Regularity Properties of Radon Measures

Definition (2.16). If μ is a positive measure on \mathcal{M} in X, then an $E \in \mathcal{M}$ is σ-finite if $E = \bigcup_{i=1}^{\infty} E_i$ for $E_i \in \mathcal{M}$ with $\mu(E_i) < \infty$.

Proposition (Folland p. 209). If μ is a Radon measure, then μ is inner regular on all σ-finite Borel sets.

Proof: Suppose $E \in \mathcal{B}_X$ has finite measure. (Such an E is trivially σ-finite.)

Let $\epsilon > 0$. By outer regularity, there is an open $U \supset E$ such that $\mu(U) < \mu(E) + \epsilon/2$.

Since $U = (U \setminus E) \cup (U \cap E) = (U \setminus E) \cup E$, then $\mu(U) = \mu(U \setminus E) + \mu(E)$, so that

$$\mu(E) + \epsilon/2 > \mu(U) = \mu(U \setminus E) + \mu(E)$$

from which $\mu(U \setminus E) < \epsilon/2$.

By outer regularity, there is an open $V \supset U \setminus E$ such that $\mu(V) < \epsilon/2$.

By inner regularity on open sets, there is a compact $F \subset U$ such that $\mu(F) > \mu(U) - \epsilon/2$.

Let $K = F \setminus V$.

Then K is a compact subset of E.

[F compact \implies F closed because X is Hausdorff (see Corollary (a) of Theorem 2.5); V open; so $K = F \setminus V$ is a closed subset of a compact F \implies K compact (see Theorem 2.4).]

Since $F = K \cup (F \cap V)$, then $\mu(F) = \mu(K) + \mu(F \cap V)$ with $\mu(F) < \infty$ and $\mu(K) < \infty$, so that

$$\mu(K) = \mu(F) - \mu(F \cap V)$$

$$> \mu(U) - \epsilon/2 - \mu(F \cap V)$$

$$> \mu(U) - \epsilon/2 - \epsilon/2$$

$$= \mu(U) - \epsilon$$

$$\geq \mu(E) - \epsilon.$$

Thus, μ is inner regular on E.

Suppose $\mu(E) = \infty$ and E is σ-finite.

Then $E = \bigcup_{i=1}^{\infty} E_i$ for $E_i \in \mathcal{B}_X$ with $\mu(E_i) < \infty$.

Set $H_j = \bigcup_{i=1}^{j} E_i$.

Then E is an “increasing” union of H_j with $\mu(H_j) < \infty$ and $\mu(H_j) \to \infty$ (recall Theorem 1.19(d)).

Thus for any $N \in \mathbb{N}$, there is a j such that $\mu(H_j) > N$.
This implies by the preceding argument (the \(\mu(E) < \infty \) case), that there is a compact \(K \subset H_j \) with \(\mu(K) > N \).

Hence \(\mu \) is inner regular on \(E \). □

Definition (Folland p. 24). A positive measure \(\mu \) on \(\mathcal{M} \) in \(X \) is \(\sigma \)-finite if \(X = \bigcup_{i=1}^{\infty} E_i \) with \(E_i \in \mathcal{M} \) and \(\mu(E_i) < \infty \); \(\mu \) is finite if \(\mu(X) < \infty \).

Remark. Finiteness of \(\mu \) implies \(\sigma \)-finiteness of \(\mu \).

Corollary A (Folland p. 209). If a Radon measure \(\mu \) is \(\sigma \)-finite, then it is regular.

Proof: Every \(E \in \mathcal{B}_X \) is \(\sigma \)-finite: \(E = \bigcup_{i=1}^{\infty} (E \cap E_i) \) with \(\mu(E \cap E_i) \leq \mu(E_i) < \infty \).

The Proposition on p.1 implies the inner regularity of \(\mu \) □

Definition (2.16). A set \(E \subset X \) is \(\sigma \)-compact if \(E = \bigcup_{i=1}^{\infty} K_i \) with \(K_i \) compact.

Corollary B (Folland p. 209). If \(X \) is \(\sigma \)-compact, then every Radon measure is regular.

Proof: \(\sigma \)-compactness of \(X \) implies \(\sigma \)-finiteness for Radon measure \(\mu \): \(E = \bigcup_{i=1}^{\infty} (E \cap K_i) \) where \(\mu(E \cap K_i) \leq \mu(K_i) < \infty \). □

Positive Linear Functionals

Definition (2.1). A linear functional on a complex vector space \(V \) is a map \(\Lambda : V \to \mathbb{C} \) such that

\[
\Lambda(\alpha f + \beta g) = \alpha \Lambda(f) + \beta \Lambda(g)
\]

for all \(\alpha, \beta \in \mathbb{C} \), and all \(f, g \in V \).

Definition (2.2). A linear functional \(\Lambda \) on \(C_c(X) \) is positive if \(\Lambda(f) \geq 0 \) whenever \(f(X) \subset [0, \infty) \).

Examples. Let \(\mu \) be a Borel measure for which \(\mu(K) < \infty \) for every compact \(K \subset X \) (for instance, \(\mu \) could be a Radon measure).

a) The map \(\Lambda : C_c(X) \to \mathbb{C} \) defined by

\[
\Lambda(g) = \int_X g d\mu
\]

is a positive linear functional on \(C_c(X) \).

Here \(\text{supp}(g) \) is compact, \(g \) is bounded on \(\text{supp}(g) \), and \(\mu(\text{supp}(g)) < \infty \); so the integral is finite.

