
Math 113 Exam 3 Practice

February 22, 2010

Exam 2 will cover 7.7, 7.8, appendix G, 8.1-3 and 11.1-3. Please note that integration skills will still be needed for
the material in 7.8 and chapter 8. For this exam you will only need to know the divergence test and the integral
test. The other tests will be given in exam 3.

This sheet has three sections. The first section will remind you about techniques and formulas that you should
know. The second gives a number of practice questions for you to work on. The third section give the answers of
the questions in section 2.

Review

7.7 Approximate Integration

In this section we concentrate on two things: How can we efficiently approximate the solution to a definite integral,
and how can we approximate the error.

You are expected to know how to calculate the following approximations of a definite integral
∫ b
a f(x) dx:

(a) the left and right hand sum

Left Hand Sum: Lf = ∆x
∑n

k=1 f(xk−1)

Right Hand Sum: Rf = ∆x
∑n

k=1 f(xk)

(b) the Trapezoid rule

Tf =
∆x

2

(
f(a) + f(b) + 2

n−1∑

k=1

f(xk)

)

(c) the Midpoint rule

Mf = ∆x
n∑

k=1

f

(
xk + xk−1

2

)

(d) Simpson’s rule

Sf =
∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 4f(xn−1) + f(xn)] .

Remember, n must be even to use Simpson’s rule.

It is unlikely that you will need to calculate the left or right hand sums, but you will still need to know about them.
You are expected to know how each of these rules behave based on standard properties of the function (mono-

tonicity, concavity, etc). For example, it is well known that the left hand sum is a lower bound and the right hand
sum is an upper bound of the definite integral of increasing functions. What behavior is true for Midpoint and
trapezoid?

You are expected to know the error estimates of Trapezoid, Midpoint and Simpsons:

Trapezoid

|ET | ≤
K(b− a)3

12n2

with |f ′′(x)| ≤ K on [a, b].

Midpoint

|EM | ≤ K(b− a)3

24n2

with |f ′′(x)| ≤ K on [a, b].
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Simpson’s

|ES | ≤
K(b− a)5

180n4

with |f (4)(x)| ≤ K on [a, b].

You can be expected to use the error estimates in one of two ways: to estimate the error of the calculation for a
particular value of n, or to find a value for n that gives an error no more than some stated value.

7.8 Improper Integrals

Remember, there are two types of improper integral:

• Infinite length: Integrals of the type ∫ a

−∞
f(x) dx,

∫ ∞

a
f(x) dx.

• Unbounded integrand. Integrals of the type

∫ b

a
f(x) dx,

∫ a

c
f(x) dx

where f has an infinite discontinuity at a.

Remember, in each type, there is a ”problem” that a definite integral cannot handle. We remove the problem by
turning it into a limit: ∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx

∫ a

c
f(x) dx = lim

b→a−

∫ b

c
f(x) dx.

Some things to remember when calculating improper integrals:

• Do not forget to set up an improper integral as a limit. You will likely have points deducted if you do not. It
is the only way for the grader to tell that you know what you are doing.

• Watch out for infinite discontinuities in the middle of the interval. You must split the integral at the disconti-
nuity in that case.

Appendix G

This section is somewhat of a departure from Chapter 8. This section is basically included to fill some gaps in your
mathematical education. We can understand the natural logarithm better if we define it as an area integral, than if
we just define it as the inverse of the natural exponential. In some ways, it is a more ”natural” way to develop these
two functions.

As you prepare for the exam, you should concentrate on two aspects:

• Use the area integral form of the natural logarithm to approximate it (by approximating the area).

• Be able to prove some of the properties of the natural logarithm using the area integral form of the natural
logarithm.

8.1 Arc Length

To find the length of a curve given by f(x), a ≤ x ≤ b, the formula is

s =

∫ b

a

√
1 + (f ′(x))2 dx.

Notice that there is a reason that this section is not in chapter 6. Arc length integrals can be difficult to solve.
You may need any of the techniques from Chapter 7 to calculate the arc length.

