

$$
\begin{gathered}
\int \sin ^{4} x \cos ^{3} x d x=\int \sin ^{4} x \cos ^{2} x(\cos x d x)=\int \sin ^{4} x\left(1-\sin ^{2} x\right)(\cos x d x) \\
=\int\left(u^{4}-u^{6}\right) d u=u^{5} / 5-u^{7} / 7+C=\sin ^{5} x / 5-\sin ^{7} / 7+C
\end{gathered}
$$