Incidentally, this shows that \(\overline{C_c(X)} \subset L^1(\mu) \)

b) For a fixed positive \(f \in L^1(\mu) \), the map \(\Lambda : C_c(X) \to \mathbb{C} \) defined by

\[
\Lambda(g) = \int_X g d\varphi \text{ where } d\varphi = f d\mu
\]

is a positive linear functional on \(C_c(X) \).

Here \(\mu(K) < \infty \) implies \(\varphi(K) < \infty \) because \(\int_K d\varphi = \int_K f d\mu = \int_X \chi_K f d\mu \leq \int_X f d\mu < \infty \).
c) The **Dirac functional** $\Lambda : C_c(X) \to \mathbb{C}$ defined by $\Lambda f = f(x_0)$ for fixed x_0 is a positive linear functional.

The Riesz Representation Theorem asserts that every positive linear functional on $C_c(X)$ arises as integration against a Borel measure.

Positivity of a linear functional implies a strong form of continuity.

Definition. The **uniform norm** of $f \in C_c(X)$ is $\|f\|_u = \sup\{|f(x)| : x \in \text{supp}(f)\}$.

Remark. The uniform norm is a metric on $C_c(X)$.

Proposition (Folland p. 204). If Λ is a positive linear functional on $C_c(X)$, then for each compact $K \subset X$ there is a constant C_K such that $|\Lambda(f)| \leq C_K\|f\|_u$ for all $f \in C_c(X)$ with $\text{supp}(f) \subset K$.

Proof. It suffices to show this for a real-valued f.

For a compact K, choose $\varphi \in C_c(X)$ with $\varphi(X) \subset [0,1]$ and $\varphi = 1$ on K (such exists by Urysohn’s Lemma).

The if $\text{supp}(f) \subset K$, we have $|f| \leq \|f\|_u \varphi$, that is, $\|f\|_u \varphi - f \geq 0$ and $\|f\|_u \varphi + f \geq 0$.

Thus $\|f\|_u \Lambda(\varphi) - \Lambda(f) \geq 0$ and $\|f\|_u \Lambda(\varphi) + \Lambda(f) \geq 0$, so that $|\Lambda(f)| \leq \Lambda(\varphi)\|f\|_u$. □

The Riesz Representation Theorem for Positive Linear Functionals on $C_c(X)$ (2.14). If X is a LCH space, and Λ is a positive linear functional on $C_c(X)$, then there is a σ-algebra \mathcal{M} in X for which $\mathcal{B}_X \subset \mathcal{M}$, and a unique positive measure μ on \mathcal{M} such that

a) $\Lambda f = \int_X f\,d\mu$ for all $f \in C_c(X)$,
b) $\mu(K) < \infty$ for every compact K in X,
c) $\mu(E) = \inf\{\mu(V) : V \supset E, V \text{ open}\}$ holds for every $E \in \mathcal{M}$, ("outer regularity"),
d) $\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compact}\}$ holds for every open $E \in \mathcal{M}$, and for every $E \in \mathcal{M}$ with $\mu(E) < \infty$, ("partial inner regularity"),
e) $E \in \mathcal{M}$ with $\mu(E) = 0$ implies $A \in \mathcal{M}$ for all $A \subset E$ (μ on \mathcal{M} is complete).

In particular, the restriction of μ to \mathcal{B}_X is a Radon measure.

Remark. If X is σ-compact, then the Radon measure $\mu|\mathcal{B}_X$ is regular by Corollary B, and the positive measure μ on \mathcal{M} is the completion of $\mu|\mathcal{B}_X$ by Theorems 1.36 and 2.17(b) (part (b) in these notes, part (c) in Rudin).

Proof. Throughout the proof, K stands for a compact subset of X and V for an open subset of X.

Uniqueness. If μ satisfies c) and d), then μ is determined by its values on compact sets: by d), μ is determined for every open subset of X by compact subsets K, and by c), μ is determined for every $E \in \mathcal{M}$ by open subsets.

It thus suffices to show that $\mu_1(K) = \mu_2(K)$ for all K whenever μ_1, μ_2 are two measures for which the theorem holds.

Fix K and $\epsilon > 0$.
By b) and c) there is a V such that $K \subset V$ and $\mu_2(V) < \mu_2(K) + \epsilon$.

[Part b) gives the finiteness of $\mu_2(K)$ so that $<$ makes sense in $\mu_2(V) < \mu_2(K) + \epsilon$.]

By Urysohn’s Lemma, there is an $f \in C_c(X)$ with $K \prec f \prec V$, i.e., $f = 1$ on K, supp$(f) \subset V$.

Hence

$$
\mu_1(K) = \int_X \chi_K d\mu_1
\leq \int_X f d\mu_1 \quad [K \prec f]
= \Lambda f \quad \text{[Part (a) for μ_1]}
= \int_X f d\mu_2 \quad \text{[Part (a) for μ_2]}
\leq \int_X \chi_V d\mu_2 \quad [f \prec V]
= \mu_2(V)
< \mu_2(K) + \epsilon.
$$

Thus $\mu_1(K) \leq \mu_2(K)$.

Switching the roles of μ_1 and μ_2 gives the opposite inequality, and so $\mu_1(K) = \mu_2(K)$.

Since K was arbitrary, we have $\mu_1 = \mu_2$ on \mathcal{M}.