If the integral is complicated, you may wish to simplify it first. for example, when f ′ is a fraction, you may wish
to rewrite 1 + (f ′(x))2 as a single fraction before you proceed.
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8.2 Surface Area

Here are the important steps to keep in mind when solving this problem:

• First sketch the curve and identify the axis of rotation. Choose a variable, either x or y, to serve as our
independent variable. If the curve is given as a function of x (e.g., y = x2 + 1), then we will want to choose x
as our independent variable, while if the curve is given as function of y (e.g., x = y3 − y + 1), we will want to
choose y as our independent variable. This is the variable with respect to which we will be integrating. If the
curve is given implicitly (e.g., x2+y2 = 1), then we may choose either variable and solve for the other variable.

• Next consider the circumferences of the circles formed by revolving points on the curve about the axis of
rotation. The circumference of such a circle will be 2πr, where r is the distance to the axis of rotation. This
circumference should be expressed as a function of either x or y, whichever one we chose in the previous step
to be our independent variable.

• The general formula for the area of a surface of revolution of this type is

S =

∫ b

a
(circumference) ds

where circumference is what we found above, and ds is either

√
1 +

(
dy
dx

)2
dx or

√
1 +

(
dx
dy

)2
dy, according to

whether x or y is our independent variable, respectively.

Examples:

Rotating f(x), a ≤ x ≤ b about the x axis:

∫ b

a
2πf(x)

√
1 + (f ′(x))2 dx.

Rotating f(x), a ≤ x ≤ b about the y axis:

∫ b

a
2πx

√
1 + (f ′(x))2 dx.

Rotating f(x), a ≤ x ≤ b about the axis y = c:

∫ b

a
2π|f(x)− c|

√
1 + (f ′(x))2 dx.

Rotating f(x), a ≤ x ≤ b about the axis x = d:

∫ b

a
2π|x− d|

√
1 + (f ′(x))2 dx.

Exercise: Write the appropriate formulas for a function of y.

Note that you may need the same techniques to solve these integrals as you do in section 8.1.

8.3 Applications to Physics and Engineering

Fluid pressure

The calculation of fluid pressure on a plate vertically suspended in a liquid is

∫ b

a
ωD(h)L(h) dh

where D(h) is the depth at h, and L(h) is the width of the plate at h.

Centroid

There are three types of problems that you will need to be able to calculate.

• Using the property of sums of moments to be able to find centroids and center of mass. (Used in point masses,
and in regions where the area is easily calculated.)

• Finding the moments with respect to the x and y axes, and the centroid of a region bounded by two functions.
For example, if the region is bounded by

f(x) ≤ y ≤ g(x), a ≤ x ≤ b,

then we have:

Moment about the y axis:My =

∫ b

a
x(f(x)− g(x)) dx
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Moment about the x axis:Mx =

∫ b

a

1

2
(f2(x)− g2(x)) dx.

Since the area of the region is

A =

∫ b

a
(f(x)− g(x)) dx,

the centroid is given by

x =
My

A
, y =

Mx

A
.

• finding the center of mass of a plate. Here, we have a density. (mass is density times volume). If the density
is constant, the moments are just the calculations above times the density. The mass of the object is also the
area times the density. The center of mass, however, is the same as the calculation for the centroid. In the
case of a density that is not constant, the situation is more complicated. However, since the homework only
has constant density, that is all that need concern us for this exam.

You may need to rework the above equations for regions contained by functions of y.

Geometric properties of the centroid

We now turn to some properties of the centroid which can simplify certain geometrical problems.

1. Centroids of triangles are given geometrically If you are trying to find the centroid of a triangle, you can
do the following: Measure 2/3 along the line connecting a vertex to the midpoint of the opposite side. That’s
the centroid! (If you draw the lines from each vertex to the midpoint of the opposite side, they all intersect in
the centroid.)

2. Use symmetry The centroid will always lie on a line of symmetry (if the object possesses one). For example,
suppose we have a triangle with vertices at (0, 0), (2, 0) and (1, 5). This is an isosceles triangle. By the
symmetry, it is clear that x = 1. From the last item, since the line from the vertex above to the midpoint is
vertical, we see that y = 5/3.

3. Moments Add! If you are trying to find the moment of a complicated region, you can split the region into
simpler regions and add the moments together. For example, suppose a circle of radius 1 and a square of length
1 are placed side by side. Where is the centroid of the system?

