Name:	
Student ID:	
Section:	
Instructor:	

Math 113 (Calculus 2) Exam 2 $_{13-19 \text{ February 2008}}$

Instructions:

- 1. Work on scratch paper will not be graded.
- 2. For questions 2 to 6, show all your work in the space provided. Full credit will be given only if the necessary work is shown justifying your answer. Please write neatly.
- 3. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- 4. Simplify your answers. Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, etc. must be simplified for full credit.
- 5. Calculators are not allowed.

For Instructor use only.

#	Possible	Earned	#	Possible	Earned
1. a, b, c, d	16		2	8	
1. e, f, g	12		3	8	
1. h, i, j	12		4	8	
1. k, l, m	12		5	8	
1. n, o	8		6	8	
			Total	100	

Short Answer/Multiple Choice (60 points). Fill in the blank with the appropriate answer or circle the correct answer. You do not need to show your work.

1. (a) The integral
$$\int_{1}^{e} x \ln x \, dx$$
 is equal to
i. $\frac{e^{2}-1}{2}$
ii. $e^{2}+1$
iii. $\frac{e^{2}+1}{2}$
iv. $\frac{e^{2}+1}{4}$
v. $\frac{e^{2}-1}{4}$
vi. $e^{2}-1$

(b) Which of the following substitutions will best simplify the integral $\int \sqrt{3 + 2x - x^2} \, dx$

- i. $x = 1 2 \sec \theta$ ii. $x = \sqrt{3} + 2 \cos \theta$ iii. $x = \sqrt{3} \cos \theta$ iv. $x = \sqrt{3} - 2 \cos \theta$ v. $x = \sqrt{3} \sin \theta$ vi. $x = 1 + 2 \sin \theta$ vii. $x = 2 \sin \theta$
- (c) What substitution would you use in order to find the antiderivative $\int \sqrt{16 + x^2} \, dx$?
- (d) What identity would you use in order to find the antiderivative $\int \sin(3x) \cos(2x) dx$?

(e) Does the integral
$$\int_0^\infty \frac{dx}{1+x^2}$$
 converge? If yes, give its value.

(f) Does the integral
$$\int_0^1 \frac{dx}{\sqrt[3]{x}}$$
 converge? If yes, give its value.

(g) Does the integral
$$\int_{1}^{\infty} \frac{dx}{\sqrt[3]{x}}$$
 converge? If yes, give its value.

(h) Does the improper integral
$$\int_0^\infty \frac{dx}{e^x + 1}$$
 converge (yes or no) _____

- (i) The integral $\int_{1}^{2} \frac{x^2 + 1}{x} dx$ equals _____
- (j) The integral $\int_{1}^{2} \ln x \, dx$ equals _____
- (k) The integral $\int_0^{\pi} \cos^2 y \, dy$ equals _____
- (l) Give the integral definition of $\ln x$. $\ln x =$ _____
- (m) The temperature in degrees Fahrenheit over a two-hour period is given by $T(t) = 70 + 5\sin(\pi t), 0 \le t \le 2$. Find the average temperature in degrees Fahrenheit.
- (n) If $\sin \theta = x$, find $\sin(2\theta)$ in terms of x.
- (o) The Mean Value Theorem for Integrals states that if f is a continuous function on [a, b], then there exists a number c in [a, b] such that
- **Evaluate the following integrals (40 points).** For problems 2 through 6 you must show all of your work. Write the final answer in the blank.

2.
$$\int \frac{x^2 + x + 1}{x^3 + x} dx$$

Answer: _____

3.
$$\int_0^{\pi/6} \tan(2x) \sec^4(2x) \, dx$$

Answer: _____

4. $\int_0^2 x^3 \sqrt{4 - x^2} \, dx$

Answer: _____

5.
$$\int_0^\infty \frac{x \arctan x}{(1+x^2)^2} \, dx$$

Answer: _____

 $6. \int \sec^3 z \, dz$

Answer: _____