1

1

The centroid of the circle is (−1, 1). Thus, the moment of the circle about the y axis is -1 times the area of
the circle: −π. Similarly, the moment of the circle about the x axis is π. Since the centroid of the square is
at (1/2, 1/2), the moments of the square about the y and x axes are both 1/2 (since the area of the square is
1). Thus, the total moment about the y axis is −π + 1/2. Also the total moment about the x axis is π + 1/2.
Hence, the centroid is given by

x =
−π + 1/2

π + 1

and

y =
π + 1/2

π + 1
.

4. Other calculations look like moment calculations Recall that when we developed the calculations for
force due to fluid pressure, we took a small strip and multiplied the area by ω×depth. That is like calculating a

4



moment! It should be no surprise, therefore, that if the force due to fluid pressure on the (submerged, vertical)
plate is

(weight density of liquid)× (depth of centroid)× (area of plate).

We also have the first theorem of Pappus for the calculation of volumes of rotation:

Volume = 2π × (distance from centroid to rotation axis)× (area).

You should only use these formulas either when you already have the centroid, or when it is easy to find.

For example, suppose we wish to find the force on the side of a circular plate of radius 2 feet that is submerged
in water to a point 5 feet from the top of the plate. Since the centroid of the plate is 7 feet from the surface,
the force is given by

F = 62.5× 7× 4π = 437.5πlb.

Notice how much easier the calculation becomes! That is because the centroid was easy to find.

Sequences

Sequences are an important part of Chapter 11, because so much of what we do involves them. You need to be able
to take a sequence and determine its behavior. Is is increasing or decreasing? Does it converge in the limit? What
does it converge to? Some theorems may be of help here:

1. If a sequence converges, it is bounded.

2. If a sequence is bounded and is (eventually) increasing or decreasing, then it converges.

3. If a sequence {an} matches a function f (i.e. f(n) = an) and

lim
n→∞

f(x) = L,

then the limit of the sequence is also L.

Rule 3 is useful because we can use everything we know about limits of functions to find limits of sequences. Since
L’Hopital’s rule is one of them, you should expect to use it. There are other rules about sums of sequences and
products of sequences, etc. You are advised to review them in the text.

Sometimes we can determine whether a sequence is (eventually) increasing or decreasing by looking at a function
f(x) with f(n) equalling the nth term of the sequence. If the function is increasing, the sequence is also.

Important Sequences

Some limits occur often enough that it is advisable to know about them in advance. For example, Dr. McKay
expects all of his students to know the following:

1. If c is a real, positive number, then c1/n → 1.

2. If c is a real, positive number, then
1

nc
→ 0.

3.
cn

n!
→ 0.

4. n1/n → 1.

5.
(
1 +

c

n

)n
→ ec.

All of the above limits except the third can be proven using L’Hopital’s rule. The third is a bit tricky but can be

done by noticing that the (n+ 1)st term of the series is
c

n+ 1
times the nth term.

If you encounter these limits in a problem, you are welcome to use what you know about them and move on.
(Unless the question *is* one of these limits.)
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Recursive Sequences

Most sequences that we deal with have a rule we can apply to find the nth term of the sequence. Recursive
sequences, however, only have a rule that allows us to find the nth term if we know all of the other terms that come
before it. The most famous recursive sequence is the Fibbonaci sequence given by

a1 = 1, a2 = 1, an = an−1 + an−2.

Generally, it is difficult to tell what a recursive sequence does. The theorems listed above can show that a recursive
sequence converges. For example if the sequence can be shown to be bounded and is increasing, then it must have
a limit. If a recursive sequence converges, then finding the limit of the sequence is easy: Let L represent the limit.
Since the sequence converges to L, every sequence element in the recursion formula converges to L also. For example,
suppose we wish to find the limit of

a1 = 1, a2 = 1, an =
1

2
an−1 −

1

2n−1
.

If we are reasonably sure the limit exists, we can replace an by L to get

L =
1

2
L− 0

You can then use this to solve for L. Make sure the series converges however, or you may arrive at the wrong
conclusion. For example, suppose we have the recursive sequence

a1 = 1, an = 2an−1 − 1.

Using this technique gives L = 2L−1, which yields L = 1. However, it is not hard to see that this sequence diverges.

Series

In this section we learned about convergent and divergent series. A series converges if the sequence of partial sums
converge. There are some particular types of series that we learned about:

Geometric Series
∞∑

n=0

arn. We learned that the geometric series converges to
a

1− r
if |r| < 1 and diverges other-

wise. We saw several applications where we could write a problem in terms of a geometric series.

Harmonic Series
∞∑

n=1

1

n
. We saw by examination of the partial sums s2n that this diverges. The integral test also

shows the divergence of this series.

Alternating Harmonic Series
∞∑

n=1

(−1)n+1

n
We know by a later test that the alternating Harmonic series con-

verges. We know by the Maclaurin series of ln(1 + x) that it converges to ln(2).

Telescoping Series This is a series where the partial sum collapses to the sum of a few terms. We can then take
the limit of the partial sum to see what the series converges to.

Note that in 11.2 the only series whose sums we could calculate were geometric and telescoping.

Tests for Convergence-Divergence and Integral tests only

So far, we have learned about the following tests for convergence:

Divergence Test If an %→ 0 then
∑

an diverges. This is an excellent test to start with because the limit is often

easy to calculate. Keep in mind, however, if the limit is 0, then the Divergence test tells you nothing. You
must try some other test.

p series If you recognize a series as a p series,
∞∑

n=1

1

np

then you can use the fact that a p series converges when (and only when) p > 1.
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Geometric series We discussed this in the last subsection.

Integral Test If we are trying to determine whether
∑

an converges, and there is a function f(x) with f(n) = an,
then the sum converges iff ∫ ∞

a
f(x) dx.

(We assume that both the series {an} and f(x) are positive.) So the integral test is handy if the associated
function can be integrated without too much difficulty.

Remember, the Integral test only works when the series has non-negative terms. If you have a series where the terms
are all negative, then you can factor out the negative 1 and then use the test. If the series is alternating, you’ll have
to wait for 11.5.

Estimating the tail

In an infinite series, the tail is a term usually used to indicate the “last” part of the series. For example, if we wish
to approximate the sum of the following convergent series,

∞∑

n=0

1

(2n+ 1)3
,

then we can write it as
k∑

n=0

1

(2n+ 1)3
+

∞∑

n=k+1

1

(2n+ 1)3

The part that is still an infinite sum is called the tail. The sum of the tail is called the error of our approximation.
If we can test convergence of a series by the integral test, then there is an easy way to find an estimate of the tail:
Assume f(x) is defined on [b,∞) for some b, and f(n) = an. Then

∫ ∞

k+1
f(x) dx ≤

∞∑

n=k+1

≤
∫ ∞

k
f(x) dx.

For example suppose that we sum the first 5 terms of the above series:

∞∑

n=0

1

(2n+ 1)3
≈

4∑

n=0

1

(2n+ 1)3

= 1 +
1

27
+

1

125
+

1

343
+

1

729
= 1.049324231

How close is this? We find that ∫ ∞

5

1

(2x+ 1)3
dx =

1

484
= 0.002066115702,

and ∫ ∞

4

1

(2x+ 1)3
dx =

1

324
= 0.003086419753.

Thus, the error is between these two numbers.

Questions

Try to study the review notes and memorize any relevant equations before trying to work these equations. If you
cannot solve a problem without the book or notes, you will not be able to solve that problem on the exam.

1. Estimate
∫ 4
0 e−x2

dx with midpoint, trapezoid, and
simpson for n=4 and 8.

2. Calculate a bound on the error for the trapezoid
calculation in the last question (n=4 only).

3. How large does n need to be in order for midpoint

to have an error no larger than 10−5?

4. How large does n need to be in order for Simpson’s
to have an error no larger than 10−5?

For questions 5 to 11, evaluate the integral,
or show that it diverges.
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5.

∫ ∞

2

1

x lnx
dx

6.

∫ ∞

1

lnx

x4
dx

7.

∫ ∞

1

1

(2x+ 1)3
dx

8.
∫ 1
0 lnx dx

9.
∫ π
π/2 secx dx

10.
∫∞
1 lnx dx

11.
∫ 4
1

dx
x2−4

For questions 12 to 13, use the Comparison
Theorem to show whether the improper in-
tegral converges or diverges.

12.

∫ ∞

1

tan−1 x

x2
dx

13.

∫ ∞

1

2 + e−x

3
√
x2

dx

14. By comparing the areas, show that
2( 13 + 1

5 + ...+ 1
2n+1 ) < ln(2n+ 1) < 2(1 + 1

3 + ...+
1

2n−1 ).

15. Find the equation of the tangent line to the curve
y = 1/t that is parallel to the secant line AD, where
A = (1, 1) and D = (3, 1/3).

16. What is log√10 10 + ln( 1e ) + 2 log5
5
2 + log25 16?

(a) 5

(b) 7
2

(c) 3

(d) 3
2

(e) 3− log5 2

(f) 5− log5 2

17. Which one is NOT right?

(a) lnx means the area under the curve y = 1/t
from t = 1 to t = x;

(b) limx→−∞ ex = limx→−∞ xex = 0;

(c) limx→0+ x lnx = limx→0+
√
x lnx = 0;

(d)
∫∞
1

1
x(ln x)dx is convergent;

(e) d
dxa

x = (ln a)ax.

18. Find the arc length function for the curve y = 2
√
x

with initial point (0, 0).

19. Find the arc length function for the curve y = 2x
3
2

with initial point (0, 0).

20. Find the arc length of the curve C : y = 3 +
1
2 cosh(2x) for 0 ≤ x ≤ 1.

21. Find the arc length for the curve y =
√
x− x2 +

sin−1(
√
x) for 0 ≤ x ≤ 1.

In questions (22) to (26), find the area of the
surface formed by revolving the curve about
the specified axis:

22. y = 2x+ 1, 1 ≤ x ≤ 3, about the y-axis.

23. x = sin y, 0 ≤ y ≤ π, about the y-axis.

24. y = 1 + x2, −1 ≤ x ≤ 1, about the line y = 2.

25. y = x3 + 1, 0 ≤ x ≤ 1, about the line y = 1.

26. x2

4 + y2

9 = 1, about the x-axis.

27. A circular pipe of 4m diameter has a plate that reg-
ulates the flow. When the plate is in position, the
flow is completely cut off. What is the force on the
plate in this position, if the pipe is full of water on
one side?

28. Find the force due to fluid pressure on one side of
a plate in the shape of the upper half of a regular
hexagon of diameter 8 feet if the hexagon is sitting
vertically in water with the (flat) top of the hexagon
at a depth of 15 feet.

29. A cylindrical barrel with height 2m and diameter
1m is filled to the brim with oil. If the weight den-
sity of oil is 900 kilograms per cubic meters, what
is the force due to fluid pressure on the side of the
barrel?

30. The masses mi are located at the points Pi. Find
the total moments My and Mx of the system, and
find the center of mass of the system.
m1 = 4,m2 = 2,m3 = 3
P1 = (1, 2), P2 = (−2, 3), P3 = (4,−1)

31. Let R be the region bounded by f(x) = sin(x) and
g(x) = cos(x) for x ∈ [π/4, 5π/4]. Sketch the region
R, and find the centroid (center of mass) of R.

32. Let R be the region bounded by f(x) = ex and
g(x) = x2 for x ∈ [0, 1]. Sketch the region R, and
find the centroid (center of mass) of R.

33. Let R be the region bounded by the curves f(x) =
2−x2 and g(x) = x2. Sketch the region R, and find
the centroid (center of mass) of R.

34. Let R be the region consisting of two adjacent circu-
lar discs described by the equations (x−1)2+y2 = 1
and (x− 3)2 + y2 = 1. Use the theorem of Pappus
to find the volume of the solid obtained by rotating
R about the y-axis.

35. Let R be the cross shape formed by taking a square
of side length 4, and cutting out of each corner a
smaller square of side length 1. Use the theorem of
Pappus to find the volume of the solid obtained by
rotating R about one of its original sides.
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36. Find the force due to fluid pressure on a vertical
plate in the shape of an equilateral triangle (2 feet
on a side), with the lower side parallel to the sur-
face, and the upper vertex at a depth of 15 feet.

37. Find the centroid of the following object: (each tic
mark is one unit)

Determine whether each sequence in 38 to
41 is convergent. State what it converges to,
if applicable. Is the sequence increasing or
decreasing? Is the sequence bounded?

38. an =
9n+1

10n

39. an = cos(nπ/2)

40. an =
n sinn

n2 + 1

41. an =
n3

1 + n2
.

42. Find the value that the sequence given by a1 = 1,
an = 1

an−1+1 converges to.

Determine whether the series is convergent or di-
vergent. If it is convergent, find its sum.

43.
∞∑

n=2

k2

k2 − 1

44.
∞∑

n=2

2

k2 − 1

45.
∞∑

n=0

3

5n

Determine whether each series in question
46 to 50 converges or diverges. State any
convergence/divergence tests you use.

46.
∞∑

n=1

n2e−n

47.
∞∑

n=1

(
lnn

n

)2

48.
∞∑

k=1

tan−1 k

1 + k2

49.
∞∑

k=1

k2

(k3 + 2)2

50.
∞∑

k=2

1

k ln k
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Answers

1. n = 4: Midpoint .8861352469
Trapezoid .8863185462
Simpson .8362142646

n = 8: Midpoint .8862269183
Trapezoid .8862268966
Simpson .8861963468

2. |f ′′(x)| < 2 on [0, 4]. |E| < 2
3 .

3. 731

4. |f (4)(x)| < 12. n = 52.

5. Diverges.

6. 1
9

7. 1
36

8. -1

9. Diverges.

10. ∞

11. Diverges.

12. Converges. Make the comparison
tan−1 x

x2
<

π/2

x2
.

13. Diverges. Make the comparison
2 + e−x

3
√
x2

>
2

3
√
x2

.

14.

15. y = − 1
3x+ 2√

3

16. c)

17. d)

18.
√
x+ x2 + ln (

√
x+

√
1 + x)

19. L(x) =
2(1 + 9x)

3
2 − 2

27

20.
1

2
sinh 2

21. 2

22. 8π
√
5

23. 2π(
√
2 + ln(

√
2 + 1))

24. 7
8 π

√
5− 17

16 π ln
(
−2 +

√
5
)

25. π
27 (10

√
10− 1)

26. π
(
18 + 24√

5
ln
(

3+
√
5

2

))

27. 8πω = 246300N

28. ω(180
√
3 + 40) = 21985.57 lbs.

29. 2πω = 2π · 9.8 · 900 = 55417.69 N

30. My = 12,Mx = 11, (x̄, ȳ) = (4/3, 11/9)

31.

(
3π

4
, 0

)

32.

(
9

12e− 16
,
3(5e2 − 7)

20(3e− 4)

)

33. (0, 1)

34. 8π2

35. 48π

36. 62.5(15 + 2
3

√
3)
√
3 = 1748.80lb

37. (
−211 + 64π

98 + 32π
,
112 + 64π

98 + 32π
) = (−0.05, 1.58)

38. converges to 0, decreasing, bounded

39. diverges, not increasing or decreasing, bounded.

40. converges to 0, not increasing or decreasing,
bounded.

41. diverges, increasing, bounded below.

42.
−1 +

√
5

2

43. diverges by the Divergence Test

44. Converges to 3/2 (Telescoping sum)

45. Converges to 15/4 (geometric series)

46. Use the integral test

∫ ∞

1
x2e−xdx =

5

e

Therefore it converges by the integral test

47. Use the integral test
∫ ∞

1

(
lnx

x

)2

dx = 2

Therefore it converges by the integral test.

48. Use the integral test

∫ ∞

1

tan−1 x

1 + x2
dx =

3π2

32

Therefore it converges by the integral test

49. ∫ ∞

1

x2

(x3 + 2)2
dx =

1

9

Therefore it converges by the integral test.

50. We have to be careful here since the function is not
defined at k = 1. By a change of variables, k = n+1

we see that
∞∑

k=2

1

k ln k
=

∞∑

n=1

1

(n+ 1) ln(n+ 1)
and

we can then use the integral test. The book notes
that we can also simply change the limits of inte-
gration, though it does not state this as a theorem.

∫ ∞

1

1

(x+ 1) ln(x+ 1)
dx = ∞− (−∞)

Therefore it diverges by the integral test.
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